EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 3, 2023, 2005-2008 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Real Spectra in Logarithmic model PT-symmetry operators: Iso-spectra in Logarithmic PT-symmetry

Biswanath Rath¹, Rabab Jarrar², Hussein Shanak², Rania Wannan³, Jihad Asad^{2,*}

 ¹ Department of Physics, Maharaja Sriram Chandra Bhanj Deo University, Takatpur, Baripada -757003, Odisha, India
 ² of Physics, Faculty of Applied Sciences, Palestine Technical University- Kadoorie, Tulkarm, P 305.Palestine

³ Department of Applied Mathematics, Faculty of Applied Sciences, Palestine Technical University- Kadoorie, Tulkarm, P 305, Palestine

Abstract. We reflect real spectra of new logarithmic model PT-symmetry operators with singular and non-singular in nature. We also notice the iso-spectral nature between inverted and non-inverted PT-symmetry potentials. Present numerical result give good agreement with previous results.

2020 Mathematics Subject Classifications: 47B40, 81Q10, 81Q60

Key Words and Phrases: Quantum mechanics, Logarithmic Potentials, PT-symmetry operators

1. Introduction

Real spectra in quantum operators are confined to Hermiticity $(H = H^{\dagger})$ as well as PT-symmetry [1]([H, PT] = 0). Here P stands for parity operator having the properties: $PxP^{-1} = -x$; $PpP^{-1} = -p$. Similarly T stands for the time reversal operator having the properties $TxT^{-1} = x$; $TpT^{-1} = -p$ and $TT^{-1} = -i$. In the Hermiticity (more precisely self-adjoint operator), it is possible to find two Hamiltonians, which are iso-spectral to each other [2]. For example [2,3]

$$h^{(1)} = p^2 + V_0(1 - e^{2|x|/a}) \tag{1}$$

and

$$h^{(2)} = p^2 + v_0(1 - e^{-2|x|/a})$$
⁽²⁾

*Corresponding author.

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4860

Email addresses: biswanathrath100gmail.com (B. Rath),r.jarrar@ptuk.edu.ps (R. Jarrar), h.shanak@ptuk.edu.ps (H. Shanak), r.wannan@ptuk.edu.ps (R. Wannan), j.asad@ptuk.edu.ps (J. Asad)

B. Rath et al. / Eur. J. Pure Appl. Math, 16 (3) (2023), 2005-2008

If one clearly analyzes one is scattering in nature and the other is confining nature [2,3].

Till now no such models are reflected in nature. In a recent paper Bender etal [4] have suggested a new class of logarithmic PT-symmetry potentials as

$$h_1 = p^2 + x^4 \log(ix)$$
 (3)

$$h_2 = p^2 - x^4 \log(ix) \tag{4}$$

$$h_3 = p^2 - x^4 \log(x^2) \tag{5}$$

and reflected energy spectrum of H_1 only. Further authors reported analytical calculation of energy level using WKB approach[4]

$$\frac{E_n}{[\log E_n)]^{1/3}} \sim \left[\frac{\Gamma(7/4)(n+1/2)\sqrt{\pi}}{\Gamma(5/4)\sqrt{2}}\right]^{4/3}$$
(6)

does not give encouraging results when compared with numerical results. This motivates the present author to calculate spectra of $H_{1,2}$ and suggest new models on logarithmic potentials. Apart from this aim is to find out whether iso-spectral Hamiltonians are possible in PT-symmetry operators.

2. Logarithmic new models

Here we consider different models as follows Quadratic Logarithmic model $V(x) = -x^2 \log(\frac{i}{x})$ The Hamiltonian considered here is

$$H_1^{quadratic} = p^2 - x^2 \log(\frac{i}{x}) \tag{7}$$

Quartic inverted model $V(x) = -x^4 \log(\frac{i}{x})$ Here we consider the Hamiltonian

$$H_2^{quartic} = p^2 - x^4 \log(\frac{i}{x}) \tag{8}$$

Below we present few energy levels

3. Logarithmic models

Here we consider the recently prposed models

$$h_1 = p^2 + \lambda x^4 \log(ix) \tag{9}$$

$$h_2 = p^2 - \lambda x^4 \log(ix) \tag{10}$$

$$h_3 = p^2 - \lambda x^4 \log(x^2) \tag{11}$$

and present complete spectra in table-2 for $\lambda = 1$.

n	H_1 Present	H_2
0	1.326 591 6	$1.249\ 087\ 3$
3	$9.173\ 294\ 3$	$13.738\ 280\ 4$
6	$17.734\ 002\ 2$	$31.665\ 810\ 8$
9	$26.633 \ 530 \ 1$	$52.993 \ 926 \ 2$
12	$76.113 \ 329 \ 2$	76.974 762 5

TABLE.I: PT-symmetry inverted logarithmic model potentials

4. Method of calculation

Here we use matrix diagonalisation method [5] to solve the eigenvalue relation

$$H|\Psi\rangle = E|\Psi\rangle \tag{12}$$

where

$$|\Psi\rangle = \sum A_m |m\rangle \tag{13}$$

Here $|m\rangle$ satisfy the relation

$$[p^{2} + x^{2}]|m\rangle = (2m+1)|m\rangle$$
(14)

Numerical results obtained using MDM are tabulated in table.1.

5. Conclusion

In this report, we present numerical convergent energy levels of new model PT-invariant Hamltonians using matrix diagonalisation method[5]. Further we feel the present method can be used confidently to realize real spectra study in similar Hamiltonians of interest. Lastly we the spectra of H_2 and h_1 are the same. In brief

$$V(x) = x^4 \log(ix) \to V(x) = -x^4 \log(\frac{i}{x})$$

$$\tag{15}$$

Hence these two potentials can be considered as iso-spectral models in PT-symmetry. Lastly we do not find any numerical results to present in table-1 for a comparison with the present numericals. Interested readers can consider other values of λ .

Acknowledgements

The authors R. Jarrar, H. Shanak, R. Wannan and J. Asad would like to thank Palestine Technical University- Kadoorie for supporting them financially.

n	h_1 Present	h_1 Previous [4]	Previous (WKB)[4]
0	1.249 08	$1.249\ 09$	$0.546\ 27$
3	$13.738\ 27$	13.738 3	$7.314\ 80$
6	$31.665 \ 82$	$31.665\ 8$	16.697 9
9	$52.993\ 79$	$52.993 \ 9$	$27.695\ 6$
12	76.976 08	76.974 8	39.932 4
n	h_2 Present	Previous[4]	Previous(WKB)[4]
0	0.109 1		
1	$6,959\ 6$		
2	$8.257\ 1$		
3	$18.039\ 4$		
n	h_3 Present	Previous[4]	Previous(WKB)[4]
0	$0.025 \ 4$		
1	$4.977\ 7$		
2	$9.237\ 1$		
3	$16.478\ 6$		

TABLE.2: PT-symmetry logarithmic model

References

- C.Bender and S.Boettcher Real spectra in non-Hermitian Hamiltonian having PTsymmetry, Phys.Rev.Lett, (1997), 80, 5243-5246.
- [2] H.F.Jones, Comment on: Solvable model bound states in the continuum (BIC) in One dimension(2019, 94, 105214), Phys.Scr, (2021), 96,087001. (see ref-2)
- [3] Z.Ahmed and H.F.Jones, Scattering states and bound states of exponential potentials, arxiv:2102:06095v1(see ref-3).
- [4] C.Bender, A.Felski, S.P.Klevansky and S.Sarkar, PT-symmetry and Renormalisation in Quantum Field Theory, arxiv:2103.14864v1.
- [5] B.Rath, Real spectra in some negative potentials: Linear and nonlinear one dimensional PT-invariant quantum systems, Eur. Phys. Journal. Plus. (2021), **136**, 493.