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Abstract. Recently, Shehu has introduced an integral transform called Shehu transform, which
generalizes the two well-known integrals transforms, i.e. Laplace and Sumudu transform. In
the literature, many integral transforms were used to compute the solution of integro-differential
equations (IDEs). In this article, for the first time, we use Shehu transform for the computation of
solution of nth-order IDEs. We present a general scheme of solution for nth-order IDEs. We give
some examples with detailed solutions to show the appropriateness of the method. We present the
accuracy, simplicity, and convergence of the proposed method through tables and graphs.
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1. Introduction and motivation

Volterra identified the genetic factors when studying a population growth model. He
introduced a new topic in which both differential and integral operators appeared in the
same equation, known as Volterra IDEs [27, 29]. IDEs have recently piqued the interest
of researchers due to their wide range of applications in fields such as fluid dynamics,
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circuit analysis, epidemiology, infectious diseases, and heat flow [30]. The solution to such
problems is linked to the solution of the Volterra form of IDEs. As a result, various methods
for solving IDEs have been used by researchers. Laplace and Fourier introduced integral
transforms, which are the most widely used in the literature and recently applied to many
other integral transforms that can solve differential and integral equations [6, 14, 18]. The
main difference between the Laplace from the FT, FT (Fourier transform) can only be
defined on a stable system, while the Laplace transform can be defined for the system which
is stable or unstable. Another integral transform is the Mellin transform, which is used in
applied sciences due to its invariant property [21]. Many integral transforms introduced
in the last few decades, including the Hankel’s integral transform [17], Sumudu integral
transform [41], Elzaki transforms [20], natural transform [26], Abdon-Kilicman integral
transform [15], the Yang transform [42], and others. Some existing integral transforms,
however, are incapable of solving models containing nonlinear terms. As a result, several
researchers are interested in a different approach to solving real-world problems. The
double LADM is used to solve linear and nonlinear PDEs in [19]. Belgacem et al. in
2017 [16] applied Natural transform (NT) and Sumudu transform (ST) to solve Stokes
equation and diffusion equation of fractional order. However, since physical phenomena
are almost nonlinear, we’re interested in nonlinear integro-differential equations. The
nth-order nonlinear IDE is given by:

G(n)(x) + u(x)G(x) +

∫ d

c
K(x, t)G(p)(t)dt = h(x), c < x < d, (1)

with initial conditions Gj(0) = βj , where βj ∈ R for j = 0, 1, ..., n− 1,and p ≥ 1.
Maitama and Zhao successfully derived an integral transform known as the Shehu

transform from the classical FT in 2019 and demonstrated its accuracy, validity, and
simplicity by applying it to both ODEs and PDEs [31]. Further, Adomian [22, 23] in-
troduced a novel and efficient approach (named the Adomian decomposition method) for
solving linear as well as nonlinear equations at the beginning of the 1980s. This ap-
proach quickly converges the solutions sequence to linear and nonlinear deterministic and
stochastic equations. The purpose of the current study is to solve nth-order IDEs by using
a novel generalized transform called Hybrid Shehu transform (HST). The HST consists of
approximating the solution as

G(x) =

∞∑
q=0

Gq(x), (2)

and for p ≥ 2, the nonlinear term N(G(p)) (if any) will decomposed by

N(G(p)) =

∞∑
q=0

Aq, (3)

where Aq(Adomian polynomials) is defined as

Aq =
1

Γ(q + 1)

dq

dηq

N
 ∞∑

q=0

ηqGq

p
η=0

, q = 0, 1, 2, · · · .
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The convergence of the series (2) and (3) in [1, 5].

2. Preliminaries

Definition 1. [31] The Shehu transform of the function G(x) by the following integral

S [G(x)] = H(s, u) =

∫ ∞

0
exp

(
−sx

u

)
G(x)dx, (4)

provided that the integral converges.

Definition 2. [31] The Shehu transform is linear, i.e, for any constants k1,k2 ̸= 0,we
have

S [k1G(x) + k2J(x)] = k1S [G(x)] + k2S [J(x)] .

Definition 3. [31] The formula for the Shehu transform of nth−order derivative of G(x)
is represented as:

S
[
G(n)(x)

]
=

sn

un
G(s, u)−

( s
u

)(n−1)
G(0)−

( s
u

)(n−2)
G′(0)− · · · −G(n−1)(0). (5)

3. Solution procedure using HST

The nth order nonlinear IDE (1) can also written as

G(n)(x) = h(x)− u(x)G(x)−
∫ d

c
K(x, t)G(p)(t)dt, c < x < d. (6)

Applying Shehu transform to both side of the (6) and keep in mind the fact that the
Convolution theorem holds for Shehu transform

sn

un
G(s, u)−

( s
u

)(n−1)
G(0)−

( s
u

)(n−2)
G′(0)− · · · −G(n−1)(0)

= S [h(x)]− S [u(x) ∗G(x)] (s, u)− S
[∫ d

c
K(x, t)G(p)(t)dt

]
= S [h(x)]− S [u(x)]S [G(x)]−

∫ d

c
S [K(x, t)]G(p)(t)dt,

this can be reduce to

G(s, u) =


un

[
( s
u)

(n−1)
G(0)−( s

u)
(n−2)

G′(0)−···−G(n−1)(0)
]

sn+unS[u(x)] + unS[h(x)]
sn+unS[u(x)]

− un

sn+unS[u(x)]
∫ d
c S [K(x, t)]G(p)(t)dt,

(7)

substituting Equ. (2) and (3) into Eq. (7 ), we get

S

 ∞∑
q=0

Gq(x)

 =
un
[(

s
u

)(n−1)
G(0)−

(
s
u

)(n−2)
G′(0)− · · · −G(n−1)(0)

]
sn + unS [u(x)]
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+
unS [h(x)]

sn + unS [u(x)]
− un

sn + unS [u(x)]

∫ d

c
S [K(x, t)]

∞∑
q=0

Aq(t)dt,

the HST method and comparing terms givesS [G0(x)] =
un

[
( s
u)

(n−1)
G(0)−( s

u)
(n−2)

G′(0)−···−G(n−1)(0)
]

sn+unS[u(x)]

+ unS[h(x)]
sn+unS[u(x)]

(8)

The general can be obtained as

S [Gq+1(x)] = − un

sn + unS [u(x)]

∫ d

c
S [K(x, t)]

∞∑
q=0

Aq(t)dt, (9)

for q = 0, 1, 2, · · · . A sufficient condition for (9) to comply is that

lim
s→∞

un

sn + unS [u(x)]
= 0.

Application of the inverse Shehu Transform (8) gives G0(x), and using the recursive rela-
tion (9) gives the other terms Gq(x), q ≥ 0 as

ϕq [G(x)] =

q−1∑
r=0

Gr(x),

with
lim
q→∞

ϕq [G(x)] = G(x).

The following theorem and examples show the convergence of the proposed method.

3.0.1. Convergence theorem and error estimate

Theorem 1 (Convergence of the proposed method). Let H be a Hilbert space and “G” be
the exact salution of the problem (6) and

∑∞
q=0Gqbe approximate solution of the problem

(6) which is obtained by (HST), will converges to “G” when ∃0 ≤ α ≤ 1,∥Gk+1∥ ≤ α∥G∥,
∀ k ϵ Z+.

Proof. Let we have

U0 = G0,

U1 = G0 +G1,

U2 = G0 +G1 +G2,
...
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Uq = G1 +G2 + . . .+Gq,

and we have to show that {Uq}∞q=0 is Cauchy Sequance in the Hilbert space “H” .Therfore
consider

∥Uq+1 −Uq∥ = ∥Gq+1∥ ≤ α∥Gq∥ ≤ α2∥Gq−1∥ ≤ . . . ≤ αq+1∥G0∥

But for every q,mϵN , such that q ≥ m, So we have

∥Uq −Um∥ = ∥(Uq −Uq−1) + (Uq−1 −Uq−2) + . . .+ (Um+1 −Um)∥
≤ ∥(Uq −Uq−1)∥+ ∥(Uq−1 −Uq−2)∥+ . . .+ ∥(Um+1 −Um)∥
≤ αq∥G0∥+ αq−1∥G0∥+ . . .+ αq+1∥G0∥

≤ (αq+1 + αq+2 . . .)∥G0∥ =
αq+1

1− α
∥G0∥

Hance
lim

q,m→∞
∥Un −Um∥ = 0

i-e {Un}∞q=0 is Cauchy Sequance in the Hilbert space “H” and it implise that ∃UϵH, such
that limq→∞Uq = U, i-e U =

∑∞
q=0Gq. This ends the proof.

Theorem 2 (Error estimate). Let
∑j

i=0Gi < ∞ and “G” be its approximate solution .
Let ζ > 0 such that ∥Gi+1∥ ≤ ζ∥Gi∥, then the maximum absolute error is

∥G−
j∑

i=0

Gi∥ <
ζj+1

1− ζ
∥G0∥.

Proof. Since
∑j

i=0Gi < ∞ this indicates that
∑j

i=0Gi is finite. Consider

∥G−
j∑

i=0

Gi∥ = ∥
∞∑

i=j+1

Gi∥

≤
∞∑
i=0

∥Gi∥

≤
j∑

i=0

ζj∥G0∥

≤ ζj+1(1 + ζ + ζ2 + · · · )∥G0∥

≤ ζj+1

1− ζ
∥G0∥.

This ends the proof.
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4. Applications

The proposed method for solving nth-order IDEs is demonstrated in this section with
three examples. To demonstrate validity and efficiency of the results obtained using the
current method, we provide comparison between exact and approximate solution. For
numerical values of absolute error, we define absolute error as:

Eq = |Gexact − ϕq(x)| ,

where q = 0, 1, 2, 3 · · · represent the number of the iterations.

Example 1. Consider the second-order IDE as

G′′(x) = exp(x)− x+

∫ 1

0
xtG(t)dt, (10)

under the initial conditions (ICs) G(0) = 1, G′(0) = 1.

Solution. Applying Shehu transform to (10), we have

S
[
G′′(x)

]
= S [exp(x)]− S [x] + S

[∫ 1

0
xtG(t)dt

]
s2

u2
Y (s, u) =

s

u
G(0) +G′(0)

u

s− u
− u2

s2
+

∫ 1

0
S [x] tG(t)dt,

where S [G(x)] (s, u) = Y (s, u), using ICs, we have

Y (s, u) =
u2

s2
+

u

s
+

u3

s2(s− u)
− u4

s4
+

u4

s4

∫ 1

0
tG(t)dt,

putting the series solution (2) for Y (s, u) in the above equation, one can get

Y0(s, u) =
u2

s2
+

u

s
+

u3

s2(s− u)
− u4

s4
, (11)

and by recursive relation, we obtain

S [Gq+1(x)] (s, u) =
u4

s4

∫ 1

0
tGq(t)dt.

Now applying Shehu inverse of both side of (11) giveG0(x) and using the recursive relation
for n = 1, 2, 3, . . ., we get

G0(x) = exp(x)− x3

3!
,

G1(x) =
29

3! · 30
x3,

G2(x) =
29

3! · 302
x3,
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...

Gq(x)
29

3!30q
x3.

Thus, the desired approximate solution for q = 1, 2, 3, · · · is given by

ϕq(x) =

q−1∑
r=0

Gr(x) = exp(x)− x3

6 · 30q−1
.

Hence,

G(x) = lim
q→∞

ϕq(x) = lim
q→∞

exp(x)− lim
q→∞

x3

6 · 30q−1
= exp(x),

which the exact solution of (10).
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Figure 1: Solution curves of Example 1.
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Figure 2: Comparison between approximate and exact solution of Example 1.

Example 2. Consider the third-order IDE as{
G′′′(x) = sin(x)− x−

∫ Π
2

0 xtG′(t)dt, G(0) = 1, G′(0) = 0,G′′(0) = −1 . (12)
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x E3 E6 E8

0.1 1.8518E-06 6.8587E-12 7.6207E-15

0.2 1.3714E-06 5.3971E-11 6.1877E-14

0.3 5.0000E-05 1.8518E-10 2.0576E-13

0.4 1.1852E-05 4.2998E-10 4.9321E-13

0.5 2.3148E-05 9.0000E-11 9.5259E-13

0.6 4.1011E-05 1.3998E-09 1.5982E-12

0.7 6.3518E-05 2.3525E-09 2.6139E-12

0.8 9.5001E-05 3.4998E-09 3.8979E-12

0.9 1.3500E-04 5.0000E-09 5.5555E-12

1.0 1.7809E-04 6.9001E-09 9.5998E-12

Table 1: Absolute error for Example 1.

Solution. Taking the Shehu transform of (12), we obtain

S
[
G′′′(x)

]
= S [sin(x)− x]− S

[∫ Π
2

0
xtG′(t)dt

]
,

so that

s3

u3
Y (s, u)− s2

u2
G(0)− s

u
G′(0)−G′′(0) =

u2

s2 + u2
− u2

s2
− u2

s2

∫ Π
2

0
tG′(t)dt,

by using the IC, we get

Y (s, u) =
u

s
− u3

s3
+

u5

s3(s2 + u2)
− u5

s5
− u5

s5

∫ Π
2

0
tG′(t)dt,

where S [G(x)] (s, u) = Y (s, u), substituting (2) for Y (s, u) and comparing terms, we have

Y0(s, u) =
u

s
− u3

s3
+

u5

s3(s2 + u2)
− u5

s5
− u5

s5
, (13)

using the recursive relation we get

S [Gq+1(x)] (s, u) = −u5

s5

∫ Π
2

0
tG′

q(t)dt. (14)

Taking the inverse Shehu transform of (13) and (14) gives :

G0(x) = cos(x)− x4

4!
,

G1(x) =
−(π5 + 960)

4! · (960)
x4,

G2(x) =
(π5 + 960) · π5

4! · (960)2
x4,
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...

Gq(x) =
(−1)q · (π5 + 960) · π5(q−1)

4! · (960)q
x4, q = 1, 2, 3 · · ·

the desired solution is as follow

ϕq(x) =

q−1∑
r=0

Gr(x) = cos(x) +
(−1)q · π5(q−1)

4! · (960)q−1
x4, q = 1, 2, 3 · · ·

G(x) = lim
q→∞

ϕq(x) = lim
q→∞

(
cos(x) +

(−1)q · π5(q−1)

4! · (960)q−1
x4

)
= cos(x).
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Figure 3: Solution curves of Example 2.
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Figure 4: Comparison between exact and approximate solution Example 2.

Example 3. Consider the 5th order integro-differential equation as

G(5)(x) = x+

∫ 1

0
(t− x)G2(t)dt,

with initial condition G(0) = G′(0) = G′′(0) = G′′′(0) = G(4)(0) = 0.
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x E3 E6 E8

0.1 4.23394E-07 1.37144E-08 1.39359E-09

0.2 6.77430E-06 2.19431E-07 2.229474E-08

0.3 3.42949E-05 1.11087E-06 1.12880E-07

0.4 1.08388E-04 3.51090E-06 3.56759E-07

0.5 2.64621E-04 8.57155E-06 8.70995E-07

0.6 5.48719E-04 1.77739E-05 1.80609E-06

0.7 1.01656E-03 3.29284E-05 3.34601E-06

0.8 1.73422E-03 5.61748E-05 5.70815E-06

0.9 2.77789E-03 8.99807E-05 9.14335E-06

1.0 4.23394E-03 1.37144E-04 1.39359E-06

Table 2: Maximum error for Example 2

Solution. Applying Shehu transform, we get

s5

u5
Y (s, u)− s4

u4
G(0)− s3

u3
G′(0)− s2

u2
G′′(0)− s

u
G′′′(0)−G(4)(0) =

u2

s2
− u2

s2

∫ 1

0
G2(t)dt,

by putting the initial condition, we get

Y (s, u) =
u7

s7
− u7

s7

∫ 1

0
G2(t)dt,

here S [G] (s, u) = Y (s, u). Putting (2) for Y (s, u) and comparing terms, we have

Y0(s, u) =
u7

s7
,

using the recursive relation we obtain

S [Gq+1(x)] (s, u) = −u7

s7

∫ 1

0
G2

q(t)dt.

Now applying Shehu inverse of both side give G0(x) and using the recursive relation gives

G0(x) =
x6

6!
,

G1(x) = − 1

(6!)313
x6,

G2(x) = − 1

(6!)7(13)3
x6,

...

Gq(x) = − 1

(6!)(2q+1−1)(13)(2q−1)
x6,
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thus, the desired approximate solution is:

ϕq(x) =

q−1∑
r=0

Gr(x) =
x6

6!
− 1

(6!)(2q−1)(13)(2q−1−1)
x6,

G(x) = lim
q→∞

ϕq(x) = lim
q→∞

(
x6

6!
− 1

(6!)(2q−1)(13)(2q−1−1)
x6
)

=
x6

6!
.
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Figure 5: Solution curve of Example 2.
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Figure 6: Comparison between approximate and exact solution of Example 3.
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x E3 E6 E8

0.1 4.5377E-30 2.8563E-221 8.1172E-877

0.2 2.9041E-28 1.8280E-219 5.1950E-875

0.3 3.3056E-27 2.0822E-218 5.9174E-874

0.4 1.8586E-26 1.1699E-217 3.3248E-873

0.5 7.0902E-26 4.4630E-217 1.2683E-872

0.6 2.1171E-25 1.3326E-216 3.7871E-872

0.7 5.3386E-25 3.3604E-216 9.5498E-872

0.8 1.1895E-24 7.4877E-216 2.1278E-871

0.9 2.4115E-24 1.5179E-215 4.3138E-871

1.0 4.5377E-24 2.8563E-215 8.1172E-871

Table 3: Maximum error for Example 3.

5. Conclusion

In this article, we have used a more generalized novel transform called Shehu transform,
which is the generalization of Sumudu and Laplace transform, to solve higher-order IDEs.
We have presented a general scheme of solutions through the proposed transform. We have
given few examples with a detailed solution to show the accuracy and validity of the pro-
posed method. We have shown the convergence of the method through graphs and tables.
From graphs and tables, we can say that the approximate solution is very close to the exact
solution. Thus, the suggested method is more appropriate than other complex analytical
methods because the proposed method is highly accurate, less computational, and fast
convergent. Other numerical and analytical methods [3, 4, 9, 10, 13, 24, 25, 28, 34, 36–
40] can be applied to address such types of problems and other challenging problems
[2, 7, 8, 11, 12, 32, 33, 35]. In our next paper, we will use the Shehu transform to solve
other types of IDEs of integer and fractional orders.
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