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Abstract. This paper investigates the companion of Ostrowski’s inequality in the framework of
fractal sets. First, a new identity related to local fractional integrals is introduced, serving as
the foundation for establishing a set of inequalities applicable to functions with generalized s-
convex and s-concave derivatives. An illustrative example is presented to validate the obtained
results, demonstrating their accuracy. Additionally, the paper discusses several practical applica-
tions, highlighting the significance of the established inequalities. The research presented in this
paper contributes to the growing field of studying functions on fractal sets, which has attracted
considerable interest from scientists and engineers.
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1. Introduction and preliminaries

Convexity is a fundamental property in mathematics that appears in various fields such
as optimization, convex analysis, geometry, probability theory, and finance. A function
J I — R is said to be convex if it satisfies the following condition

T (k1 + (1 — 3¢) ko) < 2T (k1) + (1 — 5) T (k2),

for all k1,k2 € I and all » € [0,1].

The most famous result connected to this notion is the one called the Hermite-Hadamard
inequality, which can be formulated as follows (see [22]): For a convex function J defined
on the interval I = [a,b], we have
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J(%3?) < bla/J(t)dt < J@I0) "

Several scientists have been interested in inequalities related to (1). In [14], Kirmaci
established the following result connected to the left part of (1) for the class of functions
whose first derivatives in absolute value are convex, known as the midpoint inequality.

(2f2) — /.7 t <2 (| T (a)| + [T (b)]) - (2)

This estimate holds even for the right part of inequality (1), also known as the trapezoid
inequality, as was proved by Dragomir and Agarwal in [6].

J(a +J(b /j ¢ < b_Ta (’j'(a)‘ + ‘j'(b)’) ' (3)

In [11], Alomari et al. gave a companion of Ostrowski inequality for the same classe
of functions which represents a generalization of the two previous results as follows

b
j(m)+j2(a+b—m) _ b_la/‘j(t)dt

< (|7 (a)] + |7 (b)) + B2 (| 77 ()] 4| T (a + b — w)]).

Note that both inequalities (2) and (3) can be derived from the preceding result. Specif-
ically, the trapezoid type inequality is obtained for x = a, whereas midpoint inequality
can be deduced by substituting x = “TH’ and utilizing the convexity of | 7], i.e.,

a 4 a ! b
‘j’ (%b)' < |7’ ( )I;IJ()\.
On the other hand, in their paper [9], Hudzik and Maligranda explored the class of

s-convex functions in the second sense. This class is defined by the following property: A
function J : [0,00) — R is said to be s-convex in the second sense if the inequality

T Geu+ (1 —30)v) <3°T (u) + (1 — )° T (v)

holds for all u,v € I, 5 € [0,1], and s € (0, 1].
The counterpart of the Hermite-Hadamard inequality for s-convex functions was in-
troduced by Dragomir and Fitzpatrick in [5] in the following manner.

b
25717 (e4?) < bl/j(t)dt < L@HI0) "

a
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Recently, scientists and engineers have taken a keen interest in fractal sets and fractal
theory. According to Mandelbrot [8, 15], a set is considered fractal when its Hausdorff
dimension exceeds its topological dimension. Recently, several studies have been conducted
with the aim of extending some results related to integral inequalities to fractal calculus,
using various forms of generalized convexity. Here are some references [1-4, 7, 10, 12, 13,
16-19, 23]. Yang’s research in [24] focuses extensively on investigating and advancing local
fractional calculus.

In their publications [24, 25], Gao-Yang-Kang proposed the concept of local fractional
integral and derivative. Their definition of the fractal set of real numbers R specifies the
following properties.

If k], k3, and k3 are within the set R7, then the following statements can be made:

e ] + rg and K]k, belongs the set R?,
o k] + Ky =ky+ K = (k1 +rK2) = (k2 + K1),
o k] + (k3 + k3) = (k1 + Kk2)" + K1,
o Kiky = ryk] = (Kik2)" = (K2k1)7,
o o (530) = (1) ol

g

[ ] K:l (/‘{/2_‘_53)_1%1 +/‘{/1/€3,

o k] +07=0"++r] =] and K]17 = 17k] = K].

Lemma 1 ([24]). Let C, ([a,b]) be the set of all local fractional continuous functions on
la,b] and D~ ([a,b]) the set of all local fractional differentiable functions on [a,b]. It can
then be stated that:

(i) Suppose that J (t) = Q) (t) € C, [a,b] , then we have
oI T (1) = Q(b) — Q(a).
(ii) Suppose that J,Q € D. [a,b] and ) (t), QD) (t) € C, [a,b], then we have
7T (1) QN (1) = T (1) Q)| b — ol TP (1) Q(1).

Lemma 2 ([24]). For J(t) = t*7 , we have following equations

by T(tky) 4 (k—1)y
atr — T(+(k—1)7)

I

b

k __ I(0+ky) k+1 k+1
/H (dt)? 1+(k+”1))(b(”V—a(*W),keR.
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Lemma 3 (Generalized Holder’s inequality [4]). Let J, Q € C,la,b], p,q > 1 with %—i—% =
1, then

Q=

b b » b
i [ @0 Q1@ = (i [17OF @) || et [ 1@ 01 (o)

Definition 1 ([24]). Let 7 : I CR — RY. For any k1,k2 € I and » € [0,1], if
T (k1 + (1 = 2) ko) < 37T (k1) + (1 — 3¢)7 T (ko)
holds, then J is a generalized convex function on I.

More scientists have made efforts to extend the notion of convexity in order to cover
a wider class of functions. One of the most interesting extensions that has emerged is the
generalized s-convexity introduced in [20].

Definition 2. Let J : I CR — RY. For any k1,ke € I and » € [0,1], if
T (k1 + (1 — ) ko) < 37T (k1) + (1 — %)% T (ko)

holds for some fized s € (0,1], then J is a generalized s-convex function in the second
sense on I.

In [21], the authors gave the analogue of inequality (1) for generalized s-convex func-
tions on fractal set as follows

s— vy
BT (44 < R < ris (@ + @), 0<s <1, )
This paper examines the companion of Ostrowski’s inequality, as studied by the authors
in [11], within the context of fractal sets. We start by introducing a new identity related to
local fractional integrals, on the basis of which we establish several inequalities for functions
possessing generalized s-convex and s-concave derivatives. The study is concluded with an
example that justifies the correctness of the obtained results, as well as a few applications.

2. Main results

In order to demonstrate our results, it is necessary to present the following lemma.

Lemma 4. Suppose J : I = [a,b] — RY is a differentiable function on I with a < b, and
J) € C,la,b]. Then, for all z € [a, a'H’] the following equation is satisfied
1
—a)?7
=%QWIMH/VJ”« Ma-t ) (@n)’
0
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1

i [ (1= 177D (=) a kb)) (dn)”)

0

1

a+b—2x)%7 a

= (F(ﬁl)/ (=1 T (A =)z +n%5) (dn)
0

1
+ F(JH)/WJ(’” (1 =n) 32 +n(a+b-x)) (dn)7> :
0

Proof. Let
—27)? a+b—22)2 r—a)?
I= ((x a)) : L+ (Z—:l()b_Qa))Wv I+ (4—1;1()1,_2@%7 I3 + ((b_a));Y I4, (6)
where
1
e [T (@ =) a ) (@)
0
1
r(m / ) ((1—n)z +nEb) (dn),
0
1
F(7+1 / A W) ) a;b +n(a+b— :c)) (dn)”
0
and

1
= ey [ (=170 (1= 1) 0+ b= ) ) dn)
0

Using Lemmas 1 and 2, we get

h= Gl (1 =n)at nx)(”il @

~ =T m)/ (v+1) —n)a+mnzx) (dn)”

1

i [T =) atne) (@)

0
T

=G-a) avj( z) — (ggj(;y)zy/j(W)(dw)W.

a

_z a”j()



W. Saleh et al. / Eur. J. Pure Appl. Math, 16 (3) (2023), 1359-1380 1364
Similarly, we obtain

n=1

I = Gy =177 (1= MM““’)\_O (8)

1
~ (atb— QIWWF (v+1D) /P Y+1)J ((1 —n)z+ 77a+b) (dn)”
0

~ (atb— 23;)%7( ) — m / J (@) (dw)7,

n=1
Iy = T (=) m(at b =) ©
1

- e [TO+ DT (=) 25+ (e b—2) @)

0

a+b—x
=Gz (@t b—2) = s / J (@) (dw)’

a+b

2
and
n=1

L= Gl (=1 T (1 —n) (a—i—b—w)—i—nb)‘n . (10)

1
~ ot [T O+ DT (@ =) (b)) (d)”
0

_ﬁj(awLb—x)fﬁ / J (@) (dw)™.

After substituting equations (7)-(10) into equation (6), we multiply and divide the resulting
equation by I'(y 4+ 1) to obtain the desired result.

Theorem 1. Suppose J : [a,b] — R is a differentiable function on [a,b] such that
J € D,[a,b] and JO) € C[a,b] with 0 < a < b. If “7(7)‘ is generalized s-convex in the
second sense on |a,b], then the following inequality holds

27 (b—a)7 @70

<G5 ((rifeits - riieiR) (177 @]+ |70 o))

’J(x)+J(a+b—x) D(y+1) 0J )’
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+ R (|79 @) + |79 (@ + b - 2)]))
a+b—2z)*" 14(s+1)v)
+ (4“/(b a)) <F21+Es+2)z) (‘j(’}’) x ‘ + ’j(’Y) (a +b— x)D
P(14+sy)  T+(s+1)y a+b
+2 ( T(1+(s+1)y)  T+( s+2)w)) )*7 )D :

Proof. Using Lemma 4, properties of modulus, and the generalized s-convexity of
|j (7)|, we can conclude that

J(z)+T (a+b—z (y+1
() 2g )_(bva)”)a[’yj()‘

1
<G (r(fylﬂ)/n” ’J(”) (1 —n)a+77w)’ (dn)”
0
1

r 1+1)/ (1=mn) (J(”) (A=n)(a+b—=)+ nb)‘ (dn)”)

0

1

a+b—2x)%" a

+ (4—1;?17—2(1))'Y (F('yl+1)/ (1 - 77)7 ‘j('?) ((1 - 77) T+ n#)‘ (dﬁ)v
0

1
_|_F(71+1)/vt7(”/)((177)‘1“’+77(a+bx))‘(d77)7)

1
S(é C:z (F(W—&-l /’77 g (a)’ + 7 | T (fﬁ)D (dn)”

7 ) <dn>”)

T (%5)]) tany

RARAYY (a—i—b—m)‘ +

j(v) (m)’ + 7>

1
_922)27 s
+ ((jlt?bf;))”* (F('yl+1)/ (1—=n) ((1 -n)*
0

j(W) (aTb) ‘ + ,,75’7

T (a+b— x)D (dn)?

N———
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1
+(ml+1)/(177)” "7 (dn) ))J )

0

1
a+b—2x)%7 s
§ ettty ((F@ [a-pen (dn)”) 70 (@)

0

1 1

’ (””1*“/ ()07 )+ by [ (=) ) )’7 (2]
0
1

0

(s (dn)”) ’j(v) (a+b— :1:))

0
=y ((reisys - reets) <“7 7 “)‘ ‘j U )D
(1+(s+1)y

+ e (90 @)+ 79 @+ -a)]))
+ 2T (T (17600 @) +]760) @+ 5 - )
Lo ( “ I(1+sy) F(1+(s+1)v)) ‘j(v) (GT—H))D

1+(s+1)y)  T(A+(s+2)v)

where we have used the facts that

1 1
/777 (1 =) (dn)” :F(’Y+1/ n)? n* (dn)”
0

P(1+sy) _ D(14(s+1)y)
STty T(IH(+2))

and

The proof is completed.

Corollary 1. In Theorem 1, if we take s = 1, we obtain

’J(x)JrJ(aer—x) _ T(y+1) 0J )‘

A Pty
<G ((f2h - sy (I @+ |79 0))
R (o] 1)

4 G2 (10 (170 ()] + [ 7D (0 + - )

e (R - ) oo )

/\

1
1 (s4+1)y _ s+1 L(1+(s+1)v)
CESy / (dn)” = / (dn)” = T2
0

1366
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‘jm ("%b)‘ < 2= Iy (‘j 7 ( ‘ i )jm (a+b— x)D 7

we obtain

‘J(ac)—&-J(a—&-b—:c) T(y+1) I” 7 (t)

27 (b—a)” @ ‘
(@=a)® ( T(tsy) _ L(+(s+1)y) ™ ( M (
S Tay (F(1+(s+1) T(1+(s+2) 7)) (“7 ‘ “7 D
+ ((z a)?Y T(14(s+1)7) (a+b 22)27 ( (1+(s+1)y) 20— VT (144)(1457)
(b—a)” T(1+(s+2)v) 47(b—a)” T(1+(s+2)y T(1+(s+2)7)
s 2y
+ 207 (14 7) T 1]j+1;r+71 )7) )) j(V ’J Patb- x)D '

Corollary 3. In Corollary 2, taking s = 1 we obtain

’J(m)w(wb—z) LOy+1) gy j()’

27 (b—a)” @7b

< (7 - ER) (79 @]+ |70 o)

+ ( (2=a)Y D(142y) | (atb—20)™ (mm) _ 204
(b—a)” T'(1+3y) 47(b—a)7 \T(1+37) '(1+37)

o (B)7)) (9 ]+ 0459

Remark 1. For v =1, Corollary 3 will be reduces to Theorem 5 from [11].

Corollary 4. In Theorem 1, taking x = a we get

27 (b—a)Y @70

a)” s
<O (et (o0 0 0

+2 (it - M) |79 (1))

Corollary 5. In Corollary 4 using the generalized s-convexity of |j(7)| i.e.

’J(a)JrJ(b) I(y+1) 0J )‘

70 | <20zt (70 @] o0 ).

we obtain

’J(a)-ﬁ-](b) (y+1) ij()‘

27 (b—a)” @7b

b—a)’ [ T(1+(s+1 2—s r(+sy) 2!
<l <p51+25+2§”§ + 207 (Wﬁmﬂ T'(1+7)

— 2@ N EElt) (|70 (a)] + |70 m)])

1367
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Corollary 6. In Corollary 5, taking s = 1, we obtain

‘J(a)w() L(y+1) pj()’

27 (b—a)” @
< (M8 2 (RE) T - ) (9 @] o ).

Remark 2. For v =1, Corollary 6 will be reduces to Theorem 2.2 from [6].

Corollary 7. In Theorem 1, taking x = “TH’ we get

’j (45?) - (b”ifw) o1y T (t )‘

<t (s - i) (|77 @]+ 7 o))
+2~,81§+¢;‘j a+b)‘>_

Corollary 8. In Corollary 7 using the generalized s-convezity of |j(7)|

‘j ath) _((v+1 IVJ()‘
S(b4a) ( Ltsy) _ TO+(st1)) 4 o(2- s)v%) (‘j(v ‘+ ’j(v) (b)D_

Y I(14+(s+1)y) I'(14+(s+2)v) T(1+(s+2)

Corollary 9. In Corollary 8 if we take s =1 we obtain

T (45) — Gl T ()

<O (H D)y on G0 (|70) (@) + |79 1))

Remark 3. For v =1, Corollary 9 will be reduces to Theorem 2.2 from [1]].

Theorem 2. Suppose J : [a,b] — RY is a differentiable function on |a,b] such that
J € Dyla,b] and JO) € C,la,b] with 0 < a < b. If ‘j(V)‘q is generalized s-conver on
[a,b], where ¢ > 1 with %D + % =1, then we have

’J(w)+\7(a+bfx) _ T(y+1) 0J )’

27 (b—a)7 @7b
1 1
= (F(fil(;ﬁ%» ' (F(Srl(;rfl))w)) !
1 1
(55 (ol sl )+ (0wl o )

+ G ( (7 @[ [0 (=g [)?

(o e+ s =) ) ).
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Proof. Using Lemma 4 as well as the generalized Holder inequality, properties of
modulus, and the generalized s-convexity of }j (7) }q, we can conclude that

‘J(m)-‘r](a-ﬁ-b—x) I(y+1) IV T (¢ )’

27 (b a ’Y a
1 1
1 p 1 q
q
<((b a)y (F("/—‘rl /np’y d?’] ) (F('yl—i—l)/ ‘j('Y) ((1 — 17) a -+ nx)‘ (dn)“/>
0 0
1 1
1 P 1 q
q
+ (mil) / (1—m)” <dn>V) (r(i) / [T (1 =) (a+ b= 2) + ) (dn)”)
0 0
1 1
1 P 1 q
a+b—2z)%7 a
+ (J?bfa))w (mlﬂ)/ (1—n)* (dn)y) (r(~y1+1)/ ‘\7(7) (QA=n)z+n “’)‘ (dﬁ)v)
0 0

1
q

1 1
i (M/npv (dn)” (F(WI'H)/ ‘*7(7) (1 —=m) aTer +n(a+b—1x)) ‘q (dn)v)
0 | 0 :
(F(v1+1)/ ((1 =) T (a)‘q +0% |TO (:c)’q) (dn)v)

S

(z—a)® [ T(lip)
<To—ay (r<1+<p+1m)
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1
( ] )" | g (e b)’ o | g™ (a+b_$)‘q) (dn)v)q
0
1 1
<F(1J(r1(;ﬂ))v)>p ( 11ﬂJ(rljﬁ))v)) !
1 1
(5 (<! ! 0l el +[ 700
R (CRER AT,

+ (|7 ()| + ]JW (a+b—2)| );>>

where we have used the fact that
1

1
1 )P ( _PQ+py)
NCERY / ) / (L=m)" (dn)” = wregrnyy-
0 0

The proof is completed.

Corollary 10. In Theorem 2, taking x = a, we obtain

‘\7 +j() N (bvj)l'v)ajvj( )‘

1 1
(b—a)” T'(1+p7) D T'(1+s7) q
ST <F(1+<pﬂ>w>> (r<1+<s+71>w>>

(@] o )+ (7 ]+ o)),

Corollary 11. In Theorem 2, taking x = GTH’, we obtain

|7 (252) - G2 BT )

1 1
(b—a)” T'(1+p7) P T'(14s7) q
<R (I‘(l-i—(p-liq)’y))p (r(1+(s+71)7)>

(oo o e o +ool)).

Theorem 3. Suppose J : [a,b] — RY is a differentiable function on |a,b] such that
J € Dyla,b] and JO) € C,la,b] with 0 < a < b. If ‘j('”‘q is generalized s-conver on
[a,b], where ¢ > 1, then we have

J(@)+T (at+b—z)  T(y+1) I” ()

27 (b—a)” a7b
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< ( 1F((11j;y)) ) T

1
(z—a)?Y P(l4+sy)  TQ4(s T(1+(s+1)y) q
X <(b—a)'y (((r(1+(s+1) ) T T(1+(s ) ’j (a ’ + TG ‘ )
1
T(1+(s+1)7) q I'(1+s7) I(14+(s+1)y ) q E
+ (4F(1+(s+2)1) ‘jw (a+b— 5")’ + <F(1+(5+V1) ) T T(Ir(s2)y ) ) >
1
a+b—2z)%7 T(14(s+1 q [(1+s T(1+(s q
+ (4"Y(b—a))'Y <<F21+§s+2;77; "’7(7) (%)‘ + (F(l-&-(s—&)) ) FEH— ) "7 @ i )q
1
I'(1+s7) T(1+(s+1)7) T(1+(s+1)7) N q
+ (<F(1+(s+71)7) - F(1+(5+2)1)> ‘»7(7) ‘ +F 1+(s+27)j/) ‘jm (a+b— x)’ ) )) :

Proof. Using Lemma 4 as well as the generalized power mean inequality, properties of
modulus, and the generalized s-convexity of }j ™) }q, we can conclude that

27 (b—a)7 @7b

‘J(r)-‘rﬂ(a-‘rb—x) C(y+1) 07w

1

1 % 1 q
q
<((b o) (F(7+1 /m dn) ) (mlﬂ)/mj(v) ((1—n)a+nx)‘ (dn)v)
0 0
1
+ (rml)

1 1*%
/ (1— ) (dn)”)
0
1

(=) [7O (=) @+ b—a)+ )| <dn>’*)

1
1 =3
(a+b— 21
+ 47(b—a) ’H—l/

—_
g
O\H

1

1
q

1 1-9 1
q
+ (F(ryl—i-l) /n’y (d'r/)ﬁ/) (F(’yl—&-l) /"7’y ‘\7(7) ((1 - 77) aTer + n (CL + b— l’))‘ (dn)’y)
0 0
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1

1 1 q
=2 | (zea)® s q s q
<(RE) 7 | 52 (r(iﬂ) [ (a=m]g0 @[+ |70 @) )(dn)”)

0

1
! a
+ (F(vlﬂ)/ (1— 77)7 ((1 . n)sv j(v) (a+b— a:)‘q e j('y) (b)’q> (dn)v)

0

1
(z—a)*" C(l+sy)  T(+(s+1)v) ™) C(1+(s+1)7) | 7(v) 7\ q
X ((b—a)v (((r(1+(s+m) rrey) ‘7 ! ‘ + T 12n) ‘j k (ﬂf)‘ )

1
T(14(s+1)7v) q I'(14s7) I(14(s+1)7) 7\ q
+ <F (-2 ‘jm (a+b- x)‘ * (F(1+(s+yl>v) - r(1+(s+2>1>> )‘7 " (b)‘ ) )

1
“ . s q s s a q\ =
oo (et ) (1 (b et |6 a3 )

1
T(1+s7) T(1+(s+1)y (1+(s+1)y) 7\ q
+ <<m+<s+71) y— NeR ) [ (=5 )‘ BB [T @+ b - 2)]) ))
where we have used (11) and (12). The proof is completed.

Corollary 12. In Theorem 3, taking x = a, we obtain

‘Ja)+J() L(y+1) 0na )’

(b—a)” @b

1
b—a)? { T(14+) \1 ¢
<o (r((1+277))> !

(e | o + (it - RS [ (o)

1
I'(1+s I'(1+(s+1 a a C(1+(s+1)v) 7\ q
+ ((rotsy - rhesd) |72 ()] + ey |70 o) )q) .
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Corollary 13. In Theorem 3, taking v = "’T*'b, we obtain

‘j a+ fbw:l“’ GIVJ()’
A+
( I'(1+27) )

(((Hff::i? ) 70 @+ it | (g0

+ (581(7 ‘j(’y (%)‘ + <F(£4(-1(1—ﬁ)) - 8181; ) ‘j )q>;> .

Theorem 4. Suppose J : [a,b] — RY is a dzﬁerentmble function on [a,b] such that
J € D,[a,b] and JO) 6 C [a b] with 0 < a < b. If ‘jw ‘ is generalized s-concave on
[a, b], where q > 1 with * —|— = =1, then we have

)j(w)Jrg’(yaerfx) 1(“b7;r1w) )T (¢ >’

1
<t (5 (i)’ (o o

1
(a+b—22)%7 [ (atb—2z)Y20(s— D7 a b 2w
+ D (b—a)? ( T (1) ) (‘j(“/ a+b+2x +

+ ‘j(v) (#)

)

)

Proof. By utilizing Lemma 4, as well as the generalized Holder’s inequality, properties
of the modulus function, and the generalized s-concavity of |.7 )

+ ’j(“/) (3a+3ilb—2z)

q
| , we have

J(m)+\g’(ya+bfx) 1(“(}(’}/217 aI'yj ( )’

1
1 1
< @=a)® 1 PY (dn)Y ’ 1
STar | | T /7 ) eE

0

1
1 a
IO =matno)| (d W)
){‘ nja-+mn ‘ Ui

1 % 1 . %
+ (mlﬂ)/ (1=n” (dn)”) (mlﬂ)/ T (1 =) (a b= a) + ) (dn)”)
0 0
1
1 P
a+b—2x)%"
+ (4:1()13@))w (F(vlﬂ)/ (L=n)™ (dﬁ)v)
0
1

1 q
x (mlﬂ)/ IO (@ =ma+ o) (dn)v)
0
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1

1
1+1)/77m (dn)” M/ ‘\7(7) ((1 —n) aTer +n(a+b— w)) ’q (dn)?
0

0
g0 (223==)])

)

1
q

D=

1
< (e i) (ﬁi))? ("t m) (|7 (=52)

+ (a+b—22)%7 (((a—i—b—Z:{;)“’Z(SU7 ) % ’\7(7) (a—l—b4+21)

+ ‘j(w) (3&4—3:117—21)

47(b—a)” 27T (1+7)
The proof is completed.

Corollary 14. In Theorem 4, taking x = a, we obtain

J(x)+J (a+b—z (v+1)
ehrglttee) GO LT (1)

1 1
<t (o) (it (77 )|+ |70 (4)]).

Corollary 15. In Theorem 4, taking x = GTH’, we obtain

J(@)+T (a+b—z)  D(y+1) Ifyj ( )‘

o (b—a) @
1
. (r(ff(?@h))p <2<2‘(£’;; o ) (’j

3. Example and Applications

’j a+22b—az)

).

The purpose of this section is to verify the correctness and effectiveness of the results
obtained. To achieve this, we start with an example that includes a graphical representa-
tions to demonstrate the accuracy of our results. We then provide a few applications for
estimating the error of a given quadrature formula.

3.1. Example supporting our findings

In an effort to provide additional support and substantiation for the results derived in
this study, we present an illustrative example that encompasses various cases and incorpo-
rates 2D and 3D graphical depictions. The purpose of this example is to demonstrate the
effectiveness and accuracy of our findings. It is important to note that the figures presented
herein were generated utilizing Matlab, where the color green denotes the Right Hand Side
(RHS) and red signifies the Left Hand Side (LHS) of their respective inequalities.

Example 1. We present the function J : [0,1] — RY, which is defined for a fixed value
s€(0,1] as J(t) = %t(s“h. The crucial aspect of this function, which underpins

our investigation, is that its derivative ‘j('”‘ = t%7 is a generalized s-convex function.
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In the ensuing discussion, we will set v = 1 and subsequently present the different cases
in the following manner.

Case 1. Applying Theorem 1 to the function under consideration yields the following
result depicted in Figure 1 for x € [0, %] and s € (0,1].

(T - )| < (e + @ 0 -a))

1-22)2 s 1-s
+%<S+L2(IL‘S+(1—:U) )+(8+21)w>

Case 2. Fizing s = %, we obtain the following result for x as shown in Figure 2.

Parameter s 00

parameter x

parameter x

(a) View.1 (b) View.2

Figure 1: Case 1. z € [0,1] and s € (0, 1]

0 0.1 0.2 0.3 0.4 0.5
parameter x

Figure 2: Case 2. s = % and = € [0, %]

Case 3. Lastly, we present with respect to s the result obtained by fixring x = 0, as
depicted in Figure 3.
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1 21 s
‘ <7 (s+2 + m)

0 0.2 0.4 0.6 0.8 1
parameter s

Figure 3: Case 3. x =0 and s € (0, 1]

3.2. Applications to quadrature formula

Let A be the partition of the interval [a,b], a = yo < y1 < ... < y, = b. We consider
the following quadrature rule

b

e [ (0 @) =T (7,8) +R(T,A),

a

where
m—1

T(T,A) = (Wht1—ye)” <~7(1)+J(yk+yk+1—m))

T(v+1) 27
k=0

and R (J,A) denotes the associated approximation error.

Proposition 1. Suppose m € N and J : [a,b] — R is a differentiable function on [a,b],

where 0 < a < b and JO) € C, [a,b]. If ‘j(V)‘ is a generalized s-convex function, then we
have

mz: T 1%77 (( 1&?%1)) ) 5818133) <‘~7m (yk)‘ + ‘«7”) (yk—l—l)‘)
k=0
+ rﬁigii% ( ) (LU)‘ + ‘«7(7) (Yk + Ykt1 — LU))))

+ (y’ﬁ%’iﬁﬁf) ( 81 zié (‘J 7 ( ‘ + ‘\7(7) (Yk + Yr+1 — JC)D

+2 (s - rﬁiﬁiiéiz)) 7 (atye)]).
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Proof. Applying Theorem 1 on the subintervals [yx, yx+1], (K =0,1,..
partition A, we get

.,m — 1) of the

J(2)+T (yr+ —x) r(v+1)
‘ y2k“Y e N (yk-s-?—yk)w Yk ;’vﬂj (t)‘

<(;§:+1y z)/k) (( (ff(;rﬁ))y) - ?8152137,3) (‘Jm (yk)‘ + ‘J(V) (ykz-&-l)‘)

e (rEii 21% <1~7”> )| +17 0+ —])

+ 2 (s — Eiigiiﬁ%) ‘j " (W#)D

We can obtain the desired result by multiplying both sides of the inequality above by

%, summing the resulting inequalities for all K = 0,1, ..., m — 1, and then applying

the triangular inequality.

Proposition 2. Suppose m € N and J : [a,b] — R is a differentiable function on [a,b],
where 0 < a < b and JOW € C, [a,b]. If ‘j(V)‘q s a generalized s-concave, where g > 1
with % + % =1, then we have

IR (T, A)|
57:_01 (r(f&&ﬂ)ﬁ)); (%yfl? <<x—yrk(>1w+2;s)—m)§ (|7 ()| + |7 (wt2gn=z) )

].
+ (Wi tyes1—22)> [ (Yetyppr—23)7206-17 jv) Y Y12
DT(1) 2T (117) i

i ‘j(v) (Syk+3yf+1*2x)

)

Proof. Applying Theorem 4 on the subintervals [y, yx+1], (K =0,1,...,m — 1) of the

partition A, we get

27 (Yet+1—yx)" Yk Uk+1
1 1
A+py) \p [ _(z=w)®  ((z—yx)?20-D7 ‘ () (wtr)
< (F(1+(p+1)v)) <(yk+1yk)W ( I(1+7) ) ( J 2

1
+ (e tyrt1—22)%7 ( (yrtypp1—22)7206- 17 j'y) Yk +Yr+1+2z
4

‘J(x)JrJ(ykerkaz)_ I(y+1) - j(t)’

+ ‘j(w) (yk+292k+1_x>

)

I ‘j(fy) (Syk+3yf+1—2w)

47 (Ypg1—Yx)” 27T (1++)

)

We can obtain the desired result by multiplying both sides of the inequality above by

%, summing the resulting inequalities for all £k = 0,1, ..

the triangular inequality.

.,m—1, and then applying
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4. Conclusion

In conclusion, fractal sets and fractal theory have generated significant interest among
scientists and engineers, particularly with regards to studying the properties of functions
operating on these sets using techniques of fractional calculus. This paper contributes
to this area of research by examining the companion of Ostrowski’s inequality within the
framework of fractal sets. The introduction of a new identity related to local fractional
integrals allows us to establish several inequalities for functions with generalized s-convex
derivatives and s-concave derivatives. The correctness of the results is justified through
an example, and a few applications are discussed. This work also opens up new horizons
for the study of integral inequalities via other types of convexity and for functions of two
variables. These future developments can contribute to a deeper understanding of the
properties of fractal sets and the functions that operate on them.
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