Finite Minimal Simple Groups Non-satisfying the Basis Property
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4871Keywords:
Simple group, Minimal group, Group with the Basis PropertyAbstract
Let G be a finite group. We say that G has the Basis Property if every subgroup H of G has a minimal generating set (basis), and any two bases of H have the same cardinality. A group G is called minimal not satisfying the Basis Property if it does not satisfy the Basis Property, but all its proper subgroups satisfy the Basis Property. We prove that the following groups PSL(2, 5) ∼A5, PSL(2, 8) , are minimal groups non satisfying the Basis Property, but the groups PSL(2, 9), PSL(2, 17) and PSL(3, 4) are not minimal and not satisfying the Basis Property.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.