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Abstract. In this paper, we revisit the concept of (normalized) closeness centrality of a vertex in
a graph and investigate it in some graphs under some operations. Specifically, we derive formulas
to compute the closeness centrality of vertices in the shadow graph, complementary prism, edge
corona, and disjunction of graphs.
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1. Introduction

According to a study in [7], centrality is one of the most studied subjects in the analysis
of social networks. As mentioned in [4], the concept was developed by social scientists
some decades ago with the aim of quantifying an intuitive perception that some nodes or
linkages are regarded central according to some criteria in many particular networks or
graphs. For example, in a social network which is often represented as a graph, where
each individual is represented as a vertex, the relationship between pairs of individuals are
connected by edges, and the weights on the edges indicate the strength of the relationships,
centrality gives a way of determining how central an individual is located in this network
(see [6]). Within graph theory and network analysis, some of the common measurements
of centrality pointed out in [8] are degree centrality, closeness centrality, eigen vector
centrality, and betweeness centrality. One may also refer to [1], [2], and [5] for some
studies in measure of centrality.
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Closeness centrality measures how close a vertex is to all other vertices in a graph. The
closeness centrality of a vertex in a graph is the inverse of the average geodesic distance
from the vertex to any other vertex in the graph. The greater value of closeness centrality
of a vertex would mean a better position of a vertex in spreading information to other
vertices (see [6]).

A study on closeness centrality can be found in [4] where the authors derived the
closeness centrality of vertices of some families of graphs such as paths, cycles, fans, wheels,
complete bipartite graphs, and complete split graphs. In a more recent study, Eballe et al.
in [3] presented the closeness centrality of the vertices in the corona, Cartesian product
and lexicographic product of graphs.

In this paper, we derive formulas of the closeness centrality of a vertex in the shadow
graph, edge corona of graphs, complementary prism, and disjunction of graphs.

2. Terminology

Definition 1. Let G be a connected graph and let u,v € V(G). The distance between u
and v, denoted by dg(u,v), is the length of a shortest path (called u-v geodesic) connecting
uw and v. Vertices u and v are adjacent or neighbors (i.e. wv € E(G)) if and only if
dg(u,v) = 1. The open neighborhood of v is the set Ng(v) = {w € V(G) : dg(v,w) = 1}
and its closed neighborhood is the set Ng[v] = Ng(v) U {v}.

Definition 2. Let G be a connected graph. If v € V(G) and e € E(G), then the distance
dc(v,e) between v and e, is given by dg(v,e) = rr‘l/i(%){dg(v,x),dg(v,x)}.
T

Definition 3. Let G = (V(G), E(G)) be a nontrivial connected graph of order m. If
u € V(Q), then the closeness centrality of vertex u is given by

where Te(u) = 3, cvig) da(uw.2).

Definition 4. The shadow graph S(G) of G is the graph obtained by taking two copies of
G, say G and G, and then joining each vertex v € V(G1) to the neighbors of v’ € V(Gs),
where v’ is the vertex in V(G3) corresponding to v, i.e., v and v represent the same vertex
in G.
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G1=C4 G2:C4

Figure 1: The shadow graph S(C4) of Ca

Definition 5. Let G and H be two graphs. The edge corona G ¢ H of G and H is the
graph obtained by taking one copy of G and |E(G)| copies of H, and then joining two
end-vertices of the i-th edge of G to every vertex in the i-th copy of H. For every edge
e = uv of G, denote by H¢ = H"" the copy of H where vertices are joined to the vertices

u and v.

Figure 2: The edge corona C5 ¢ P

Definition 6. The complementary prism of graph G, denoted by GG, is the graph ob-
tained from the disjoint union of G' and G by adding the edges v, where v € V(G) and
v is the vertex of G corresponding to vertex v.

BESY

Figure 3: The complementary prism C5C5
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Definition 7. The disjunction of graphs G and H, denoted by G V H, is the graph with
V(GV H) =V(G) xV(H) and (z,p)(y,q) € E(GV H) if and only if zy € E(G) or
pq € E(H).

3. Main Results

In what follows, G; and Gy are the copies of G in the shadow graph S(G).

Remark 1. Let G be a graph and let v,w € V(G1). Then
ds(a) (v,w) = dg, (v,w) = dg, (v, w') = ds(a) (v, w').

Lemma 1. Let G be a nontrivial connected graph. For each p € V(G1) and v’ € V(G2),

2 if p=w

ds(c)(p,v') = dg() (P, v) = .
© (@ dg,(p,v) if p#v.

Proof. If p = v, then p/ = v and pp’ ¢ E(S(G)). Let w € Ng,(p). Then wp' €
E(S(G)). Hence, [p,w,v'] is a p — v’ geodesic in S(G). This implies that dg)(p,v’) = 2.
Next, suppose that p # v, that is, p’ # v'. Let [p1,pa, ..., pr], where p = p; and v = py,
be a p-v geodesic in G. Then [p},p5, ..., p)] is a p’-v" geodesic in G. Also, by definition
of S(G), [p1,py, Ps--, ] is a p-v’ geodesic in S(G). Hence, dg(q)(p,v') = dg, (p,v). Since
da, (p,v) = dg, (p',v"), it follows that dg(c)(p,v") = dg(e) (P, v)- O

Consider the shadow graph S(Ps) in Figure 4.

P v
Go

G

p v
Figure 4: The shadow graph S(Ps)

Clearly, dg(q)(p,p') = 2, and dg()(p,v) = dg(a)(p,v') = dg()(p',v') = 3.

Theorem 1. Let G be a non-trivial connected graph. For each p € V(G1),

7s(c)(P) = 2(16,(p)) + 2 and 75y (p') = 2(7c, (1)) + 2.
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Proof. Let p € V(G1). Then

Tse)(p) = Z ds@)(p; q)
g€V (S(G))

= Y dsema+ Y. dselp)
)

qeV(Gr) v €V (G2
= Y dapd+ Y. dsev) +dse) (D)
qeV(G1) v eV (G2)—{p'}
=76,(p) + Z da, (p,v) +2
veV(G1)—{p}
= 27g, (p) + 2.

Similarly, TS(Q) (p/) = 271q, (p’) + 2.

The next result follows from Theorem 1 and Definition 3.

1410

Corollary 1. Let G be a non-trivial connected graph of order m and let p € V(G1). Then

2m — 1
c __me2
5@ ®) = 500 ) +2
and
2m —1
Cs)(p') =

2(1e, (1) +2°

Example 1. Consider the shadow graph S(Ps) in Figure 5, where G = Ps.

/

p
Go

G

Figure 5: The shadow graph S(Ps) and p’ € V(G2)

Then m =5 and 7¢,(p’) = 7. Using Corollary 1, the closeness centrality of p’ is

_ 2m —1
B 27—G2(p/)+2
_2(5)—1
(7)) +2
_10-1
1442

Cs(e)(®)
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_9
16

For a non-trivial connected graph G and v € V(G), the set E, is given by
E,={zve E(G):x€V(G)\{v}}.
Theorem 2. Let G and H be non-trivial connected graphs. If v € V(G), then

TGon (v) = 16(0) + [V(H)|[E@)| + |[V(H)| Y do(v.e).
e€E(G)\E,

Proof. Let v € V(G). Then |E,| = |Ng(v)| and dgon(v,a) = dg(v,e) + 1 for every
a € V(H®) where e € E(G) \ E,. Hence,

TGQH(’U) = Z dG v, x Z Z dGQH v a) + Z Z dGQH(U,a)

zeV(G) e€E, acV (H®) e€E(G)\E, acV (H®)

76(0) +BJVE) |+ Y [(de(v,e) + DIV(H)]]

e€E(G)\Ey
=16(0) + |EVE)|+|VEH) Y dalv,.e) + |[V(H)|E(G)| — |E||V(H)|
6€E(G)\Ev

=16(0) + [VIH)|EG)| + [V(H) Y de(ve). O

EEE(G)\EU

The next result is immediate from Theorem 2.

Corollary 2. Let G and H be connected non-trivial graphs with m = |V(G)|, r = |E(G),
and n = |V(H)|. If v € V(G), then

m+rn—1

C = .
Gon (V) TG(v) +rn+n} cpene, da(v,e)

Example 2. Consider the edge corona of G = Cy, H = P5, and v € V(G) in Figure 6.
Then m = [V(G)| = |E(G)| = r = 4, n = [V(H)| = 5, 16(v) = 4, |E,| = |E(G) \ By =2
and Z dg(v,e) = 2. Using Corollary 2, the closeness centrality of v € V(G) is

BEE(G)\EU
c _ m-+qgn—1
CoH ™ 1e() g+ Ycen@)\B, dalv,€)
24 —1

A+ ()@ +(G)(2)




F. Alfeche, V. Barraza, S. Canoy, Jr. / Eur. J. Pure Appl. Math, 16 (3) (2023), 1406-1420 1412

Figure 6: The edge corona graph Cs ¢ Ps and v € V(Cl4)

923
=30
For a non-trivial connected graph G and e = uv € E(G), the sets Vy<y, Vocu, Bu<v, Ev<u
are given by:
Vu<o = {2 € V(G) \ {u} : dg(z,u) < dg(z,v)}
Vocu ={y € V(G) \ {v} : da(v,y) < da(u,y)}
Eu<, ={€ € E(G)\{e} : dg(u,€') < dg(v,e)}
Eyc,, ={€' € E(G) : dg(v,€¢') < dg(u,e)}

Note that |Ey<y| + |Ev<u| = |E(G)| — 1 and |Vy<y| + |Vo<u| = |V (G)] — 2.

Theorem 3. Let G and H be connected non-trivial graphs and let
e=uwv € E(GQ). If pe V(H®), then

TGon (p) = [V(G)| — degrr(p) + 2VIE|E(G)| =2+ Y dalu,z) + ) do(v,2)

CEGVu<U TEVy<u,

HIVE)] Y da(u, )+ [VH)| Y da(v,e).

e eEuSv e eEv<u

Proof. Let e = uv € E(G) and let p € V(H€). Then

TGor(p) = Y daor(p,q)

qeV (GoH)

= Z Z dGoH pa Z dGoH pv
e’€E(G) qgeV (He') qeV(G)

= Y deenp)+ Y, D, daonpg)+ Y, (1+da(u,))
qu I‘Ie /?ée qG‘/'([—Ie ) OJGVugv

+ Y (1+da(v,2)) + daon (p,v) + daon (p, v)
z€Vy<u
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Now,

VH)| Y (2+de(u,¢) =2|V(H)||Euo| + |V(H

VHE) Y (2+de(v,e) = 2[V(H)||Epcul + [V(H

Hence,

TGoH (p)

= Z dgoH (p, q) + Z dGon (p7 Q)

q€Nge(p) g€V (H®)\Nye|[p]

+ Y Y deenp)+ D> Y. daon(pq)

e'€By<y qeV (H®) e'€Eyv<u geV (H®)
+ > (+do(w,2)+ Y (1+da(v,x))+2
xEVuSv LBEVy<u

= [N (p)| +2(1V (H)| = INulpl) + [V(H)| Y (2+da(u,e))

e/EEugv
HIVHE)] Y @+de(v,ed)+ > (1+dg(u,x))
BIEEv<u xGVugu
+ ) (L+dg(v,z) +2.

IEVv<u

e'€EE <y [ EEugv

eleEv<'v € eE’U<u
Z (1+dg(u,x)) = |Vu<o| + Z dg(u, x), and
CEGVMSU xEVugu
> A+de(,2) = Vicd + Y da(u,z).
zEVy<u r€Vo<u

= |Nu(p)| + 2|V (H)| = 2| Nu(p)| — 2+ 2+ 2|V(H )HEmr
HVH) > da(u.e) +2V(H)|[Bue + [VH)] D da(v,e)

el <y e'€EEy<u

+ ‘Vugv’ + Z dG(uv .’IJ) + ’V:U<u‘ + Z dG(u7x)

z€EVy<o rEVy<u

= 2|V(H)| = |Nu ()| + 2|V (H)|(| Euso| + |[Ev<ul)

+ (Vasol + Vocu) + D da(uz)+ > da(v,z)

IEVu<v erv<u
+IVH) Y de(ue)+ |VH)| D dalv,€)
e'€E, <y e'€by<u

= 2[V(H)| = [Nu(p)| + 2[V(H)|(|E(G)] = 1) +[V(G)] -2

1406-1420

Z dg(u,e),
Z dg(v,e'),

1413
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+ Z dg(u,ﬂf)Jr Z dg(’U,SC)jL‘V(H)’ Z dG(uvel)

:DEVMSU 2€Vy<u €'€Eu§v
HIVEH)] > da(v,€)
e'€Ey<u
= V(G| = degu(p) +2lV(H)|E(G)| -2+ > da(u,2)+ Y dg(v,)
[L’EVHSU £B€Vy<u
+VH)| D da(u )+ |[V(H) Y do(v,e). O
e'Ely<y e'€Ey<u

The next result is a direct consequence of Theorem 3.

Corollary 3. Let G and H be connected non-trivial graphs of orders m and n, respectively,
and let r = |E(G)| and e = wv € E(G). If p € V(H€), then
m-4+rn—1
C =—
Gort(P) TGoH (P)

where TGom(p) is given in Theorem 3.

Example 3. Consider p € V(H¢), where e = uv, in Figure 7, where G = Py and H = P;.
Then m = 4, r = 4, n = 5, degy(p) = 1, Z dg(u,x) = 1, Z dg(v,z) = 1,

z€Vy<o zE€EVy<u
Z dg(u,e’) =1, and Z dg(v,e’) = 0. By Corollary 3, the closeness centrality of
eIEEuSU e'cly<u

p € HYis CGOH(p) = ?Tg

Figure 7: The edge corona graph of Cy o Ps with point p in H®

Lemma 2. Let G be a non-trivial connected graph and let v,z € V(G). Then

0 if z=v
Ao (v, 7) = 1 if vz e E(G)
G 2 if dg(v,x) =2
3 if dg(v,x) >3
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Proof. Clearly, d (v, z) = dg(v,z) if 1 < dg(v,z) < 2. Suppose dg(v,z) > 3. Then
dgg(v,z) > 3. Since v T € E(G), it follows that [v,7,Z, 2] is a v-z geodesic in GG. Hence,
deg(v,z) = 3. O

Lemma 3. Let G be a non-trivial connected graph and let v,z € V(G). Then

1 ifz=7v

2 otherwise

Proof. If T =, then d=(v,7) = 1 by definition of GG. Suppose T £, i.e., x #Zv. If
v € E(GQ), then Tv ¢ E(GG) and [v,7,T] is a v — T geodesic in GG. If zv ¢ E(G), then
zv € E(G). Hence, [v,7,7] is a v-T geodesic in GG. Thus dg(v,T) = 2. O

Lemma 4. Let G be a non-trivial connected graph and let v,z € V(G). Then

0 z=w
if zv ¢ E(G),x #v

2 ifav € E(G) and (V(G) \ Ngz]) N (V(G) \ Ng[v]) # O,
T F v

3 ifzv e E(G) and (V(G) \ Nglz]) N (V(G) \ Ng[v]) = O,
T F# v

Proof. Clearly, d.=(v,7) = 0 and d5(7,7) = 1 if 2v ¢ E(G). Next, suppose that
zv € E(G). Then d;5(v,7) > 2. Suppose there exists z € (V(G)\Ng[z])N(V(G)\Ng[v]).

Then 7z, 20 € E(G). Hence, [0, 2,T] is a ¥ - T geodesic on GG. Thus, dg(v,T) = 2. Next,
suppose that (V(G) \ Ng([z]) N (V(G) \ Ng[v]) = @. Suppose [0,p,T] is a T - T geodesic

in GG. Suppose first that p € V(G). Then p = v by definition of GG. Similarly, p = .

This is a contradiction because z # v. Hence, p € V(G), say p = g. However, since

04,9z € E(G), g € (V(G)\ Ngv])N(V(G)\ Nglz]), a contradiction. Thus, d&(7,T) > 3.

Since [7,v,x,T] is a U - T geodesic in GG, it follows that d.&(7,Z) = 3. O
In what follows, NZ(v) = {w € V(G) : dg(v,w) = 2}.
Theorem 4. Let G and G be non-trivial connected graphs. If v € V(G), then

Tag(v) = 5|V(G)| = 2 - degg (v) — [NG(v)| — 4.
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Proof. Let v € V(G).
o) = Y degv2)+ > dgg(v.)

z€V(Q) 7eV(Q)

= Y dggwa)+ Y deg(v,a)+ > deg(v, )
zE€Ng(v) zENZ(v) 2€V(G)—(Ng[v]JUNZ (v))

+ Y dggv,)) +dgg(v,7)

7V (G)- {1}

= |Ng(v)| + 2|NE&(v)| + 3(|V(G)| = [Ng[v]| = [N&(v)])
+2AIV(G) 1) +1
= | NG (v)] + 2|N&(v)| + 3|V(G)| = 3Ngv] = 3|N&(v)| + 2|V (G)]

—2+41

= |Ng(v)] + 2ING(v)] + 3|V(G)| = 3(INa(v)| + 1) = 3|NG(v)]
+2[V(G)] -1

= | NG (v)] + 2INE(v)] +3|V(G)| = 3| Ng (v)| — 3 = 3|NG ()|
+2/V(G)| -1

= 5[V(G)| - 2 dega(v) — [NE(v)| — 4.

This proves the assertion. ]

Corollary 4. Let G be a non-trivial connected graph of order m such that G is connected
and let v € V(G). Then

2m —1

" BV(G)[ - 2 dega(v) — |NZ(v)[ — 4

Example 4. Consider G = Py, GG = PyP4, and v € V(G) in Figure 8. Then |V (G)| =
4, m =8, Ng(v) = {z}, and NZ(v) = {y}. Using Corollary 4, the closeness centrality of
v is

_ 2m -1
~ B|V(G)| -2+ dege(v) — [NE(v)| — 4
8—1

5(4) —2(1)—1—-4
B 7
C20-2-1-4
T
=13

For a non-trivial connected graph G and v € V(G), the sets NO(V) and N} (v) are
given below:

CG@(/U)
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Ql

G

v T Yy z

Figure 8: The complementary prism PyP, and v € V(Py)

Ng(v) = {z € Na(v) : (V(G) \ Ne[z]) N (V(G) \ Ne[v]) # @} and
Ng(v) = {z € Ne(v) : (V(G)\ Ne[z]) N (V(G) \ Na[v]) = &}

Clearly, Ng(v) = N (v) UNL(v).
Theorem 5. Let G and G be non-trivial connected graphs and let v € V(G). Then

T6a(®) = 3|V(G) + dega(v) + |NG(v)| — 2.

Proof.
Taa(®) = dee(v, ) + Z dee(v,7)
zeV(G) zeV(G)—{v}
= Y dgg@a)+dggmo)+ > dgg(v,T)
zeV(G)—{v} z€V(G)—Ng|v]
+ Z deic(0,T) + Z dea(0,T)
zENY (v) zeNL (v)

=2([V(G)| = 1) + 1+ ([V(G)| = Ng[v]) + 2|Ng(v)| + 3|Ng(v)|
=2[V(G)| =2+ 1+ |V(G)| — [N (v)] = 1+ 2(ING(v)| + [N&(v)])

+ [NG(v)]
=3|V(G)| + |Na(v)| + |N&(v)| — 2
= 3|V(G)| + dega(v) + |N&(v)| — 2. O

Corollary 5. Let G be a non-trivial connected graph of order m such that G is connected
and let v € V(G). Then

_ 2m —1
3|[V(G)| + dega(v) + NG (v)| — 2

Coa(v)
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Example 5. Let G = P, and consider GG = PyP; and v € V(G) in Figure 9. Then
Ng(v) = {z} and N}(v) = @. Hence |V(G)| = 4, m = 8, |Ng(v)| = dege(v) = 1 and
|N&(v)| = 0. Using Corollary 5, we have

L 2m — 1
Cet®) = 376 T degalo) + NG — 2
8-t
34 +14+0-2
_ 7
T

S
Ql

G

v T Yy z

Figure 9: The complementary prism P4P, and v € V(Py)

Lemma 5. Let G and H be a non-trivial connected graphs and let (z, p), (y,q) € V(GVH).
Then

o

ifr=yand p=g¢q
if vy € E(G) or pq € E(H)

2 otherwise

—_

deva((z,p), (y,q) =

Proof. Clearly, dgvu((z,p),(y,q)) = 0 if z = y and p = ¢q. Also, by definition,

devi((z,p), (y,q)) = 1if 2y € E(G) pg € E(H). Suppose x # y, p # ¢, xy ¢ E(G),
and pg ¢ E(H). Let z € Ng(y) and r € Ny(p). Then (z,p)(z,r), (2,7)(y,q) € E(GV
H). This implies that [(z,p), (z,7),(y,q)] is an (z,p)-(y,q) geodesic in G V H. Thus,

davu((z,p), (y,9)) = 2. O

Theorem 6. Let G and H be connected non-trivial graphs of orders m and n, respectively,
and let (x,p) € E(GV H). Then

Tovi ((z,p)) = 2mn + degg(x)degry (p) — n - degg(x) —m - degu (p) — 2.

Proof. By Definition 3 and Lemma 5,

rova((@,p) = > > deva(xp)(y,9)+ Y > deva(z.p)(y.9)

g€V (H) yeNg(x) geNH (p) yeV(G)\Ng ()
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+ Y deva@p)@d+ Y Y deva(x,p)(y,q)

q€V(H)\Nx [p] q€V (H)\Ng (p) yeV (G)\Ng ]
= [V(H)||Na(z)| + ([V(G)] = [Na(@))|Nu(p)| + 2(IV(H)| = [Nu(p)| — 1)
+2([V(H)| = INu(p))(IV(G)| = [Na(z)| - 1)
=n|Nea(z)| + (m — [Ng(z))|Nu (p)| 4+ 2(n — [Nu(p)| — 1)
+2(n — |Nu(p)])(m — [Ng(z)| — 1)
= n|Ne(z)| + m|Nu(p)| — |Na(@)||Nu (p)| = 2|Nu (p)| — 2n — 2
+ 2mn — 2n|Ng(z)| = 2m|Ng (p)| + 2|Ng(@)||[Nu (p)| — 2n + 2[Nu (p)]
= 2mn + [Ng(2)||Nu (p)| — n|Na(x)| = m|Nu(p)| — 2
= 2mn + degg(z)degr (p) — n - degg(x) — m - degp(p) — 2. O

Corollary 6. Let G and H be connected non-trivial graphs of orders m and n, respectively,
and let (z,p) € V(G V H). Then

mn — 1
C 2mn+ dege(z)degy (p) —n - dega(x) — m - degy (p) — 2

Cava((z,p))

Example 6. Let G = P3 = [z,y,2], H = P3 = [q,p,s], and (z,p) € V(G V H). By
Corollary 6 with mn =9, degg(z) = 1, and degp (p) = 2, we find that Covp((z,p)) = 5.

4. Conclusion

The study revisited the concept of closeness centrality of a vertex in a graph. Formulas
that can be used to determine the closeness centrality of vertices in the shadow graph, edge
corona of graphs, complementary prism, and disjunction of graphs were generated. The
parameter can be studied further for other graphs under some other binary operations.
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