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Abstract. Interest in connecting Chemical Reactions Network Theory (CRNT) and evolutionary
game theory (EGT) arise viewing the tools of network in the analysis of evolutionary games. Here,
the evolution of population species is studied as a biological phenomenon and describing the rate
of such changes through a replicator system becomes a focus. A set of polynomial kinetics (POK)
may then be introduced for the realization of this replicator system and this is based on the
polynomial payoff functions defined in the game. These polynomial kinetics result in polynomial
dynamical systems of ordinary differential equations, which are used in analyzing strategies that
prove beneficial under certain conditions. From the CRNT point of view, it now becomes interesting
to study a superset of POK, which we call poly-PL kinetics (PYK). This set is formed by getting
nonnegative linear combinations of power law functions. Thus, PYK contains the set PLK of power
law kinetics as mono-PL kinetics with coefficient 1. Seeing this connection between CRNT and
EGT and what are known about power law kinetics, we take an interest in studying PYK systems.
This paper aims to analyze different ways of transforming PYK to PLK in order to explore some
approaches for CRNT analysis of PYK systems. Specifically, we study a network structure-oriented
transformations using the S-invariant term-wise addition of reactions (STAR) Via Reaction Vector
Multiples (RVM) that transform PYK to PLK systems.
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1. Introduction

The study of evolutionary game theory (EGT) revolves around dynamics that describe
the spread of successful strategies in a population of various species. EGT models how
individuals or populations change their strategy over time based on payoff comparisons.
One important game dynamics that is mostly studied is the replicator equation. This
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equation allows the reproduction success technically known as fitness function to incorpo-
rate the distribution of the finitely many species in the population. With this property,
a replicator equation captures the essence of natural selection so that traits that favor
survival and reproduction (i.e., having higher fitness or reproductive success) contribute
to increase in size over generations. Payoffs are translated as fitness so that over time
the change in the frequency of a strategy in a large, well-mixed population is described
through the replicator equation. This rate is described as the product of the proportion
of this species and the difference between its expected payoff and the average payoff of the
population [3].

Veloz et al. [9] proposed a manner of analyzing the dynamics of EGT games using
chemical reaction network. From this vantage point, an encounter between two species
is treated as a reaction that results in a gain or loss (i.e. payoff) for each species. They
introduced a set of polynomial kinetics for the realization of replicator system-based evo-
lutionary games with polynomial payoff functions (mostly linear functions). The proposed
analysis allows for the application of Chemical Reactions Network Theory (CRNT). CRNT
is an area of applied mathematics that attempts to model the behavior of real world chem-
ical systems. It aims to understand connections between network structure and system
dynamics with mathematical methods from graph theory, linear algebra, group theory and
the theory of ordinary differential equations.

Results from Mendoza et al. [7] included the subset of sums of power law kinetics.
A particular interesting family of kinetics of this type is the polynomial kinetic system
where all exponents are non-negative integers, which is a sum of monomials with real
coefficients. The consideration of the superset called poly-PL kinetics (PYK), i.e. of real
exponents instead of just non-negative integers, came from the observation that “sums of
power law functions” occurred in power law approximations of some carbon cycle models
in [6]. Thus, PYK contains the set PLK of power law kinetics as mono-PL kinetics with
coefficient 1. With this relationship and available results in PLK, we are motivated to
analyze PYK systems in CRNT setting. This leads us to an interest in finding different
ways to transform PYK to PLK.

The contribution of this paper is to explore some approaches for CRNT analysis of PYK
systems specifically via dynamic equivalence to power kinetic systems using S-invariant
Term-wise Addition of Reactions (STAR) approach. A STAR method introduces addi-
tional different reaction(s) for each of the identical reaction vectors in the sum.

2. Preliminaries

2.1. Basic Concepts on Chemical Reaction Network Theory (CRNT)

We begin by defining concepts related to chemical reaction network. These were taken
from the PhD thesis of Boros [2].

Definition 1. Let S be a non-empty finite set of chemical species. A chemical com-
plex is a linear combination of the species with non-negative integer coefficients called
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stoichiometric coefficients. The set of complexes is denoted by C . We reserve m to
denote the number of species and n to denote the number of complexes.

A complex is called monospecies if it consists of only one species, i.e. of the form
kAi, k a non-negative integer and Ai a species. It is called monomolecular if k = 1, and
is identified with the zero complex for k = 0. A zero complex represents the ”outside”
of the system studied, from which chemicals can flow into the system at a constant rate
and to which they can flow out at a linear rate (proportional to the concentration of the
species). In biological systems, the ”outside” also stands for the degradation of a species.
An inflow reaction is a reaction with source “0” and an outflow reaction is a reaction
with a monomolecular complex as source and the zero complex as target.

Definition 2. The set of reactions R is a non-empty subset of C × C such that

(a) (y, y) /∈ R, for all y ∈ C ; and

(b) for each y ∈ C , there exists a y′ ∈ C such that (y′, y) ∈ R or such that (y, y′) ∈ R.

We denote r as |R| or the number of reactions.

For each (y, y′) ∈ R we say that a complex y reacts to complex y′. Also, we can
write y → y′ in place of (y, y′). In this paper, the notations (y, y′) or y → y′ are used
interchangeably and we say that y is the reactant complex and y′ is the product
complex of the reaction.

We now formally define a chemical reaction network.

Definition 3. A chemical reaction network (CRN) is a triple N = (S ,C ,R) of
three non-empty finite sets, where S is the set of chemical species, C is the set of chemical
complexes, and R is the set of reactions.

Example 1. Let N = (S ,C ,R) be a chemical reaction network such that

S = {A1, A2, A3, A4}

C = {2A1, A2 +A3, A3, 3A4}

R = {2A1 → A3, A2 +A3 → A3, A3 → A2 +A3, 3A4 → A2 +A3, 2A1 → 3A4} or

R = {(2A1, A3), (A2 +A3, A3), (A3, A2 +A3), (3A4, A2 +A3), (2A1, 3A4)}

As observed, m = 4, n = 4 and r = 5.
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2.2. Connectivity in a CRN

We first recall some basic concepts of graph theory. Two vertices y and y′ are connected
if there is a path between them, i.e. a sequence of adjacent vertices y = y1, y2, · · · yn = y′.
They are strongly connected if there is a directed path between y and y′ and vice versa.
Connected and strongly connected are equivalence relations, and the equivalence classes
are called connected components and strong connected components, respectively. Each
connected component is clearly the disjoint union of strong connected components.

Connectivity in a digraph that is applied to CRNs is traditionally called a linkage
class in CRNT. We formally define it as follows:

Definition 4. A linkage class of a CRN is a maximal weakly connected subgraph of its
reaction graph. A strong linkage class is a maximal strongly connected subgraph of the
reaction graph. A terminal strong linkage class is a strong linkage class containing
no complex that reacts to a complex belonging to a different strong linkage class.

Example 2. Note that for Example 1 we have:

1 linkage class: {2A1, A3, A2 +A3, 3A4};

3 strong linkage classes: {A3, A2 +A3}, {2A1} and {3A4}; and

1 terminal strong linkage class: {A3, A2 +A3}.

We denote the number of linkage classes with ℓ , that of the strong linkage classes with
sℓ, and that of terminal strong linkage classes with t. Clearly, ℓ ≤ t ≤ sℓ. There are two
types of terminal strong linkage classes in a CRN: cycles and singletons (which are called
terminal points).

Definition 5. A CRN is called:

i) point terminal if t = n− nr;

ii) weakly reversible if sℓ = ℓ, i.e. every linkage class is a strong linkage class; and

iii) t-minimal if t = ℓ, i.e. every linkage class contains exactly one terminal strong
linkage class.

Remark 1. We denote by tc the number of cycle-terminal classes and tp the number of
point-terminal classes. Then t = tc + tp. Note also that n − nr = tp = t − tc. A CRN
is cycle-terminal if tp = 0 (i.e. n = nr ), point-terminal if tc = 0 (i.e. t = n − nr ) and
point- and cycle-terminal otherwise (i.e. tp > 0 and tc > 0 or equivalently, t > n− nr ).

Example 3. As observed in Example 1, t = 1 and n− nr = 4− 4 = 0. This implies that
the network is not point terminal. Also, sℓ = 3 ̸= 1 = ℓ. Hence, the network is not weakly
reversible. But, t = 1 = ℓ. Thus, the network is t-minimal.



D. Magpantay / Eur. J. Pure Appl. Math, 16 (4) (2023), 2557-2580 2561

A network in the form of a simple cycle is an example of a weakly reversible network.
The next proposition shows that the set of nonbranching digraphs is a subset of the

set of t-minimal digraphs.

Proposition 1. If a digraph is nonbranching, then it is t-minimal.

Proof. Suppose a digraph is not t-minimal. That is, there is a connected component
with at least two terminal strong components T , T ′. If y is in T and y′ in T ′, then there
is an (undirected) path from y to y′, with the first arc pointing into T and the last arc
pointing into T ′. Clearly, there must at least one vertex v with d+(v) ≥ 2, contradicting
the nonbranching hypothesis.

2.3. Deficiency of a CRN

A central concept of the theory of chemical reaction networks is the deficiency of
the CRN. Shinar and Feinberg [8] describe the “deficiency philosophy” as follows: The
deficiency of a reaction network is an integer index that assumes a non-negative value.
Loosely speaking, the deficiency measures the amount of linear independence among the
reactions of the network. The lowest value that the deficiency can assume, which is zero,
is associated with the highest possible extent of linear independence among the individual
reactions, consistent with the network’s structure as a directed graph. The higher the
deficiency, the lower the extent of linear independence. We formally define the deficiency
of a CRN as follows:

Definition 6. The deficiency of a CRN is the integer δ = n− ℓ− s.

Example 4. In Example 1, observe that n = 4, ℓ = 1 and s = 3. With this, the deficiency
of the network δ = n− ℓ− s = 4− 1− 3 = 0.

By relating deficiency to linear maps defined from a CRN, we have the following
proposition which is a classical result. One can refer to [4] but we provide its proof for
the convenience of the reader.

Proposition 2. The deficiency δ is equal to dim(kerY ∩ Im Ia).

Proof. It follows from basic dimensional considerations that

dim(ker(Y Ia)) = dim(ker(Ia)) + dim(ker(Y ) ∩ Im(Ia)).

From the rank-nullity theorem, we have

dim(ker(Y Ia)) = r − dim(Im(Y Ia)) = r − s.

The rank of Ia corresponds to the number of complexes minus the number of linkage
classes, so that

dim(Im(Ia)) = n− ℓ.
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It follows that
dim(ker(Ia)) = r − (n− ℓ) = r + ℓ− n

It implies that

dim(ker(Y ) ∩ Im(Ia))

= dim(ker(Y Ia))− dim(ker(Ia))

= (r − s)− (r + ℓ− n)

= n− ℓ− s

= δ.

2.3.1. Terminality and Reactant Diversity

The terminality of a network is the non-negative integer τ(N ) = t− ℓ. We now introduce
useful partition of networks with respect to terminality:

Definition 7. A CRN is of type terminality bounded by deficiency (TBD) if t−ℓ ≤
δ. Otherwise, it is of type terminality not deficiency-bounded (TND), i.e. t− ℓ > δ.

Definition 8. A CRN has low reactant diversity (LRD) if nr < s,. Otherwise it has
sufficient reactant diversity (SRD). An SRD network has high reactant diversity
(HRD) or medium reactant diversity (MRD) if nr > s or nr = s, respectively.

Example 5. Going back to the Example 1, we have t − ℓ = 1 − 1 = 0 = δ and nr =
4 > 3 = s. Hence, the CRN is of type terminality bounded by deficiency (TBD) and has
sufficient reactant diversity (SRD).

The next proposition provides the initial positioning of reactant diversity in the CRN
landscape:

Proposition 3. A TBD network is an SRD network.

Proof. Since the network is TBD, t− ℓ ≤ δ. This implies that (n−nr)− ℓ ≤ n− s− ℓ.
Hence, n− nr ≤ n− s and so nr ≥ s.

Corollary 1. A t-minimal network is an SRD network.

For a point terminal networks, we obtain the following equivalences:

Proposition 4. For a point terminal CRN, a network is SRD if and only if it isTBD.

Proof. Since the network is SRD, nr ≥ s. With this, (n− nr)− ℓ ≤ n− s− ℓ. Thus,
t− ℓ ≤ δ.
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2.4. Reactant Subspace

In this section, our focus was on the set of reactant complexes ρ(R) and its cardinality
nr. The following was the linear space generated by ρ(R).

Definition 9. The reactant subspace R is the linear space in RS generated by the
reactant complexes, i.e. ⟨ρ(R)⟩. The value q := dim R is called the reactant rank of the
network.

Remark 2. We denote dim R by “q” (since “r” is already reserved for the number
of reactions). We also denote dim Im Y by “c” (since Im Y consists precisely of the
network’s complexes embedded in RS ).

Example 6. As per Example 1, the reactant subspace R = ⟨{2A1, A2 + A3, A3, 3A4}⟩.
With this, the reactant rank is q = 4.

The relationship of the reactant rank to the network’s rank is important in the study
of the reactant subspace and we introduce some relevant concepts here.

Definition 10. The rank difference ∆(N ) is equal to s − q. The network has high
reactant rank (HRR) if ∆(N ) is negative, medium reactant rank (MRR) if it is
zero and low reactant rank (LRR) if it is positive.

Example 7. Referring to Example 1, observe that the rank difference ∆(N ) = s − q =
3− 4 = −1. Thus, the network has high reactant rank (HRR).

In the previous discussion, we introduce the deficiency of the network. We now in-
troduce deficiency focusing on the reactant complexes. This concept was introduced by
Arceo et al [1].

Definition 11. The reactant deficiency δρ := nr − q, i.e., the difference between the
number of reactant complexes and the reactant rank q.

Example 8. The reactant deficiency of the network in Example 1 is δρ := nr−q = 4−4 =
0.

2.5. Poly-PL Kinetic Systems

In this section, we introduce a more general definition of a kinetics. We begin with the
definition and basic properties of a chemical kinetic system (CKS).

A kinetics for a CRN is an assignment of a rate function to each reaction in the network.
This is defined formally below.

Definition 12. A kinetics of a CRN N = (S ,C ,R) is an assignment of a rate function
Kij : ΩK → R≥ to each reaction (i, j) ∈ R, where ΩK is a set such that RS

> ⊆ ΩK ⊆ RS
≥ ,

and
Kij(c) ≥ 0, for all c ∈ ΩK .

A kinetics for a network N is denoted by K = [K1,K2, . . . ,Kr]
T : ΩK → RS

≥ . The pair
(N ,K) is called the chemical kinetic system (CKS).
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The above definition is adopted from the paper of Wiuf & Feliu [10]. However, in this
paper, we use simpler definition of CKS as follows:

Definition 13. A chemical kinetics is a kinetics satisfying the positivity condition:

For each reaction (i, j) ∈ R,Kij(c) > 0 if and only if supp i ⊂ supp c, where c ∈ ΩK .

Remark 3. (Feinberg, 1987) The “positivity condition” requires that the rate function
Kij of the reaction i → j proceeds at a nonzero rate at a specified composition precisely
when all species in the reactant complex i are present in this composition. Note that the
notation supp c refers to the set of species in the CRN that have nonzero concentrations
at composition c. On the other hand, supp i pertains to the set of species in the complex i
i.e., these are the “ingredients” required for the reaction i → j to happen. Hence, by supp
i ⊂ supp c, we mean that at composition c, all ingredients needed for the occurrence of the
reaction i → j are available.

A chemical kinetics gives rise to two closely related objects: the species formation rate
function (SFRF) and the associated ODE systems:

Definition 14. The species formation rate function (SFRF) of CKS is the vector
field

f(x) = NK(x) =
∑
y→y′

Ky→y′(x)(y
′ − y).

where N is the stoichiometric matrix. The equation ċ = f(c) is the ODE or dynamical
system of the CKS.

Example 9. Refering to Example 1, the dynamical system of the CKS is

ċ = NK(c) =


−2 0 0 0 −2
0 −1 1 1 0
1 0 0 1 0
0 0 0 −3 3




K2A1→A3

KA2+A3→A3

KA3→A2+A3

K3A4→A2+A3

K2A1→3A4

 .

Here, K(X) is called the kinetic vector. We will assume that the ODE system above
is under power law kinetics (PLK) which have the form

Ki(x) = ki

m∏
j=1

xFij where 1 ≤ i ≤ r

with ki ∈ R+ and Fij ∈ R. Power law kinetics is defined by an r ×m matrix F = [Fij ],
called the kinetic order matrix, and vector k ∈ Rr, called the rate vector. A particular
example of power law kinetics is the well-known mass action kinetics where the kinetic
order matrix consists of stoichiometric coefficients of the reactants. In Example 1, we
assume power law kinetics so that the kinetic order matrix is



D. Magpantay / Eur. J. Pure Appl. Math, 16 (4) (2023), 2557-2580 2565

A1 A2 A3 A4

F =


f11 0 0 0
0 f22 f32 0
0 0 f33 0
0 0 0 f44
f15 0 0 0


R1

R2

R3

R4

R5

where fij ∈ R.

Poly-PL kinetics (PYK) are kinetic systems consisting of non-negative linear com-
binations of power law functions. This set contains the set PLK of power law kinetics
as “mono-PL kinetics with coefficient 1”. Like PLK, the definition domain of PYK is
the positive orthant Rm

> . However, for subsets, this may be extended to the whole non-
negative orthant Rm

≥ . Clearly, PYK and PLK generate the same sets of SFRFs, the power
law dynamical systems (or GMA systems in BST terminology).

After setting the standard ordering of species X1, . . . , Xm, we have the following defi-
nition:

Definition 15. A kinetics K : Rm
> → Rr is a poly-PL kinetics if

Ki(x) = ki(ai,1x
Fi,1 + . . .+ ai,jx

Fi,j ) where 1 ≤ i ≤ r (1)

written in lexicographic order with ki ∈ R+, Fi,j , ai,j ∈ Rm and 1 ≤ j ≤ hi (where hi
is the number of terms in reaction i). Power-law kinetics is defined by r × m matrices
Fi,k = [Fij ], called the kinetic order matrices, vectors k = [ki] called the rate vector
and ai,j ∈ Rr

> called the poly-rate vectors.

Example 10. For (N ,K) with S = {X,Y } and R = {r : X → 2X, r′ : 2X → 5X+Y },
let the poly-PL kinetics be given by :

K1(X,Y ) = k1(2XY + 0.5Y 2) and K2(X,Y ) = k2(0.75X
2Y +X3)

where k1, k2 are rate constants. The kinetic order matrices are

F1,k =

[
1 1
0 2

]
; and F2,k =

[
2 1
3 0

]
with the kinetic order vector

k =

[
k1
k2

]
.
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2.6. STAR Transformations of Chemical Kinetic Systems

Now, we introduce the concept of transformation of chemical kinetic system as a special
kind of dynamic equivalence. We begin with a formal definition of dynamic equivalence
of chemical kinetic systems.

Definition 16. A chemical kinetic system (N ∗,K∗) is dynamically equivalent to
(N ,K) if:

(i) N ∗ and N have the same set of species, i.e. N = (S ,C ,R) and N ∗ = (S ,C ∗,R∗)

(ii) N∗ and N are their respective stoichiometric matrices, then their SFRF´s (vector
fields) coincide, i.e. f∗ = N∗K∗ = NK = f .

Condition (i) implies that additional complexes and reactions do not affect the said
equivalence. As for condition (ii), an immediate necessary condition for dynamic equiva-
lence is the coincidence of their kinetic subspaces as shown in the following proposition:

Proposition 5. If (N ∗,K∗) is dynamically equivalent to (N ,K), then their kinetic sub-
spaces K∗ and K are equal.

Proof. Since (N ∗,K∗) is dynamically equivalent to (N ,K), f∗ = f . Hence,

Im f∗ = Im f

span(Im f∗) = span(Im f)

K∗ = K.

We tolerate the use of K and K∗ for two different meanings (kinetics and kinetic
subspace) since it is usually clear from the context which one is referred to.

We know the fact that the kinetic subspace is contained in the stoichiometric subspace
S for any chemical kinetic system but in general, they may not coincide (for example, for
MAK systems with t − ℓ > δ). Our new concept requires that this structural property
holds:

Definition 17. A chemical kinetic system (N ∗,K∗) is a transformation of (N ,K) if:

i) (N ∗,K∗) is dynamically equivalent to (N ,K) and

ii) S∗ = S.

This will be the basis of the transformations that are introduced throughout this
chapter.
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2.7. STAR transformation: definition and basic properties

STAR (S-invariant Termwise Addition of Reactions) is a network structure-oriented
approach to poly-PL Kinetics based on the following basic observation: for the rate func-
tion Ki(x) and for a reaction ri : yi → y′i in a PYK system (N ,K) with N = (S ,C ,R)
we have

Ki(x) = ki(ai1Mi1+ . . .+aihMih)(y
′
i−yi) = kiai1Mi1(y

′
i−yi)+ . . .+kiaihMih(y

′
i−yi) (2)

where Mij are the h power law functions for the i-th reaction.
A STAR method introduces additional different reaction(s) for each of the h identical

reaction vectors y′i − yi in the sum. This enlarges the sets of reactions and complexes, so
the new CRN N ∗ = (S ,C ∗,R∗) and new kinetics K∗ : RS

> → RR∗
are constructed.

Remark 4. When the poly-PL kinetics do not have the same number of terms, one simply
uses the same “trick” of replacing the last term of the shorter function with (h − h′ + 1)
copies of 1

h−h′+1 of that term.

Illustration 1. Suppose the following are the poly-PL kinetics of a network:

K1(X,Y ) = k1(2X
3Y +X2Y 2 + 4XY 2 + 0.5Y 3)

K2(X,Y ) = k2(5X
4Y 2 + 6XY 3).

It is equvalent to

K1(X,Y ) = k1(2X
3Y +X2Y 2 + 4XY 2 + 0.5Y 3)

K2(X,Y ) = k2(5X
4Y 2 + 2XY 3 + 2XY 3 + 2XY 3).

Notice that N and N ∗ have the same set of species as one of requirements to be
dynamically equivalent. Since it is S-invariant and it is a transformation, this assures
the equality of the stoichiometric subspace S of the original network to the stoichiometric
subspace S∗ of the network produced by adding complexes and reactions. This implies
s = dim S = dim S∗ = s∗.

Aside from these observations, we have the following properties for any STAR method:

Proposition 6. Let N ∗ = (S ,C ∗,R∗) be a STAR transform of N = (S ,C ,R). Then
|R∗| = hr and |C ∗| ≤ hn.

Proof. For the first part, since STARmethod introduces an additional different reaction
for each of the h identical reaction vectors y′i−yi in the sum, the claim follows immediately
from (2) and from the fact that hn is the maximum number of complexes (i.e. when these
are all different) for hr reactions.

Remark 5. Observe that K∗
ij = k∗ijMij, with k∗ij = kiaij, is the kinetic function of the

reaction Rij corresponding to the reaction vector (y′i − yi). The stoichiometric matrix N∗
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becomes an m × hr matrix, and usually the reaction vector of the reaction ri are just
replicated h times.

Let the reaction vector y′i − yi = (ci1, ci2, . . . , cim). By the remark above, we have

R11 R12 . . . R1h R21 R22 . . . R2h . . . Rr1 Rr2 . . . Rrh

N∗ =


c11 c11 . . . c11 c21 c21 . . . c21 . . . cr1 cr1 . . . cr1
c12 c12 . . . c12 c22 c22 . . . c22 . . . cr2 cr2 . . . cr2
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

c1m c1m . . . c1m c2m c2m . . . c2m . . . crm crm . . . crm


A1

A2
...

Am

and

K∗ =



K∗
11

K∗
12
...

K∗
1h

K∗
21

K∗
22
...

K∗
2h
...

K∗
r1

K∗
r2
...

K∗
rh



.

Hence,

N∗K∗ =

 c11K∗
11 + c11K∗

12 + . . .+ c11K∗
1h + c21K∗

21 + c21K∗
22 + . . .+ c21K∗

2h + . . .+ cr1K∗
r1 + cr1K∗

r2 + . . .+ cr1K∗
rh

c12K∗
11 + c12K∗

12 + . . .+ c12K∗
1h + c22K∗

21 + c22K∗
22 + . . .+ c22K∗

2h + . . .+ cr2K∗
r1 + cr2K∗

r2 + . . .+ cr2K∗
rh

...
c1mK∗

11 + c1mK∗
12 + . . .+ c1mK∗

1h + c2mK∗
21 + c2mK∗

22 + . . .+ c2mK∗
2h + . . .+ crmK∗

r1 + crmK∗
r2 + . . .+ crmK∗

rh



=


c11(K

∗
11 +K∗

12 + . . .+K∗
1h) + c21(K

∗
21 +K∗

22 + . . .+K∗
2h) + . . .+ cr1(K

∗
r1 +K∗

r2 + . . .+K∗
rh)

c12(K
∗
11 +K∗

12 + . . .+K∗
1h) + c22(K

∗
21 +K∗

22 + . . .+K∗
2h) + . . .+ cr2(K

∗
r1 +K∗

r2 + . . .+K∗
rh)

...
c1m(K∗

11 +K∗
12 + . . .+K∗

1h) + c2m(K∗
21 +K∗

22 + . . .+K∗
2h) + . . .+ crm(K∗

r1 +K∗
r2 + . . .+K∗

rh)



=


c11K1 + c21K2 + . . .+ cr1Kr

c12K1 + c22K2 + . . .+ cr2Kr
...

c1mK1 + c2mK2 + . . .+ crmKr
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=


c11 c21 . . . cr1
c12 c22 . . . cr2
...

c1m c2m . . . crm




K1

K2
...
Kr

 = NK

Thus, f∗ = N∗K∗ = NK = f and so (N ∗,K∗) is dynamically equivalent to (N ,K)
under STAR transformation.

3. The S-invariant Termwise Addition of Reactions Via Reaction Vector
Multiples (STAR-RVM) Transformation

In this section, we introduce the first method of STAR transformation. Also, we
identify and compare the network numbers and discuss the variant and invariant CRN
properties.

3.1. Definition and Some illustrative examples

In STAR transformations, new reactions and complexes are added. There are various
ways of constructing a CRN from these. One method is by using reaction vector multiples
described as follows:

Definition 18. Let N = (S ,C ,R) be a CRN and y → y′ ∈ R with y′ − y = (c1, . . . , ck)
satisfying the condition that either ci ≥ 0 or ci ≤ 0 for all i = 1, . . . , k. The S-invariant
Termwise Addition of Reactions Via Reaction Vector Multiples (STAR-RVM)

transform, (N ∗,K∗), for each reaction y → y′ having poly-PL kinetics K(x) =

h∑
j=1

ajPj

proceeds as follows:

(i) when ci ≥ 0 for all i = 1, . . . , k, define the additional complexes and reactions

y → y′ → y′ + (y′ − y) → y′ + 2(y′ − y) → · · · y′ + (h− 1)(y′ − y)

with corresponding kinetics P ∗
1 , P

∗
2 , . . . , P

∗
h ;

(ii) when ci ≤ 0 for all i = 1, . . . , k, define the additional complexes and reactions

y + (h− 1)(y − y′) → · · · → y + 2(y − y′) → y + (y − y′) → y → y′

with corresponding kinetics P ∗
h , . . . , P

∗
2 , P

∗
1

where P ∗
j = ajPj, 1 ≤ j ≤ h.

Example 11. For (N ,K) with S = {X,Y } and R = {r : X → 2X, r′ : 2X → 5X +Y },
let the poly-PL kinetics be given by :

Kr(X,Y ) = k(2XY + 0.5Y 2) Kr′(X,Y ) = k′(0.75X2Y +X3)
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where k, k′ are rate constants.
The reaction vector for reaction r is 2X−X = X and for reaction r′ is 5X+Y −2X =

3X + Y . Generating STAR-RVM transform, we have (N ∗,K∗) where S = {X,Y } and
R∗ = {r : X → 2X, r∗ : 2X → 3X, r′ : 2X → 5X + Y, r′∗ : 5X + Y → 8X + 2Y }. The
kinetic functions are as folows:

K∗
r (X,Y ) = 2kXY = k∗XY K∗

r∗(X,Y ) = 0.5kY 2 = k∗∗Y 2

K∗
r′(X,Y ) = 0.75k′X2Y = k′∗X2Y K∗

r′∗(X,Y ) = k′X3 = k′∗∗X3

Example 12. For (N ,K), with S = {X,Y } and R = {r1 : 2X + 2Y → X + Y, r2 :
X+Y → 2X+Y, r3 : 2X+Y → 2X+2Y }. Let the poly-PL kinetics be given by (k1, k2, k3
are as usual the rate constants):

Kr1(X,Y ) = k1(0.2XY + 5Y 2) Kr2(X,Y ) = k2(0.3X
2 + 2X3Y )

Kr3(X,Y ) = k3(2.5X + 3Y 3)

Generating STAR-RVM transform, we have (N ∗,K∗) where S = {X,Y } and R∗ =
{r1 : 2X + 2Y → X + Y, r∗1 : 3X + 3Y → 2X + 2Y, r2 : X + Y → 2X + Y, r∗2 : 2X + Y →
3x+ Y, r3 : 2X + Y → 2X + 2Y, r∗3 : 2X + 2Y → 2X + 3Y }. The kinetic functions are as
folows:

K∗
r1(X,Y ) = 0.2k1XY = k∗1XY K∗

r∗1
(X,Y ) = 5k1Y

2 = k∗∗1 Y 2

K∗
r2(X,Y ) = 0.3k2X

2 = k∗2X
2 K∗

r∗2
(X,Y ) = 2k2X

3Y = k∗∗2 X3Y

K∗
r3(X,Y ) = 2.5k3X = k∗3X K∗

r∗3
(X,Y ) = 3k3Y

3 = k∗∗3 Y 3

3.2. A comparison of network numbers

The network numbers of a CRN refers to the number of species, complexes, reactant
complexes, reactions, linkage classes, strong linkage classes and terminal strong lingkage
classes. It also includes the rank, reactant rank, rank difference, deficiency and reactant
deficiency of the network. It provides different descriptions of a network and basis of
comparison to the other networks.

For the STAR-RVM method, we compare the network numbers of the original and the
transformed network. These are reflected on Table 3.1.

Since we have the same set of species, m∗ = m. Note that the number of possible
additional complexes is r(h− 1). This means that the maximum number of complexes in
N ∗ is r(h − 1) + n since it will depends on whether all additional complexes are unique
compared to the original complexes and within the set. The same may be said about the
reactant complexes of the two networks.

As part of the properties of STAR transformation shown in Table 3.1, we have |R∗| =
r∗ = hr and s∗ = s. Observe that on the construction using STAR-RVM method, no
additional linkage class is produced. However, it is possible that original number of linkage
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Table 1: Network Numbers of STAR-RVM Transform

Network Number Value/Bounds

Number of species m∗ = m

Number of complexes n ≤ n∗ ≤ r(h− 1) + n

Number of reactant complexes nr ≤ n∗
r ≤ r(h− 1) + nr

Number of reactions r∗ = hr

Number of linkage classes ℓ∗ ≤ ℓ

Rank of Network s∗ = s

Reactant rank of the network q∗ = c

Rank Difference ∆(N )∗ = s− c

Deficiency of the Network δ ≤ δ∗ ≤ n+ r(h− 1)− s− 1

classses may be reduced. This happens when there exists additional complex that is equal
to an original complex or another additional complex. Hence, ℓ∗ ≤ ℓ (as shown in Table
3.1). Moreover, the number of terminal linkage class is impossible to decrease after the
transformation. With this, t∗ ≤ t (see Table 3.1).

For the deficiency of the network and reactant rank of the network, we refer to the
next section of this paper.

3.3. Invariance of CRN properties under STAR-RVM Transformation

At this point, we explore the different CRN properties that are invariant under the
STAR-RVM transformation. We study necessary and/or sufficient conditions that are
required for these properties to be invariant under the transformation.

3.3.1. t-minimality

We observe from Example 11 that the number of linkage classes ℓ is 1 and the number of
terminal strong linkage classes t is also 1. Since ℓ = t, N is t-minimal. Note that we have
ℓ∗ = 1 and t∗ = 2 and so N ∗ is not t-minimal. This tells us that if N is t-minimal then
N ∗ is not necessarily t-minimal. With this, we will inject conditions on a t-minimal
network in order to have a t-minimal STAR-RVM transform network stated as follows:

Proposition 7. Let N be a poly-PL system with a poly-PL kinetics of h = 2 and N ∗

be the STAR-RVM transform of N . If N is t-minimal and for every complex y of N ,
d−(y) + d+(y) = 1 then N ∗ is t-minimal.

Proof. Let N be a poly-PL systems with a poly-PL kinetics of h = 2 and N ∗ be
the STAR-RVM transform of N . Suppose N is t-minimal and for every complex y,
d−(y) + d+(y) = 1.

Since N is t-minimal, the number of linkage classes l is equal to the number of ter-
minal strong linkage classes t. This assures that no original complex reacts to a complex
belonging to a different strong linkage class.
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Since for every complex y, d−(y) + d+(y) = 1, we can partition the set of complexes
to pairs where each equivalence class is given by {y, y′} such that y → y′.

Constructing N ∗, note that since h = 2 we will add one complex y∗ and reaction
y′ → y∗ or y∗ → y.

Now, if each y∗ is not equal to any of the original complexes or any additional complexes
then there will be no changes in the number of linkage classes and terminal strong linkage
classes. Hence, the equality of l and t still holds. Thus, N ∗ is t-minimal.

On the other hand, suppose a particular additional complex y∗1 ∈ {y2, y′2, y∗2} of the
reactions y2 → y′2 → y∗2 or y∗2 → y2 → y′2. With this, the linkage class where y∗1 belongs
and the linkage class of {y2, y′2, y∗2} will be merged. Hence, the number linkage of classes
and terminal strong linkage classes will be both decreased by one. Thus, the equality of l
and t still holds and therefore N ∗ is t-minimal.

For the next property, we will explore the weakly reversibility of STAR-RVM transform.

3.3.2. Weakly Reversibility

Example 12 shows that if N is weakly reversible, N ∗ is not always weakly reversible.
Notice that the network N is a cycle. Hence, N is weakly reversible. With the corre-
sponding STAR-RVM transform, we note that the additional reactions r∗1, r

∗
2 and r∗3 do not

belong to any cycle. Thus, N ∗ is not weakly reversible. Hence, the following states the
sufficient condition for a weakly reversible network to have a weakly reversible STAR-RVM
transform netwok:

Proposition 8. If for every reaction y → y′ of a weakly reversible network N the last
additional complex y∗ in STAR-RVM transform N∗ is equal to any of the original complex
of N , then N ∗ is weakly reversible.

Proof. Let N be a weakly reversible network and N ∗ be the STAR-RVM transform
of N . Recall that the original complexes are part of the complexes of N ∗. Thus, the
symmetry property of directed path in the said complexes still holds.

Suppose y → y′ is an arbitrary reaction in N and y∗ is the last additional complex in
the said reaction that is equal to any original complex. On the same linkage class, let ŷ
be any additional complex in the reaction. If ŷ is an original complex then the symmetry
property of directed path (there is directed path from one complex to another and vice
versa) holds in this case.

Now, for the case that ŷ is not equal to any original complex. By the construction
of STAR-RVM, there is a directed path from y to ŷ, y ⇒ ŷ (or for the other case of
STAR-RVM, ŷ ⇒ y). We have to show that there exist ŷ ⇒ y (y ⇒ ŷ), respectively.

Since ŷ ̸= y∗ and by the fact that ŷ and y∗ are both additional complexes on the same
reaction, there exist ŷ ⇒ y∗ (y∗ ⇒ ŷ), respectively. And by the fact that y∗ is equal
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to an original complex of a weakly reversible network N , there exists y∗ ⇒ y (y ⇒ y∗),
respectively. Hence, there exists ŷ ⇒ y (y∗ ⇒ ŷ), respectively.

Thus, in N ∗, whenever there is ya ⇒ yb we also have yb ⇒ ya and so N ∗ is weakly
reversible.

Similar with weakly reversibility, cycle terminal property is not conserved in the STAR-
RVM transform as dicussed in the next section.

3.3.3. Cycle Terminal Property

In Example 12, observe that n = nr. This implies that N is cycle terminal. But after
finding the STAR-RVM transform, n∗ = 6 ̸= 3 = n∗

r indicating that N ∗ is not cycle
terminal.

Thus, the cycle terminal property is not invariant under the STAR-RVM transforma-
tion. Hence, we have the following sufficient condition.

Proposition 9. If for every reaction y → y′ of a cycle terminal network N the last
additional complex y∗ in STAR-RVM transform N ∗ is equal to any original complex or
additional complex, then N ∗ is cycle terminal.

Proof. Let N be a cycle terminal network where n is the number of complexes and
nr is the number of reactant complexes. This means that n = nr. Constructing N ∗ by
STAR-RVM method, let n∗ be the number of complexes and n∗

r be the number of reactant
complexes of N ∗. We have to show that n∗ = n∗

r

Let x be the number of additional complexes. Suppose that for every reaction y → y′

of N , the last additional complex y∗ in N ∗ is equal to any original complex or additional
complex. This implies that all additional complexes are source vertices. Hence, n∗ = n+x
and n∗

r = nr + x.

Thus, n∗ − n∗
r = (n+ x)− (nr + x) = n− nr = 0. Therefore, n∗ = n∗

r and N ∗ is cycle
terminal.

In the next section, we discuss the first property that is invariant under the STAR-RVM
transformation.

3.3.4. Point Terminal Property

On the next proposition, we show that the STAR-RVM transform of a point terminal
network is also point terminal.

Proposition 10. If a poly-PL system (N ,K) is point terminal, its STAR-RVM transform
(N ∗,K∗) is also point terminal.

Proof. Let (N ,K) be a poly-PL systems and (N ∗,K∗) be the its STAR-RVM trans-
form. Suppose N is point terminal. This means that t = n − nr where t is the number
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of terminal strong linkage classes, n is the number of complexes and nr be the number of
reactant complexes.

Let T = {{y}|y is a complex such that d+(y) = 0}. Hence, t = |T |. Constructing
N ∗ by STAR-RVM method, we let t∗ be the number of terminal strong linkage classes,
n∗ the number of complexes and n∗

r the number of reactant complexes. We have to show
t∗ = n∗ − n∗

r . We divide our proof into two parts corresponding to the cases defined on of
STAR-RVM.

Case 1 (for case (i) in STAR-RVM):
Let T ∗ = {{y∗}|y∗ is an additional complex such that d+(y∗) = 0}. Observe that t∗ = |T ∗|
since , by the construction, t∗ is the number of additional complexes that serves as target
only vertices.

Let x be the number of additional complex y′∗ such that d+(y′∗) ̸= 0. This implies
that the number of additional complexes is x+ t∗ and n∗ = n+ x+ t∗. Also, observe that
by the definition of STAR-RVM transform, n∗

r = nr + t+ x.

Now,

n∗ − n∗
r = (n+ x+ t∗)− (nr + t+ x)

= n+ x+ t∗ − nr − t− x)

= [(n− nr)− t] + t∗

= t∗.

Case 2 (for case (ii) in STAR-RVM):
Note that if each additional complex is not equal to any element of T , we have t∗ = n∗−n∗

r

in STAR-RVM transform.
Suppose there exists an additional complex that is equal to an element of T . Let y be

the number additional complexes in this case that is equal to any element of T and z is
the number of other additional complexes. This implies that n∗ = n+ z, n∗

r = nr + z + y
and t∗ = t− y.

Now,

n∗ − n∗
r = (n+ z)− (nr + z + y)

= n− nr − y

= [(n− nr)− t] + t− y

= t∗.

3.3.5. Equality of Rank

We show that the dimension of the stoichiometric subspace of the original network and
its STAR-RVM transform are equal.
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Proposition 11. If (N ,K) is a poly-PL system and (N ∗,K∗) its STAR-RVM transform
then s = s∗.

Proof. Recall that S = span{y′−y ∈ RS : y → y′ ∈ R} is the stoichiometric subspace
of N and s = dim S. Observe that for a reaction y → y′ in N , each reaction or complex
in N ∗ by STAR-RVM method is in the form:

y → y′ → y′ + (y′ − y) → y′ + 2(y′ − y) → . . . or

· · · → y + 2(y − y′) → y + (y − y′) → y → y′

With this, a reaction vector of N ∗ is in the form y′ − y. This implies that the
stoichiometric subspace of N ∗ is S∗ = span{y′ − y ∈ RS : y → y′ ∈ R}. Hence, S∗ = S
and s∗ = s.

3.3.6. Terminality Bounded by Deficiency (TBD) and Sufficient Reactant De-
ficiency (SRD)

Another two properties conserved under STAR-RVM method are the TBD and SRD as
discussed in the next propositions and corollaries.

Proposition 12. Let (N ,K) be a poly-PL system and (N ∗,K∗) be its STAR-RVM
transform. If N is of TBD type so is N ∗.

Proof. Let (N ,K) be a poly-PL systems and (N ∗,K∗) be its STAR-RVM transform.
Suppose N is of TBD type. This means that

t− ℓ ≤ δ = n− ℓ− s.

Hence,

t ≤ n− s.

With this, we have to show that

t∗ ≤ n∗ − s∗.

We present the proof in two parts.

i. Suppose t∗ ≤ t.

Recall that, n ≤ n∗ and s = s∗. This implies that n− s ≤ n∗ − s∗. Hence

t∗ ≤ t ≤ n− s ≤ n∗ − s∗.

ii. Suppose t∗ > t.

This means that n∗ > n and (t∗ − t), (n∗ − n) ∈ Z+.
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By the construction of N∗ using STAR-RVM method, observe that t∗−t = |{{y∗} : y∗

is an additional complex such that d+(y∗) = 0}| and n∗−n is the number of additional
complexes not equal to any original or other additional complex. Note that, by the
fact that y∗ is an additional complex such that d+(y∗) = 0, all such v∗’s are unique.
Hence,

t∗ − t ≤ n∗ − n.

Thus,

t ≤ n− s

t+ (t∗ − t) ≤ n− s+ (n∗ − n)

t∗ ≤ n∗ − s

t∗ ≤ n∗ − s∗.

Therefore,

t∗ − ℓ∗ ≤ n∗ − ℓ∗ − s∗ = δ∗

implying that N ∗ is also of TBD type.

We recall that a TBD network is SRD. This means that SRD property should also be
conserved after the method. This was reflected on the following proposition.

Proposition 13. Let (N ,K) be a poly-PL system and (N ∗,K∗) be its STAR-RVM
transform. If N has sufficient reactant diversity (SRD) then N ∗ has also sufficient
reactant diversity (SRD).

Proof. Let N be a poly-PL system and N ∗ be the STAR-RVM transform of N .
Suppose N has SRD. This means that nr ≥ s.

Recall that, n∗
r ≥ nr and s∗ = s.

Thus,

n∗
r ≥ nr ≥ s = s∗.

Therefore ,N∗ has also SRD).

Corollary 2. : Let N be a poly-PL systems with a poly-PL kinetics of h = 2 and N∗ be the
STAR-RVM transform of N . If N is t-minimal and for every complex v, d−(v)+d+(v) =
1 then N∗ is SRD network
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3.3.7. Complex Factorizability

One of the most important kinetic properties is complex factorizability. To explore the
said property with regards to STAR-RVM method, we consider the following example.

Example 13. For (N ,K), suppose S = {X,Y } and R = {r :1 X + Y → X + 2Y, r2 :
X + 2Y → 2X + 2Y . Let the poly-PL kinetics be given by:

Kr1(X,Y ) = k2(X
2Y +XY 2)

Kr2(X,Y ) = k3(X +X2Y 2)

where k1 and k2 are rate constants.
Note that the given (N ,K) is complex factorizable (PLK−RDK). Generating STAR-

RVM transform, we have (N ∗,K∗) where S = {X,Y } and R∗ = {r1 : X + Y →
X +2Y, r∗1 = X +2Y → X +3Y, r2 : X +2Y → 2X +2Y, r∗2 : 2X +2Y → 3X +2Y }. The
kinetic functions are as follows:

K∗
r1(X,Y ) = k∗2X

2Y

K∗
r1∗(X,Y ) = k∗∗2 XY 2

K∗
r2(X,Y ) = k∗3X

K∗
r2∗(X,Y ) = k∗∗3 X2Y 2.

Observe that the kinetic order of the reactant X + 2Y for the reactions r∗1 and r2 are
not equal. Thus, (N ∗,K∗) is not PLK −RDK and so is not complex factorizable.

With this, we have the following proposition stating conditions that assure complex
factorizability of N ∗ given that N is.

Proposition 14. Let (N ,K) be a poly-PL system of h = 2 and (N ∗,K∗) be the STAR-
RVM transform. If (N ,K) is complex factorizable satisfying the following:

i. for every complex y, either d−(y) = 0 or d+(y) = 0 (but not both),

ii. the components of the reaction vectors in N are all positive or equal to zero

then (N ∗,K∗) is complex factorizable.

Proof. Let (N ,K) be a poly-PL kinetic system with a poly-PL kinetics of h = 2 and
(N ∗,K∗) be the STAR-RVM transform.

Since (N ,K) is complex factorizable, it is PLK − RDK. This implies that if there
are reactions with the same reactant complexes, they have equal kinetic orders. Also,
since the components of the reaction vectors in N are all nonnegative then only case (i)
of STAR-RVM applies.

Now, take note of the following on STAR-RVM transform (N ∗,K∗) :
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(a) Since for every complex y, either d−(y) = 0 or d+(y) = 0 (but not both), then a
complex is either a reactant complex or a product complex. This assures us that
the reactant complexes on additional reactions on N∗ are original product complexes
which are different from the original reactant complexes.

(b) Since h = 2, we are sure that the additional complexes on the additional reactions are
all product complexes.

By (a) and (b), the state where the reactions with the same reactant complexes, have
equal kinetic order was maintained. Hence, (N ∗,K∗) is PLK − RDK and complex
factorizable.

In the next section, we identify the bounds on N ∗ of one important property of CRN
which is the deficiency of the network δ∗.

3.3.8. Deficiency of the network

By the construction of STAR-RVM, the number of complexes is most likely increased
but the number of linkage classes is most likely decreased. These cases are important to
consider on how the deficiency of the network in STAR-RVM transform changes.

In the next proposition, we present the bounds for the said property:

Proposition 15. Let (N ,K) be a poly-PL system and (N ∗,K∗) be the STAR-RVM
transform. Given the deficiency δ of the network N , then the deficiency δ∗ of the network
N ∗, is given by

δ ≤ δ∗ ≤ n+ r(m− 1)− s− 1.

where n is the number of complexes, ℓ is the number of linkage classes and s is the dimen-
sion of the stoichiometric subspace of the network N .

Proof. Observe that:

i. n ≤ n∗ because of the possible additional complexes

ii. ℓ∗ ≤ ℓ since STAR-RVM method does not produce additional linkage class but rather
it can lessen the number of original linkage classes which happens when there exist
additional complexes which are equal to some original complexes.

With the two observations, we can say that

n− ℓ ≤ n∗ − ℓ∗. (3)

Recall that from Proposition 11, that s∗ = s.

By (3),

n− ℓ− s ≤ n∗ − ℓ∗ − s∗

δ ≤ δ∗.
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Given the number of terms in K, h and number of reactions r in N , it can be observed
that the maximum number of additional complexes in N ∗ is (h− 1)r.

Thus,

δ ≤ δ∗ ≤ n+ r(h− 1)− ℓ∗ − s.

Since ℓ ≥ 1,
δ ≤ δ∗ ≤ n+ r(h− 1)− s− 1.

3.3.9. Reactant Rank

The following proposition tells about the effect of the STAR-RVM transformation on the
reactant rank of the network.

Proposition 16. Let (N ,K) be a poly-PL system and (N ∗,K∗) be the STAR-RVM
transform. The reactant rank of N ∗ is q∗ = c, where c is the rank of the linear subspace
generated by the all the complexes.

Proof. Let (N ,K) be a poly-PL systems and (N ∗,K∗) be the STAR-RVM transform.
Also, let q∗ be the reactant rank of N∗.

Note that for a reaction y → y′ in N , the reactions and complexes in N ∗ by STAR-
RVM method is in the form:

y → y′ → y′ + (y′ − y) → y′ + 2(y′ − y) → . . .

or
y + (h− 1)(y − y′) → · · · → y + 2(y − y′) → y + (y − y′) → y → y′

Observe that all additional reactant complexes from every reaction y → y′ in this
transformed network are linear combinations of y and y′. This implies that all reactant
complexes of N ∗ are linear combinations of the complexes in N . Hence, the reactant
rank q∗ = c.

4. Conclusion

STAR transformations from PYK to PLK is introduced leading to analyses of power
law kinetics and their invariant properties. The transformation is defined by constructing
CRN using additional complexes and reactions using multiple reaction vectors. A compar-
ison of the network numbers of the original network and its transformed network lead us to
the identification variant and invariant properties brought about by these transformations.
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