Solving nth-order Integro-differential Equations by Novel Generalized Hybrid Transform
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4840Keywords:
Integrodifferential equations, Shehu transform, Integral transformsAbstract
Recently, Shehu has introduced an integral transform called Shehu transform, which generalizes the two well-known integrals transforms, i.e. Laplace and Sumudu transform. In the literature, many integral transforms were used to compute the solution of integro-differential equations (IDEs). In this article, for the first time, we use Shehu transform for the computation of solution of $n^{\text{th}}$-order IDEs. We present a general scheme of solution for $n^{\text{th}}$-order IDEs. We give some examples with detailed solutions to show the appropriateness of the method. We present the accuracy, simplicity, and convergence of the proposed method through tables and graphs.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.