On the j-Edge Intersection Graph of Cycle Graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4870Keywords:
New GraphAbstract
This paper defines a new class of graphs using the spanning subgraphs of a cycle graph as vertices. This class of graphs is called $j$-edge intersection graph of cycle graph, denoted by $E_{C_{(n,j)}}$. The vertex set of $E_{C_{(n,j)}}$ is the set of spanning subgraphs of cycle graph with $j$ edges where $n \geq 3$ and $j$ is a nonnegative integer such that $1 \leq j \leq n$. Moreover, two distinct vertices are adjacent if they have exactly one edge in common. $E_{C_{(n,j)}}$ is considered as a simple graph. Furthermore, $E_{C_{(n,j)}}$ is characterized by the value of $j$ that is when $j=1$ or $\lceil \frac{n}{2} \rceil < j \leq n$ and $2 \leq j \leq \lceil \frac{n}{2} \rceil$. When $j=1$ or $\lceil \frac{n}{2} \rceil < j \leq n$, the new graph only produced an empty graph. Hence, the proponents only considered the value when $2 \leq j \leq \lceil \frac{n}{2} \rceil$ in determining the order and size of $E_{C_{(n,j)}}$. Moreover, this paper discusses necessary and sufficient conditions where the $j$-edge intersection graph of $C_n$ is isomorphic to the cycle graph. Furthermore, the researchers determined a lower bound for the independence number, and an upper bound for the domination number of $E_{C_{(n,j)}}$ when $j=2$.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.