Outer-Convex Hop Domination in Graphs Under Some Binary Operations
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4862Keywords:
outer-convex hop dominating, outer-convex hop domination numberAbstract
Let G be a graph with vertex and edge sets V (G) and E(G), respectively. A set C ⊆ V (G) is called an outer-convex hop dominating if for every two vertices x, y ∈ V (G) \ C, the vertex set of every x−y geodesic is contained in V (G) \ C and for every a ∈ V (G) \ C, there exists b ∈ C such that dG(a, b) = 2. The minimum cardinality of an outer-convex hop dominating set of G, denoted by ̃γconh(G), is called the outer-convex hop domination number of G. In this paper, we generate some formulas for the parameters of some special graphs and graphs under some binary operations by characterizing first the outer-convex hop dominating sets of each of these
graphs. Moreover, we establish realization result that identifies and determines the connection of this parameter with the standard hop domination parameter. It shows that given any graph, this new parameter is always greater than or equal to the standard hop domination parameter.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.