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Abstract. This paper establishes the linear algebra of the (r, §)-Stirling matrix. Along the way,
this paper derives various identities, such as its factorization and relationship to the Pascal matrix
and the Stirling matrix of the second kind. Additionally, this paper develops a natural extension
of the Vandermonde matrix, which can be used to study and evaluate successive power sums of
arithmetic progressions.
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1. Introduction

The (r, §)-Stirling numbers are a generalization of the classical Stirling numbers of the
second kind and r-Stirling numbers, and is denoted by, <Z> . They were introduced by

B,r
Corcino in 1999 [5] by means of the following linear transformation:

n=3y <Z> (t =)k (1)
B,r

k=0
where
k—1
(t—r)pr=Jt—r—iB). (2)
i=0

(t)s,k is called the generalized factorial of ¢ with increment 3, and as a convention (t)g ; = 0
if k& < 0. This numbers have applications in combinatorial and statistical problems.
Corcino and Aldema (2002) [6] further studied the (r, 8)-Stirling numbers and derived some
combinatorial identities related to them. Corcino and Montero (2009) [7] also investigated
the (7, §)-Stirling numbers in the context of 0-1 tableaux, which are a tool used in algebraic
combinatorics.

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4854

Email addresses: gequisto@carsu.edu.ph (G. Engalan), mrlatayada@carsu.edu.ph (M.J. Layatada)

https://www.ejpam.com 2306 © 2023 EJPAM All rights reserved.



G. Engalan, M.R. Latayada / Eur. J. Pure Appl. Math, 16 (4) (2023), 2306-2322 2307

In this paper, we introduce and study the (r, 3)-Stirling matrix and we derive several
interesting identities about (r, 3)-Stirling sequence. Two applications are given: we can
generalize the Vandermonde matrices and evaluate successive power sums of arithmetic
progressions.

2. Results

2.1. The (r, 5)-Stirling Matrix
The key notions of the study are now defined.

Definition 1. The (r, 8)-Stirling matrix is the n x n matrix defined by

(),

Example 1. When n =4, we have

0<i,j<n—1

1 0 0 0

r T 1 0 0
SN =1 iy 10 )

3 B2 +38r+3r2 38+3r 1

For the following propositions, we need the generalized n x n Pascal matrix and the
generalized n x n Stirling matrix of the second kind, defined by [2] and [3], respectively

as: ‘
R
J/ lo<ij<n—1

Sa(n)le] = [+ 75(0.5)

where P, = P,[1], and

0<i,j<n—1
where S(i,7) is the Stirling numbers of the second kind.

The main technique used to prove the next propositions is the concept of the Riordan
group introduced by Shapiro et al. [10]. This, briefly, is a group of infinite lower triangular
arrays called Riordan matrices.

A pair of formal power series g and f in the ring C[[z]] define a Riordan matrix as
M = [my, k]n k>0, where g(0) # 0, f(0) =0, f'(0) # 0, and [z,] is the coeflicient extraction
operator. The matrix M is denoted by (g, f). Moreover, if m,, j, = [‘;—ﬂ g% then M is called
the exponential Riordan matrix or e-Riordan maxtrix, denoted by (g, f). For example,
the e-Riordan matrix representations of the three common e-Riordan matrices used in
this paper - the Pascal matrix, Stirling matrix of the second kind, and the (r, 5)-Stirling
matrix:

eﬁz—1>

P, = <ez,z>, Sa(n) = <1,ez - 1>, SBT) (n) = <e(7")z, 5
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The set of all e-Riordan matrices forms a group called e-Riordan group under the
Riordan multiplication defined by

(9:.f) * (hi 1) = (gh(£), 1(F))-

Proposition 1. Let P, be the n x n generalized Pascal matrix, then
Proof. Consider the e-Riordan matrix representations,

P, = <ez,z> and SBr=1)(n) = <e(’"*1)z, GIBZT_1>

By using the e-Riordan matrix multiplication, we have

PnS(’H”"*l)(n) = <ez, z> * <e(“1)z, eﬁzﬁ_ 1>

Example 2. Let n = 4. Then

PSP (4) =

—_ = = =

00 0 0
00 r—1 1 0
1 0f [(r—1) B+2(r—1) 1
i 3 1 [(r—1)2 B24+338(r—1)+3(r—-1)% 38+
M1 0 0 0
r 1 0 0

w N = O
— o O O

3r

r? B+ 2r 1 0
3 BP438r+3r7 36+3r 1

— §(Br) (4)

Proposition 2. Let P,[r — s| be the n x n Pascal matrix defined by

n

Pylr —s] = [(r— )" (k)}ogi,jgn—l'
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Then,
SE (n) = Py[r — 58P (n),

provided that r > s.

Proof. Consider P,[r — s] = (e"=9)% 2) and S¥%)(n) = (e72, %) Then,

< g
_ <e(r—s)zesz e — 1>
g
_ <e(r—s)z+sz e - 1>
B
_ <erz—sz+sz e,ﬁz — 1>
B
= <6Tz’ eﬁz — 1>
B
= 5B ()
[
Example 3. Let n = 4. Then
M1 0 0 0 1 0 0 0
CaaBs)y | TS 1 0 0] |s 1 0 0
Palr = s]S77(4) = (r—s)? 2(r—s) 1 0| |s? B+2s 1 0
[(r—35)® 3(r—s)? 3(r—s) 1] [s® B*+3B8s+3s> 38+3s 1
[ 1 0 0 0
B r 1 0 0
- —142r4(r—1)>° b+2r 1 0
| —243r+30r—1)2+(@—1°% ®+3b+6r—3+3b(r—1)+3(r—1)% 3b+3r 1
1 0 0 0
e 1 0 0
T B+ 2r 1 0
173 B2 +3Br+3r2 38+3r 1
= 561 (4)

Proposition 3. Let P,[r] and Sz(n)[3] be the n x n Pascal matrix and Stirling matrix of
the second kind. Then,
S (n) = Pu[r]S2(n) (6],

where (S2(n)[Bli; = B7775(i,7) and S(i,j) is a Stirling number of the second kind and
0<ij<n-—L
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Proof. It was previously shown that the e-Riordan matrix representations of P, [r] and
Sa(n)[B] are (€%, z) and (1,e%* — 1), respectively.
Using the e-Riordan multiplication, we have

Pp[r]Sa(n)[B] = <erz7z> * <1’ - 1>

g
Bz _ 1
Tz €
- <e (]‘)’ 5 >
Bz _ 1
_ TZ €
- <e T3 >
= 5B (n)
O
Example 4. Let n = 4. Then
1 0 0 O]t 0 0 O]
r 1 0 0[O0 1 0 O
P4[T]SQ(4)[B]: r2 9 1 0 0 B 1 0
3 32 3r 1] [0 B2 38 1]
[1 0 0 0]
| 1 0 0
T B+ 2r 1 0
3 B24+38r+3r2 38+3r 1)
— 5(@7")(4)

Proposition 4. LetP,[r — 73] and S0 (n)[8] be n x n matrices, where

(S0 (m)[8]):5 = ﬂ<Z>

Then,
SPN(n) = Polr — 18]S (n)[8]

Proof. Consider the e-Riordan matrix representations

P,[r —rB] = <e(7urﬁ)z7 z>

and

z A »
S0 m) (8] = [< -~ 1>] = (e,
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Now,

P,[r— TB]S(I,T) (n)[g] = <e(rfr,6’)z7 z>*<€7"ﬁz7 Bz — 1>

_ <6(Tfrﬁ)2+rﬁz 66—1>

p
Bz _q
_ rz—rfBz+rBz €
- <e i 3 >
rz eﬁz —1
= (e, 21
= 5B (n)
]
Example 5. Let n = 4. Then
1 0 0 0
- | (r—=7pB) 1 0 0
P4[T_T6]S(l )(4)[/8] - (T—T,B)2 2(7"—7“5) 1 0
(r—rB)?% 3(r—rB)? 3(r—rB) 1
1 0 0 0
Br 1 0 0
(Br) B+ 287 1 0
(Br)® B*+38%r +3(6r)* 36+3pr 1
1 0 0 0
| 1 0 0
T |r? B+2r 1 0
B2 436r+3r% 38+3r 1
=SB (4).

2.2. Factorization of the (r, §)-Stirling Matrix

To factor the (r, 3)-Stirling matrix, we need the following matrices defined by Zhang
in [13]:

Sn [:U] = [ZEZ_]} 0<j,i<n—1
For example, when n = 4,
1 0 00
z 1 00
Salw] = 22 x 1 0
2 22 oz 1

Zhang also define the n x n matrix Gi[z] as

Grle] = L ® Sklz], (1<k<n-1),
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where G, [k] = Sp|k] and @ denotes the matrix direct sum.

Proposition 5. For any integer n,m > 1 and r > 0, we have
SU(n) = Gu[r)Gr-alr] - Gi[r]Pa-a[8] - P[B]

Proof. By proposition 3, S = P, [r]Sa(n)[f].
Note that by Theorem 1 of [13],

P,[r] = Gp[r|Gp-1][r] - - - G1[r].

Also, based on one of the results of Cheon and Kim in [3],

This follows that,

SO () = GulrGralr] -+ G1lr Puca[8] - PAIB).

2312

O]

2.3. Relationship between the (r,3)-Stirling matrix and a Generalized

Vandermonde Matrix

In this section, we introduce a generalization of the Vandermonde matrix which will
be useful in the study of successive power sums of arithmetic progression. To do that, we

define the following matrices.

Definition 2. Let S7)(n) be the (r,8)-Stirling matriz. The matriz factorial of the

(r, B)-Stirling matriz, denoted by SP7)(n) is defined by
SEN () =SB (n) - diag(0, 1!, ..., nl).
Example 6. Let n =4. Then

S (4) = S (4) - diag(0!,1!,2!, 3!)

0! 0 0 0
T 1! 0 0
2 B+ 2r 2! 0

3 B2+ 3Br+3r7 (38+3r)2! 3!

[1 0 0 0
| 1 0 0
|2 B+ 2r 2 0

r* B24+3Br+3r? 68+6r 6

(4)
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Theorem 1. Let Vg’r(t) be the n x n generalized Vandermonde matrix defined by

VET() = VBT (Bt +r, Bt + B+, ft+28+7,...,8t+ (n—1)F+7)

1 1 1 1

Bt +r Bt+p+r Bt+28+r pt+ (n—1)8+r

| Bt+r)?  (Bt+B+1)?: (Bt+2B8+71)? - (Bt+(n—1)B+7r)?
(Bt +r)™1 (Bt B (Bt+26 4000 o (Bt (n— 1B+

and ‘
cl(t) =B <tjj>]0§i,j§n1'
Then we can factor VO () as
V() = S (m)C(8). (5)

Proof. Consider the Equation (1),

Note that we can write this as

Replacing t by £t + r, we have

n (Bt4r)—r
e =30, (5 e

(Bt +7)" = Z(Z% <;> Bk (6)

k=0

This equation (6) can be represented by the following system of matrix equation for each
n=20,1,2,... .
v(t) = 8" (n)ea (), (7)

where
v(t)=[1LBt+r (Bt+7r)? (Bt+r)*, ... (Bt +7r)""]

)= 1(5) (1) (3) oo (L))
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which is the first column of the V4" (¢). That is,

1
Bt+r
(Bt +1)?
(Bt +1)3

(5t 4 )1

Thus, by equation (5) we can generalize that,

Example 7. Let n = 4. Then we have matrices

and

Cl(t) =

— (t
r 0 0 0 58
r? + 2r 2 0
: ’ : : 52 (2
1 n—1 :
A G T Ca B TSR CE V] PRSI
L 2 B,r 3 B,r 4 "
VIr(t) = SPm)Cl(t).
1 0 0
a(B,r) _ r 1 0
S (4) r? 8+ 2r 2
324 36r+3r? 65+ 6r
1 1 1 1
Bt B(t+1) B(t+2) B(t+ 3)
B2t(t—1) B2(t+1)t B2 (t4-2)(t+1) B2 (t43)(t+2)
,B3t(t721)(t72) ﬁ3(t+12)t(t71) ,83(t+2)2(t+1)(t) ,83(t+3)(t2+2)(t+1)
6 6 6 6
1 0 0
| 0 0
o |r? B+2r 2 0
r3 52 + 38r + 3r2 68+ 6r 6
1 1 1 1
Bt B(t+1) Bt +2) B(t+3)
: B2t(t—1) B2(t+1)t B2(t+2)(t+1) B2 (t+3) (t+2)
B3t(t=1)(t—2) 63(t+12)t(t—1) 63(t+2)2(t+1)(t) /33(t+3)(t2+2)(t+1>
6 6 6 6

1
Bt+r

1
Bt+B+r

1
Bt+28+r

1
Bt+38+r

(Bt+7r)2 (Bt+B+71)? (Bt+2B+7)2 (Bt+38+1)?
(Bt+7)® (Bt+B+7r)® (Bt+28+71)® (Bt+38+71)°

=V/'()

2314
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Corollary 1. For any real number ¢, we have

Vi (t) = 8O0 (n) A (t) PY
where [A,(t)];; = 8 . t ] and PT is the transpose of the Pascal Matrix P,
J i—7 n

Proof. From Vandermonde’s convolution identity,

(MG
("= 2

we can obtain the LU factorization of C5 (t). That is,

i) = |p (t *

t ]ogi,jgn—l
[ i : J t
- () ()
L Z i) \i—k 0<i,j<n—1
' i (7 t
-2 () (o)
-kzo i) \i—k 0<i,j<n—1

Let [An(t)])i; = B <Z t j>' Note the [(i)] is the transpose of the Pascal matrix
ij

CP(t) = An(t)PT.

n

By Theorem 1, }
V() = SUD () An (1) Py

Example 8. Lett =1, and n = 4. Then,

1 0 0 0
~(ﬁ,7‘) _ T 1 0 0
ST =2 B+ 2r 2 o’
B 38r 41 68+6r 6
1 0 0 0
8 beta 0 O
A4(t): 0 52 52 0
0 0 B B o
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and
1111
r 101 2 3
Pi = 00 1 3
000 1
Now,
1 0 0 0
G(B.r) T_|T 1 0 0
STEOP =12 gy, 20
3 B +3Br+1r2 68+6r 6
1 0 0 071111
L8 B 0 0fj0 1 23
0 B2 B> 0|0 01 3
0 0 B B[00 01
! 0 0 07 111
_ | Bt 5 0 0ollo01 2 3
T (B+1)? B(38 + 2r) 92432 0lloo 1 3
(B+7)3 B(TB2+98r +3r2) 682(28+71) 68%] [0 0 0 1
1 1 1 1
B+r 28+ 3B+r 48 +r
= [(B+7)? 28471 (38+r)* (48+r)?
B+ (28+7r)° (B8+7)° (4B+r)?
= Vi)

Corollary 2. For any real number ¢,

n—1

det(Vr(t)) = [ ] k18"

k=0
Proof. Let Vg (t) be the generalized Vandermonde matrix defined by,
VT () = VBT (Bt + 1, Bt + B+ 1, Bt + 28+ 7, ..., Bt+ (n—1)B +7).

By Kalman [11], the formula for getting the determinant of a Vandermonde matris is

n—1

det((V,)(1) = [] (t: — t5).
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Now,
det((V2(t) = [(Bt+ (n—1)B+71) = (Bt+7)]--[(Bt+ (n—1)B+71) — (Bt + (n — 2)B +7)]
X[(Bt+(n—=2)B+7)—(Bt+7r)]---[(Bt+ (n—2)B+7) = (Bt + (n—3)B +7)]

[(Bt+(n—=3)3+71)—(Bt+7r)]---[(Bt+ (n—=3)B+71)— (Bt + (n—4)3+71)]

X [(Bt+B+1)— (Bt +1)]
=n-1)B-n=2)8-(n=3)B---Bx(n—=2)3-(n—=3)B-(n—4)8---8
X (n—=3)3-(n—4)8-(n—5)p---p

x

n—1
=[] x8".
k=0

Example 9. Let n =4. Then we have,

1 1 1 1
B+r 28+ 3B+ 48 +r
VT = |(B+7)2 (28+71)2 (38+7)% (48 +71)2
B+r)3 (2847r)> 38+1)? (4B+7r)

Now,
det(VY" (1)) = (Bt + 38 +1 — (Bt +1))(Bt + 38+ 7 — (Bt + B+ 1)) (Bt + 38+ 7 — (Bt + 28 + 1))
X (Bt+28+r—(Bt+r)(Bt+28+r—(Bt+L+T))
X (Bt+pB+r—(Bt+1))
= (36-28-6)(26 - B)(B)
3-2-15%)(2-16%)(8)
318%)(218%)(118)
] #8"

k

3
=0
Lemma 1. Let L,[5] be an n x n matrix defined by
[Ln[Blhi<ij<n = (Z J 1) B — 1),

For the n x n (r, §)-Stirling matrix S (n),
V(1) = SP0 (n) Ly 6]
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Proof. Let L[] be an n x n matrix defined by

[Ln[Blh<ij<n = <Z z 1) B — 1),
Then,
[LalB] 1< j<n = (Z ; 1) .
Now,
st =S (),
By equation (5),

(SO () L[5 = (87 + )"
=(B+@-1B+r)""
= [V (Wi

Theorem 2. For any real number ¢, and the generalized Pascal matr
Vi () = PalB(t = 1)]SP7) (n) Ly 6]
Proof. From Lemma 1,

P[B(t = 18P (n) L [8]" = Pu[B(t — 1)V (1)

1—1
o 7 —1 . i—1—k . T’k
—M< 21 B =)

= (B(t=1)+Bj+r)""
= (Bt+BG—1) +r) "
= [VE" (@));.

n

Example 10. Let n = 4. Then,

1 0 0
Bt — 1) 1 0
BE-1)2 28¢-1) 1
(B(t— 1)) 3(B(t—1))* 3B(t—1)

PyB(t—1)] =

X,

0
0
ol -
1

2318
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(B4 (28472 (38+7) (4

B
(B+r)2 2847 (3B+7r)3 (48
1 1 1 1
pt+r pt+p+r pt+28+r Bt+36+r
(Bt+7r)2 (Bt+B+71)2 (Bt+28+71)2 (Bt+38+7r)?
(Bt+7r)2 (Bt+B+71)3 (Bt+28+7) (Bt+38+7r)
=V ().

)

2
)3

1 0 0 0
G gy = | " ! 0 0
SR = 2 B+2r 10|’
3 B +3Br+r? 38+3r 1
and
11 1 1
28 38 4
Lafp]" = g 2552 6652 12§2
0 0 68 245
Now,
1 0 0 0
a8 | BE-1) 1 0 0
P = VISP LalB) = (B(t—1)>  2B(t—1) 1 0
(B—1))° 3(B(t—1)* 36(t—1) 1
1 0 o o]t 1 1 1
r 1 0 0|8 28 38 48
2 Bt 1 0| |0 282 682 128
B 436r+1r* 3843 1] [0 0 63 2453
1 0 0 0
B(t—1) 1 0 0
(Bt—1))2  2B(t—1) 1 0
(Bt—1)> 3(B(t—1)* 38(t—1) 1
1 1 1 1
B+r 2847 0 0
+r
+7r

2.4. Successive Sum of Powers of Arithmetic Progressions

We will show that matrix S®*7)(n) can be used to derive a summation formula for
arithmetic progressions. The following equations defined by Bazsé and Pintér in [1], and
Mezo and Ramirez in [12] will be utilized for the proof of the following theorem.
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Definition 3. [1] For k£ = 1,2,...,n, the numbers Zfﬁr(l), Zé‘“'ﬁr(l) are defined by the
recursive formulas:

-1

ZVs, () =1+ (BT @28+ + -+ (=10 =D B+ (8)
7=0

Zk 5. (D) Z D) (p=2,34,..)). (9)

Note that if p = 8 = r = 1, we obtain the sum of powers of the first n positive integers,
that is
Zil,l(l) L LT LY LT L

Definition 4. [12] For each i =1,2,...,n, and for p > 0,

o =[P () (5¢;—g>f (10)
2" (p) = [(p;f; 2), Zﬁ,ﬂ,r(i),...,Zj‘}w(i)r (11)

Theorem 3. For each p =1,2,3,...,n, we have
T
&, +p—1 +p—1 k—1 (n+p—1
() (). B )]

= [, 2,0, 2 )]

Proof. Let n and k be positive integers such that n > k and p = 1,2,3,...,n. Now,
we will prove equation (3.7) by induction on n + p.
Note that the sum of the entries in the second row of VA7(0) is

PB4+ 284+ (= DB ) = (B )+ (284 ) e+ (n = 1)B )
:Z{iﬁ,r<n)'

Now, substituting ¢ = 0 to equation (12), we have

Va7 (0) = §47CE(0)
=50 [).66), 8]
:[( 02 (), 2150 (n )}T'

Thus, equation (12) is true for p = 1.
Consider p > 2, and supposed the result is true for all ¢ < n + p. Using the identity

(i) =2 (6)
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and equations (10) and (11), by induction we have,
SPT(k)ti(p + 1) = 77 (k) (t1(p) + t2(p) + - - + ta(p))

= Z0"(p) + 25" (p) + - + ZE7 (p)
= Z"(p+1).

Thus, equation (12) follows. O
Example 11. Equation (12) in Theorem 3 yields nice formulas to sums of powers of

integers.
For example, if p=1, and k = 3, we obtain

1 0 o o[

r 1 0 0| |8(y)
r2 B+ 2r 2 0| |B*(3)
r B3 4+36r+3r% 68+6r 6] [5°(})

n
sn(Bn—B+2r
%n(262n2 —33%n + 82 + 68nr — 64r + 61?)
in(Bn — B +2r)(B°n? — B2n + 2Bnr — 28r + 2r?)
= [n, Ziﬁ,r(”)? Z%,B,r(n)ﬂ Ziﬁ,r (n)]T
If p=2, and k = 3, we obtain

n+1

1 0 0 0
r 1 0 0 B("+ D)
2 B+ 2r 2 o [p2 (n+1)
3 B3 438r+3r2 68+6r 6

B ("5
n(n+1)
gn(n + 1)(Bn — B+ 3r)
12 n(n + 1)(8%n2 — B2n + 48nr + 612)
an(n+1)(383n3 — 383n% — 2830 + 283 + 1582n2r — 158%nr 4 308nr? — 30872 4 30r3)

= [*7 Z21,B,7‘(n)7 Zg,ﬁ,r(n)? ZS,B,T(”)]T'

3
= U‘+‘*>

Note that Z%,m,r(”)’ k=1,2,3, expresses

n -1

PP (PP (B4 )+ (P (B +2847)") 4+ (=D B+r)M) =) D (i8+7)F

=1 j=0
Corollary 3. For each p=1,2,...,n, we have

np—1 n1—1

k
5 K= al, (12) = 2o
1=0

np—1=1np_2=1

where n, = n.
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