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Abstract. This paper studies the epidemic model via an efficient genius modern analytical ap-
proximate technique named Natural Transform Adomian Decomposition Method (NTADM). It is
based on Caputo fractional derivative. To demonstrate the effectiveness of the present method,
the results are displayed in graphs. Accordingly, the NTADM can be very easily applied to other
nonlinear models.
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1. Introduction

Fractional calculus has become an important tool for modeling and solving problems
in various areas of science, including biology, physics, chemistry, and engineering, among
others [6–8, 10, 16, 28]. In biology, for example, fractional calculus has been used to model
the behavior of cells, the spread of diseases, and the dynamics of biological systems. In
physics, fractional calculus has been used to model the behavior of fluids, the diffusion of
particles, and the properties of materials, among other things. One of the reasons why
fractional calculus is so useful in modeling these types of problems is that it allows for
the modeling of systems that exhibit memory or hereditary effects. Traditional calculus
assumes that a system’s behavior is determined solely by its current state, while fractional
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calculus allows for the influence of past states as well. This ability to model systems with
memory effects has made fractional calculus an important tool in fields such as control
theory, signal processing, and image analysis, where the behavior of systems depends on
past inputs and states. Many challenges can disrupt daily life, and we need to control these
challenges in order to improve our quality of life. One of these challenges is the spread
of epidemics, the most recent being the COVID-19 pandemic. Many effective methods
for obtaining numerical and analytical solutions for epidemic mathematical models with
fractional-order derivatives have recently been used, for example, fractional natural de-
composition method [11, 25], natural transform decomposition method [26], fractional
residual power series method [14], fractional exponential function method [4], Laplace
Adomian decomposition method [9], Natural transform homotopy analysis method [1],
Sumudu transform [30], fractional novel analytical method [5], fractional Taylor series [29]
and Caputo-Katugampola derivatives [2]. In this paper, we will study the epidemic mathe-
matical model represented by system of nonlinear ordinary nonlinear differentials; studied
recently through [13, 18], where Gao et al. [13] used the (q-HATM), while Liu et al.
[18] presented some interesting results for the projected model, we present its treatment
in fractional order via a novel smart technique named the Natural transform adomian
decomposition method (NTADM). The Natural Transform (NT) is a mathematical tool
that was originally defined by Khan and Khan [17] and has since been studied by other
researchers [3, 15, 19–22, 24]. The inverse Natural Transform has also been defined by
other researchers such as in [12, 23, 27].

2. Basic scheme of the suggested method

We will consider the non-linear equation in the form:

ℓϕ+ rϕ+ fϕ = ϖ(χ, τ), (1)

where ℓ is the lowest order derivative, r is a linear operator of order lower than ℓ, fϕ
the nonlinear terms, and ϖ(χ, τ) is the source term.

Applying the NT on both sides of Eq. (1), we get:

N [ℓϕ] +N [rϕ] +N [fϕ] = N [ϖ(χ, τ)]. (2)

Using the property of the NT, as well as the initial conditions and arrangement, we have:

N [ϕ(χ, t)] =
1

s
ϕ(χ, 0)+

u

s2
ϕ(χ, 0)+. . .+

u(n−1)

s(n−1)
ϕ(n−1)(χ, 0)−un

sn
N [ϕ]−un

sn
N [fϕ]+

un

sn
N [ϖ(χ, t)].

(3)
Via Adomian producers, we have

ϕ(χ, τ) =

∞∑
n=0

ϕn(χ, τ), (4)
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and the nonlinear term can be analyzed as:

fϕ(χ, τ) =
∞∑
n=0

∆n(χ, τ), (5)

where ∆n is an Adomian polynomial of ϕ0, ϕ1, . . . , ϕn that has the following relation:

∆n =
1

n!

dn

dλn

[
f

∞∑
n=0

λnϕn

]
λ=0

, n = 0, 1, 2, 3, . . . . (6)

Substituting Eqs. (5) and (4) into Eq. (3) yields:

N

[ ∞∑
n=0

ϕn(χ, τ)

]
=

1

s
ϕ(χ, 0)+

u

s2
ϕ′(χ, 0)+. . .+

u(n−1)

s(n−1)
ϕ(n−1)(χ, 0)−un

sn
N [ϕ]−un

sn
N [

∞∑
n=0

∆n]+
un

sn
N [ϖ(χ, τ)],

(7)
i.e,

N

[ ∞∑
n=0

ϕ0(χ, τ)

]
=

1

s
ϕ(χ, 0)+

u

s2
ϕ′(χ, 0)+. . .+

u(n−1)

s(n−1)
ϕ(n−1)(χ, 0)+

un

sn
N [ϖ(χ, τ)] = Y (χ, u).

(8)
So,

N [ϕ1(χ, τ)] = −un

sn
N [rϕ0(x, t)]−

un

sn
N [∆0], (9a)

N [ϕ2(χ, τ)] = −un

sn
N [rϕ1(x, t)]−

un

sn
N [∆1]. (9b)

Finally, we obtain:

N [ϕn+1(χ, τ)] = −un

sn
N [rϕn(x, t)]−

un

sn
N [∆n], n ≥ 0 (10)

By using the inverse NT to (8) and (10), we obtain:

ϕ0(χ, τ) = ℘(χ, τ), (11a)

ϕn+1(χ, τ) = −N−1[
un

sn
N [rϕn(x, t)] +

un

sn
N [∆n]], n ≥ 0. (11b)

where ℘(χ, τ) represents the term that is arising from the source term and prescribed
initial conductions. By using the inverse NT to ϖ(χ, τ) and the given conditions we get:

δ = η +N−1[ϖ(χ, τ)], (12)

where
δ = δ0 + δ1 + . . .+ δn, (13)

ϕ0 = δk + . . .+ δk+1. (14)

Finally, we proof that ϕ0 satisfy the original equation.
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3. The epidemic mathematical model Formulation

Now, we consider the epidemic mathematical model within fractional order represented
by a system of nonlinear differential equations, and consists of four categories of individuals
ι(τ), A(τ), γ(τ), and α(τ). The description of the interactions between the variables in this
system is done by using the given nonlinear system [13, 18]:

Dε
τ ι(τ) = −ρι(τ)[A(τ) + α(τ)], (15a)

Dε
tA(τ) = ρι(τ)[A(τ) + α(τ)]− βA(τ), (15b)

Dε
τγ(τ) = β1A(τ)− µγ(τ), (15c)

Dε
τα(τ) = β2A(τ)− µα(τ), 0 < ε < 1. (15d)

With the initial conditions

ι(0) = t0 = 11.081× 106, A(0) = A0 = 3.62, α(0) = α0 = 4.13, and γ(0) = γ0 = 0. (16)

The epidemic mathematical model system contains four components, representing individ-
uals of different infection status: ι(τ) individuals susceptible, A(τ) asymptomatic infec-
tious, γ(τ) reported asymptomatic infectious, α(τ) unreported asymptomatic infectious.

Applying NT of Eq. (15d), we obtain:

sε

uε
N [ι(τ)]− sε−1

uε
ι(0) = −ρN [ι(τ)A(τ) + ι(τ)α(τ)], (17a)

sε

uε
N [A(τ)]− sε−1

uε
A(0) = ρN [ι(τ)A(τ) + ι(τ)α(τ)]− βN [A(τ)], 0 < ε < 1, (17b)

sε

uε
N [γ(τ)]− sε−1

uε
γ(0) = β1N [A(τ)]− µN [γ(τ)], (17c)

sε

uε
N [α(τ)]− sε−1

uε
α(0) = β2N [A(τ)]− µN [α(τ)]. (17d)

After rearrangement, we have

N [ι(τ)] =
1

s
ι(0)− ρ

uε

sε
N [Q(t, A) + P (t, α)],

N [A(τ)] =
1

s
A(0) + ρ

uε

sε
N [Q(t, A) + P (t, α)]− β

uε

sε
N [A(τ)],

N [γ(τ)] =
1

s
R(0) + β1

uε

sε
N [γ(τ)]− µ

uε

sε
N [γ(τ)],

N [α(τ)] =
1

s
α(0) + β2

uε

sε
N [A(τ)]− µ

uε

sε
N [α(τ)]. (18a)

Using ADM, we have

ι(τ) =

∞∑
n=0

ιn(τ), A(τ) =

∞∑
n=0

An(τ), γ(τ) =

∞∑
n=0

γn(τ), α(τ) =

∞∑
n=0

αn(τ), (19)
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and the nonlinear terms are:

Q(t, A) = Bn, P (t, α) = En, (20)

where Bn, En are Adomian polynomials of ι, A, α, . . . which calculated by formulas:

Bn =
1

n!

dn

dλ̄n

[
N(

∞∑
n=0

λ̄nUn)

]
λ̄=0

, (21a)

En =
1

n!

dn

dλ̄n

[
N(

∞∑
n=0

λ̄nUn)

]
λ̄=0

. (21b)

Substituting Eqs. (19), (20) and (21) into Eq. (18) yields:

N [
∞∑
n=0

ιn(τ)] =
1

s
ι0 − ρ

uε

sε
N [Q+ P ], (22a)

N [

∞∑
n=0

An(τ)] =
1

s
A0 + ρ

uε

sε
N [Q+ P ]− β

uε

sε
N [

∞∑
n=0

An(τ)], (22b)

N [

∞∑
n=0

γn(τ)] =
1

s
γ0 + β1

uε

sε
N [

∞∑
n=0

An(τ)]− µ
uε

sε
N [

∞∑
n=0

γn(τ)], (22c)

N [
∞∑
n=0

αn(τ)] =
1

s
α0 + β2

uε

sε
N [

∞∑
n=0

An(τ)]− µ
uε

sε
N [

∞∑
n=0

αn(τ)]. (22d)

By comparing both sides of Eq. (22) and throw ADM, we get:

ι(0) = ι0, ιn+1 = −ρN−1

[
uε

sε
N [Q+ P ]

]
, (23a)

A(0) = A0, An+1 = ρN−1

[
uε

sε
N [Q+ P ]

]
− βN−1[

uε

sε
N [

∞∑
n=0

An(τ)]], (23b)

γ(0) = R0, γn+1 = β1N
−1

[
uε

sε
N [

∞∑
n=0

An(τ)]

]
− µN−1[

uε

sε
N [

∞∑
n=0

γn(τ)]], (23c)

α(0) = α0, αn+1 = β2N
−1

[
uε

sε
N [

∞∑
n=0

An(τ)]

]
− µN−1

[
uε

sε
N [

∞∑
n=0

αn(τ)]

]
. (23d)

i.e.

ι1 = −ρN−1[
uε

sε
N [ι0A0 + ι0α0]], (24a)

A1 = ρN−1[
uε

sε
N [ι0A0 + ι0α0]]− βN−1[

uε

sε
N [A0]], (24b)
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γ1 = β1N
−1[

uε

sε
N [A0]]− µN−1[

uε

sε
N [γ0]], (24c)

α1 = β2N
−1[

uε

sε
N [A0]]− µN−1[

uε

sε
N [α0]]. (24d)

Then, using parameters in the present model as in [18], we have ρ = 4.48 × 10−8, β =
1
7 , µ = 1

7β1 = 0.8µ, β2 = 0.8µ
Also, we obtain:

ι1 = −3.8432
tε

Γ(ε+ 1)
, ι2 = −0.898197

t2ε

Γ(2ε+ 1)
, (25a)

A1 = 2.29589
tε

Γ(ε+ 1)
, A2 = 0.570213

t2ε

Γ(2ε+ 1)
, (25b)

γ1 = 0.413714
tε

Γ(ε+ 1)
, γ2 = 0.203285

t2ε

Γ(2ε+ 1)
, (25c)

α1 = −0.486571
tε

Γ(ε+ 1)
, α2 = 1.35107

t2ε

Γ(2ε+ 1)
. (25d)

Then, we can write the solution of the epidemic model in series form as follows:

ι(t) = 11.081× 106 − 3.8432
tε

Γ(ε+ 1)
− 0.898197

t2ε

Γ(2ε+ 1)
+ . . . , (26a)

A(t) = 3.62 + 2.29589
tε

Γ(ε+ 1)
+ 0.570213

t2ε

Γ(2ε+ 1)
+ . . . , (26b)

γ(t) = 0 + 0.413714
tε

Γ(ε+ 1)
+ 0.203285

t2ε

Γ(2ε+ 1)
+ . . . , (26c)

α(t) = 4.13− 0.486571
tε

Γ(ε+ 1)
+ 1.35107

t2ε

Γ(2ε+ 1)
+ . . . , (26d)

which is the same exact solution obtained by using the q-homotopy analysis transform
method (q-HAM).

Figure 1: Natural solution of A(τ) for various values of ε that are similar results obtained via [13].
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Figure 2: Natural solution of γ(τ) for various values of ε that are similar results obtained via [13].

Figure 3: Natural solution of α(τ) for various values of ε that are similar results obtained via [13].
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4. Conclusion

The present paper deals with the epidemic mathematical model, which is solved via
the Natural Transform Adomian Decomposition Method. It is found that the result of the
proposed method is equivalent to those of q-HAM. The approximate analytical solutions
of the fractional epidemic mathematical model gained via NTADM are equivalent to q-
HAM, and suitable for various aspects of science. Finally, we can conclude that, the
present technique is generalization of Laplace and Sumudu transforms. By setting u = 1
in Eq. (18) we have the solution via Laplace transform. Also by setting s = 1 in Eq.
(18) we have the same solution via Sumudu transform. In the future, we will employ the
NTADM to solve FDEs in various aspects of science.
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