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Abstract. In this note, we deal with a perfect sequence space A and a convex bornological space
E to introduce and study the space A\(E) of all totally A-summable sequences from E. We prove
that A(E) is complete if and only if A and E are complete, nuclear if and only if A\ and E are
nuclear, and we make use of a result of Ronald C. Rosier [10] to give a similar characterization of
the nuclearity of the space A{E} of all absolutely A—summable sequences in a locally convex E.
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Introduction

In connection with the nuclearity of a locally convex space E, A. Pietsch in [9] in-
troduced the spaces ¢,(E) and ¢,{E} respectively of weakly £,-summable and absolutely
,-summable sequences in E. In [8], he used these spaces to study the absolutely p-summing
operators. Later, he introduced and studied also the space A{ E} of A-summable sequences
in E, for a perfect sequence space A in the sense of Kothe endowed with its normal topol-
ogy. Many other authors were interested in the study of these spaces. Ronald C. Rosier
in [10] considered a general polar topology on A{E} and got a precise description of the
topological dual and its equicontinuous subsets. M. Florencio and P. J. Pail [3], con-
sidering general polar topologies, obtained many interesting results such as barreledness
conditions. In [1] and [2], they studied the space A\(E) of weakly A—summables sequences
in E and represented this space as the completion of the injective tensor product AQ.E.
In [6] and [7], L. Oubbi and M. A. Ould Sidaty reconsidered the space A\(E) and obtained
some of its properties. They mainly described the continuous dual space of A(F). While
in [11] and [13], characterizations of the reflexivity of A(E) in terms of that of A and E
and the AK-property are given. A characterization of the nuclearity of of the space of
weakly A—summable sequences is given in [12].
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In this note, we are concerned with the nuclearity of the convex bornological space A(E) of
all totally A—summable sequences in F, in the sense of [3], where E is a convex bornolog-
ical space.

In sections 1 and 2, we endow this space with a structure of b-space, and study some of
its properties.

The section 3 is devoted to the nuclearity of A(F). We prove mainly that A\(E) possesses
this property if and only if both of A and E have.

In Section 4, we provide an application of the results of Section 3 on the nuclearity of the
space A{E} of absolutely A—summable sequences in a locally convex space E.

1. Preliminaries

For a linear space E, we mean by a convex bornology on FE, a collection of subsets of
FE covering E, hereditary for the inclusion, and closed for the finite unions, the addition,
the scalar multiplication and the formation of absolutely convex hulls. We say then that
F is a convex bornological space or simply a b-space. The elements of the bornology of £
are called bounded sets of E.

A collection B of bounded sets of E is a basis for its bornology if every bounded set in
F is contained in an element of B. In the sequel, we assume that the members of B are
absolutely convex.
A b-space E is said to be Hausdorff if the only bounded linear subspace of E is {0}.
We say that a sequence {z,}7°; C E converges to z € E, or that z is a limit of {z,}>2,
in E if there exists an element B € B such that {z,, — x}72, is contained and convergent
to 0 in the normed space (Ep, || - ||5), where Ep is the subspace of E generated by B and
| - ||z is the gauge of B.

A subset of a b-space E will be said to be closed if it contains the limits of all its
sequences.
A Banach disk in a b-space E is an element B € B for which the normed space Ep is
complete. FE is said to be b-complete or simply complete if every bounded set in E is
contained in a Banach disk in E.

A linear mapping between two b-spaces E and I is said to be bounded if it transforms
bounded sets of E to bounded sets of F'. A bounded linear mapping transforms convergent
sequences to convergent ones. A bornological isomorphism is a bounded linear bijection
whose inverse is also bounded.

The Kothe dual of a sequence space ) is defined as

A= {(ﬁn) cC: Z |t B | converges for all (o) € )\}.

n=1

We see that A C A% =: (A\*)*; we say that A is perfect if the equality holds.
The normal cover of a subset S of A is the subset of A formed by the sequences of the
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form (e,am), where (), € S and (g,,), C C with |e,| < 1, for all n. We see that S is
contained in its normal cover. S is said to be normal or solid if it coincides with its normal
cover.

For the general theory of locally convex spaces and Kothe sequence spaces, we refer the
reader to [5].

Throughout this paper, A will be a perfect (and then a normal) sequence space endowed
with a normal bornology, that is a convex bornology having a basis S of solid sets, and for
which the standard coordinate projections from A to C are bounded.

Following the terminology of [3], a sequence (x,), C E is said to be totally A—summable
in E if there exists an absolutely convex element B € B such that (z,), C Ep and
(lznllB)n € A In other words, (xy)n = (anbp)n, with (o), € X and {b,}2°, C B.

Starting from this definition, we introduce the vector valued sequence space

MNE) = {(:En)n C E:3dB € B, (), C Ep and (||z,]|)n € )\}.

Due to the properties of B, the triangle inequality of the norms || - ||z and the fact that A
is normal, we see that A(E) is a linear space. For S € S and B € B, we define

S(B) = {(acn)n C Ep. (|aalls)n € s}.

2. Properties of \(F)

In the sequel, the b-spaces E equipped with the convex bornology with basis B and A
with the normal bornology with basis S, will be supposed to be Hausdorff spaces.
Starting from this setting, one can define, in a natural way, a convex bornology on A(F)
with basis S(B) by setting

S(B) = {H C A(E):3S €S,B € B such that H = S(B)}.

In view of the hypothesis made on S and B, S(B) is indeed a basis for a convex bornology

on A(E) for which A(F) is a Hausdorff space.

Lemma 1. For a fized k € N, denote by 7, the projection from A(E) on E defined by
() =z, for all z = (z,) € A(E).

Then, T s a bounded linear map.

Proof. Let B € B and S € S and fix k£ € N. Since the bornology of X is normal, the
set {ag : (apn)n € S} is bounded in C, and then so is {||zk|| : (zn)n € S(B)}. This means
that {xy : (zn)n € S(B)} is bounded in Ep. Thus, 7 is bounded. [ |
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Proposition 1. The spaces A and E can be identified with closed subspaces of \(E).

Proof. Let I : E — A(E),t — tey, where t is at the first component. It is clear that
I is linear and one to one. Let B € B, and S € S such that e; € S, then I(B) C S(B) and
I is bounded. Inversely, I=! : I(E) = Fe; — E is the restriction of m; to the subspace
I(E), and then it is bounded by Lemma 1. It remains to show that I(E) is closed in A(E).
We have I(E) = [\ 7.1 ({0}). Since E is supposed to be a Hausdorff space, then {0} is
closed and so is I(E).
Now, fix 0 # xg € Eandlet g : A — AM(E), a0 = (an)n — (anxo)n = axp. It is clear that

g is linear and one to one. Let S € S, and B € B with g € B. Then, g(S) C S(B); so

1
g is bounded. Inversely, if S € S and B € B, then g~!(S(B) N Azg) = ——, and then

T
g~ ! :g(E) = Arg — X is bounded. It remains to show that g()) is clﬂsg(g?n A(E). Let
{a® gy = (a;k):vg)n 22, be a sequence in Azg which converges to x = (z,), € A(F). By
Lemma 1, {a%k)xo}iil converges to x, in F, for every n. As, the subspace Cxq of F is
closed in E, x, must belong to Cxy. Then, there is @ = («,) such that x = (x,,), = axo.
It is easy to see that o € A. We conclude that Az is closed in A(E). n

Proposition 2. \(E) is complete if and only if X and E are complete.

Proof. If A\(E) is complete, then so are A\ and E by Proposition 1. Inversely, suppose
that A and F are complete. We only show that if B and S are Banach disks in £ and
A respectively, then S(B) is a Banach disk in A(E). To simplify the notations, we set
F =XE), H= S(B) and 7 the gauge of H.

Let {(2%);}3°; be a Cauchy sequence in (Fy, 7). We have

[Ulz5lB)nlls = 2l )nllg| < ‘H(%HB)n —(Izhlalls] < Nlanlls = lzdl)allg
< [(llzy, = 2Bl
= 7((z' —27),).
This means that {(||z°|):}32; is a Cauchy sequence in the complete space (Mg, | - ||s);

let @ = (ap )y be its limit in Ag. Fix n € N. Due to the boundedness of the projections,
{llz]| B}32; converges to ay, and {z%}5°; is a Cauchy sequence in the complete space Eg;
denote by z,, its limit. Thus, ||z,|lp = an, and = (z,,)n, € A(E). It remains to prove
the convergence of {(z%);}%°; to . This derives from the fact that {(||z° — =)}, is a
Cauchy sequence in (\g, || - ||s) and its limit is nothing but the zero sequence in . |

3. Nuclearity of \(F)

A linear mapping f : F — F between complete normed spaces is said to be nuclear
if there exist (e,), € ¢1, a bounded sequence (ay,), in the continuous dual E’ of E and a
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bounded sequence (yy), C F such that

Zanan x)Yn, for all x € E.

A b-space E is said to be nuclear (a Schwartz space) if for every Banach disk A in E
there is a Banach disk B D A in E such that the inclusion mapping E4 — Ep is nuclear
(compact).

Proposition 3. The tensor product A ® E is identifiable with a subspace of \(E).

Proof. We see that for all & = (an), € XA and x € E, (apz), € A(E). Define the
bilinear mapping ¢ : A x E — A(FE), such that ¢(«a,z) = (apx),. There exists a linear
mapping £ : A ® E — A(E), with {(a ® 2) = (an@)n. Let us show that ¢ is one to one.
Suppose that z € A ® E such that £(z) = 0. We can write z = ., (a/,),, ® a;, for which
{(ai)n}r_ | and {x;}F_, are linearly independent. But,

k k
0(2) :Zﬁ(ai@mw) :Z (ay,mi)n <Za x,)

Since ¢(z) = 0 then (Zle aﬁ'lm) =0 and Zle alx; = 0, for every n. But, as {z;}F_, is
n
linearly independent, o, = 0, for all 1 < i < k and n € N. Thus, z = Zf (@) ®x; =0,

and ¢ is one to one. [

Lemma 2. Let S and B be Banach disks in A and E respectively, N(x) = H(HanB)nHS
for all x = (xn)n € As(EB) and Ni(z) = N(l(2)) for all z € As @ Ep. Then,

1. Ny is a cross-norm on A\g @ Epg, that is N(a ® ) = ||a||s||z|| B, for every a € Ag and
r € Ep.

2. The mapping {: s ® Egp — A\g(EpR) is isometric and can be extended to a unique
linear mapping 7 )\S®N1EB — As(Ep), where )\S®N1EB the completion of the normed
space (As @n, Ep, N1).

Proof. Since N is a solid norm and £ is a one to one linear mapping, N7 is a norm. It
is clear that Ni(a ® x) = ||a||s||z|/, and 1. holds. By the definition of N;, we see that ¢
is isometric from A\g ® Eg to the complete space Ag(Ep), and then it has an extension to
the completion Ag&® ~EB of As ®n, Ep. This gives the second item. |

We will make use of the following result to represent A(F) as a bornological tensor
product.

Proposition 4. [/, Ch VIII, Prop. 4]

1. There is a convex bornology b on X @ E (the finest one) making bounded the inclusion
mappings A\s @n, Ep — A(E). Moreover, A\ @, E = liﬂ)\s N, Ep.

2. b is located between the projective bornology ™ and the injective bornology €.

3. If X or E is nuclear, then m = b = ¢.

4. If X and E are nuclear, the bornological completion A\@yE of X ®p E is the inductive
limit of the Banach spaces )\5®N1 Ep.
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Now, we prove

Theorem 1. If A\ and E are nuclear, the equality \(E) = A@yE holds algebraically and
bornologically.

Proof. Consider the linear mapping ¢ : A ®, E — A(F) defined in the proof of Propo-
sition 3.
According to the definition of the norms N and N1, we see that ¢ is bounded, and since
A(E) is complete, ¢ can be extended to a bounded linear mapping { from the bornological
completion A\@pE of A @y E to A(E).
We will prove that ¢ makes A&, E and A(E) bornologically isomorphic.
Let z € A&, F be such that £(2) = 0. By [4, Ch VIIL, Prop. 2], a sequence {2}, of
elements of A @, E converges to z. Then {2, — 2}32, is a null sequence in some subspace
AgébEB. Thus,

i(z) = E(liin t(zg)) = li}gﬂ(fo V) (zx) = liglf(zk) = 1111}1(670 V) (z) = Z(lilgn z) = 0(z) = 0.

Here ¢ is the canonical injection from A ®; E to its completion \@yF.

By Lemma 2, { is isometric and then it is one to one, then z = 0, and 7 is one to one.
We will prove that ¢ is onto as follows. Let A € B be a Banach disk; since E is nuclear we
can select a Banach disk B € B containing A such that the inclusion E4 — Epg is nuclear.
There are (ex)r € ¢1, a bounded sequence (ay)j in the continuous dual (E4)’ of E4 and a
bounded sequence (yg)r C Ep such that

x = Zekak(x)yk, forall x € E4. (1)

Let 2 = (zn)n € As(E4), and o = (aF),, =: (ax(z,)),. We have

n
k] = lan(@n)] < lallenlla < (sup Hapu) lalla, for all k. @)
P

The sequence (aj )i being bounded in (E4)’, sup,, ||| is finite, o = (ak), € Ag(E4), for
all k, and, by (2), [|a*||s < (sup,, llap|D[|([|#n | 4)nlls and then sup, ||| is finite. Then,

> Ni(ero @ yp) Z el | sllyxll 5 < (Sup ||%||)(Sup lypl)N Zﬂ: (3)

k=1 k=1

As, A\s(Ep) is a complete normed spaces, the series > 77, era® @ yp, converges in Ag(Ep)
to a limit g(x). Moreover,

Ug(x)) = . (4)
Indeed, if z = (2,)n € Ag(Ep) is such that z = ¢(g(z)), then

7= (2n)n = Z(ng(ak(fﬂn) ® yr) fokg ar(Tn))n ® Yk)
k=1
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o0
= > erl((an(@n))n ® y)
k=1

= > er(an(@n)yr)n:
k=1

But the projections are bounded by Lemma 1, then

oo
Zp = Zekak(a:n)yk, for all n.
k=1

By (1), 2, = @, for all n, and ¢(g(z)) = . This means that ¢ is onto. In the other
hand, if K is bounded in A(E), then K is contained and bounded in some As(Ep), and
l(g(K)) = K, from what, we conclude that the inverse of ¢ is bounded. |

We are now ready to prove the main result of this section.

Theorem 2. Let E be a complete b-space and X be a normal sequence space. Then A(E)
1s nuclear if and only if X\ and E are nuclear.

Proof. If A(E) is nuclear then, by Proposition 1, E and A are closed subspaces of \(E)
and then they are nuclear also.

Inversely, suppose that E and A are nuclear. By Proposition 4, A\&,E is nuclear. So by
Theorem 1, A(F) is nuclear. [

Theorem 3. Let E be a complete b-space and A be a normal sequence space.

(i) If \ is nuclear then, \(E) is a Schwartz space if and only if E is a Schwartz space.

(ii) If E is nuclear then, A\(E) is a Schwartz space if and only if X is a Schwartz space.

Proof. Suppose that FE is nuclear. If A(E) is a Schwartz space, then A, being a closed
subspace of A\(E) by Proposition 1, is a Schwartz space. Inversely, suppose that E is
nuclear and X is a Schwartz space. Let A € B and S € S be a Banach disks in E and A
respectively. Since F is nuclear we can select a Banach disk B € B containing A such that
the inclusion E4 — Ep is nuclear. So, there are (gx)x € ¢1, a bounded sequence (ay)x in
the continuous dual (F4)" of E4 and a bounded sequence (yi)x C Ep such that

o
x = Zakak(:c)yk, for all x € F4. (5)
k=1

Since A is a Schwartz space, there is a Banach disk T in A such that the injection Ag — Ar
is compact. We will show that the injection Ag(E4) — Ap(Epg) is compact. Let

{o" = (@)n}i (6)
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be a sequence in S(A). By (5), we have
xl = Zskak(m;)yk, for all n, 1. (7)
k=1

The sequence (ay)x being bounded in (E4)’, there is a constant ¢ > 0 such that
lar(z!)] < c||zt || 4 for all i, k,n.

This means that {(ag(z%))n}32; C Ag and that

{(an(@p)n}Zy € cS. (8)

A subsequence {(ax(22))n 72, of {(ak(2%))n}22, should converge in Ay to o = (ak),,.

In the other hand, the equation (8) shows that the sequence {(ak(fU%))n}Z?jﬂ is bounded
in Ag. For every n € N, there ¢, > 0 such that for all j, k

lag ()| < ¢, and then [of] < ¢,. 9)
For every n € N, since {aﬁyk}i‘;l is bounded in the complete normed space Eg, the
series >, eraky, converges to a limit z, € Ep. Let x = (z,),. Since {(ak),}32, is
bounded in Ag and {yj}32, is bounded in Ep, the sequence {(afyy),}32, is bounded
in A\s(Fp) and then in Ar(Ep). Thus, the series Y, ex(afyy), converges in Ar(Ep) to
z = (2n)n. Since the projections are bounded by Lemma 1, one has z, = >, exaly, for
all n, and then z = z € A\p(Ep).
It remains to prove that {27}, converges in (Ar(Eg), N) to z. We have,

2l —x = Zsk(an(xﬁ;) — o))y
k

and
Nzl =) <> leelll(an(@]) — o)nllsllyell (10)
k

For j, k, let _ '

B = lla(a) — agllr and v = [lyxl 5. (11)
Then, (yx)r € co and {(Ekﬁi)k}?‘;l is a sequence in ¢; which is o ({1, ¢p)—bounded, then it
has a convergent subsequence say,

{(erBr)tize- (12)
As, lim g4 = 0, for all k, then the sequence in (12) converges to 0 in (¢1,0(¢1,¢)). By
r—00

(11) and (10), we have

N(z"—z) < Z lek Bk, for all r € N.

k

Thus, {z" — x}22, converges to 0 in Ar(Ep), and (6) has a convergent subsequence. This
finishes the proof of (i). The proof of (ii) is similar by interchanging the roles of E' and A
in the proof. ]
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4. Nuclearity of \{E'}

Notice that a locally convex space is said to be nuclear (resp. a Schwartz space) if
the convex bornology of equicontinuous subsets of its topological dual is nuclear (resp. of
Schwartz).

Let A be a perfect sequence space and F a locally convex space whose topology is defined
by a family M of absolutely convex equicontinuous subsets of its topological dual E’.
Define

ME} ={(xn)n C E: (Py(zn))n € A}, where Py(xy,) = sél]\;/)[ la(xy)|.

If a topology on A is defined by family S of normal, absolutely convex and o (A*, A\)—bounded
subsets of A*, then a locally convex topology can be defined on A{E} by the family of
semi-norms (g ar)ses,Mmem, such that, if x = (z,), € A{E} then

s, M ((Tn)n) = Ps((Pym(7n))) = sup{z lon Prr(20)] : (an)n € S}

n=1

For the topology so defined, Ronald C. Rosier in [10] proved that the dual space
(ME}* of M{E} is A*(E') and that a subset of (A{E})* is equicontinuous if and only if
it is contained in some S(M) for S € S and M € M.

Starting from this setting, Theorem 2 gives

Theorem 4. \{E} is nuclear if and only if X\ and E are nuclear.
Also, Theorem 3 gives

Theorem 5. If E (resp. \) is nuclear, then N{E} is a Schwartz space if and only if A
(resp. E) is a Schwartz space.

5. Conclusion

In this paper we have characterized the bornological structure, the completeness and
the nuclearity of A(E) in terms of that of A and E. An application to the nuclearity of
the locally convex space A{E} is given.
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