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Abstract. Let G be a finite group. We say that G has the Basis Property if every subgroup
H of G has a minimal generating set (basis), and any two bases of H have the same cardinality.
A group G is called minimal not satisfying the Basis Property if it does not satisfy the Basis
Property, but all its proper subgroups satisfy the Basis Property. We prove that the following
groups PSL(2, 5) ∼= A5, PSL(2, 8) , are minimal groups non satisfying the Basis Property, but
the groups PSL(2, 9), PSL(2, 17) and PSL(3, 4) are not minimal and not satisfying the Basis
Property.

2020 Mathematics Subject Classifications: 20M05, 03D40

Key Words and Phrases: Simple group, Minimal group, Group with the Basis Property

1. Introduction

The Burnside Basis Theorem tells us that the generating sets for p-groups shares
many property with the bases of vector spaces. In particular, if G is a finite p-group,
then the minimal generating sets (sets that no smaller proper subset can generate G
as well) have the same cardinality. We will say that an arbitrary finite group has the
Generation Property if its minimal generating sets have the same cardinality. A finite
group G has the Basis Property if G and all its subgroups have the Generation Property.
In [12], Jones has introduced the Basis Property and considered it in the context of inverse
semigroups. Also, Jones in [13] proved that if G is a group with the Basis Property, then
every element of G must has a prime power order, after that, he established that the
Basis Property is inherited by quotients and a group with the Basis Property is soluble
as well. The Basis Property for groups has been developed by many authors as in the
articles [1, 2, 4, 11, 14, 15] and we shall mention some of this work below. A variant of
these properties is the concept of a Matroid group, which is a group that satisfies the
Generation Property and the additional condition that every independent subset of G
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is contained in a minimal generating set. Scapellato and Verardi through the articles
[17, 18] have studied Matroid groups. In more details, they provide a full characterization
of Matroid groups that a Matroid group has the Basis Property. Alkhalaf in [3] has
provided a pleasant characterization of groups with the Basis Property based on results of
Higman [7], who has classified the soluble groups with all elements of prime-power order.
Also A. Alkhalaf generalized many of the results related to groups that satisfies the Basis
Property, and we can find them in [5, 6]. The purpose of this research is to initiate a study
of groups with minimal group that not satisfying the Basis Property. Since every image
of a homomorphism group with the Basis Property is a group with the Basis Property,
then the group G can be a minimal group not satisfying the Basis Property if its image
under a homomorphism of every proper subgroup H from G must be satisfied the Basis
Property. Likewise, all subgroups of a group G must satisfy that. It follows, from all
of these previous results, a minimal simple group does not satisfy the Basis Property if
and only if every maximal subgroups is a group with the Basis Property. Be noted that,
along this paper, the finite groups will be considered only, hence any proper subgroup
will be contained in a maximal subgroup and we can see that in [9] and since the Basis
Property is an inherited property as in [13], then it is enough to verify that the maximal
subgroups satisfies the Basis Property. It should be mentioned that simple groups are not
soluble groups, unless the simple groups with prime orders. Therefore, they can not be
simple and non-prime and satisfying the Basis Property at the same time, but here we
are trying to obtain a description of simple groups close to groups that are satisfying the
Basis Property, in other words, we will study the simple groups that are not satisfying the
Basis Property. A finite group G is called a semi prime if the order of every element is a
power of a prime number, this means, every element will be either p-element or q-element.
Therefore, every cyclic subgroup of a group G is a primary. A finite group G is called a
semi simple if it does not have any soluble normal non-trivial subgroups. A finite group
G is called a completely decomposable if it is decomposed into a direct product of a finite
number of simple groups. [16]

2. Preliminaries

The previous concepts have studied by many authors, which they considered the Basis
Properties of groups in their works, as written in [2–5]. Now, we are willing to prove our
theorems, for that, we need to state some lemmas as the following.

Lemma 1. [3, Theorem(2.5)] Let a finite group G be a semi direct product of a p-group
P = Fit(G) (Fitting subgroup of G) by a cyclic q-group < y > of order qb, where p ̸= q (p
and q are prime numbers), b ∈ N . Then the group G has the Basis Property if and only if
for any element u ∈< y >, u ̸= e and for any invariant subgroup H of P , the automorphism
φu must define an isotopic representation on every quotient Frattini subgroup H.

In [5], the author used known results for the nilpotency class of the kernel of a Frobenius
group to describe the nilpotency class of the Fitting subgroup of the group with the Basis
Property.
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Lemma 2. [19, Theorem 16] Let G be a simple group, assume that every nonidentity
element composite order of G is a prime power order. Then G is isomorphic with one of
the following groups

PSL(2, 5), PSL(2, 7), PSL(2, 23), PSL(2, 32),

PSL(2, 17), PSL(3, 22), Sz(23), Sz(26).

3. The properties of simple groups

Lemma 3. Let G be a minimal simple group that does not satisfy the Basis Property.
Then G is a semi-prime.

proof. Suppose the group G is a simple and non semi-prime. Then, for the two prime
numbers p and q (p ̸= q), there is a cyclic subgroup < y > of G with order pq, which does
not satisfy the Basis Property, also, since G is the minimal group, which does not satisfy
the Basis Property, hence the group G is a biprimary cyclic group whose order is pq, and
this contradicts the hypothesis. Therefore, G is a semi-prime group.

Lemma 4. Let G be a minimal group neither satisfying the Basis Property, nor soluble.
Then G is not a commutative simple group.

proof. Suppose G is not a soluble group and let H be a maximal normal subgroup,
which is a soluble subgroup of G. If |H| ≠ e and since G is a minimal that is not satisfying
the Basis Property, then G/H is a group the Basis Property, therefore G/H is a soluble,
see the book [16] and G must be a soluble group as an extension of a soluble subgroup by
the soluble group, but this contradicts the hypothesis that G is not soluble. So G does
not contain any soluble normal subgroup, hence it is a semi- simple, by using [9]. Thus G
contains a maximal normal subgroup A that is completely decompose without center, so
the group G is embedding in the group automorphisms AutA. If A coincides the group of
inner automorphisms of A, then

A = A1 ·A2 · . . . ·Am,

where Ai are simple groups. Since a group A without center, then A has no a subgroup
of a prime order. Thus Ai are simple and non commutative subgroups. In the case of
m > 1, then A1 is a proper subgroup of G, therefore, according to the definition of a
minimal simple group that does not satisfy the Basis Property, hence A1 is a group with
the Basis Property, but this contradicts the concept that the group that achieves the Basis
Property is a soluble as in [13]. So the group A is simple. Suppose that G ̸= A. Then
A is a proper subgroup of the group G, therefore, it is a group with the Basis Property.
This is a contradiction of the solubility of the group with the Basis Property.

Corollary 1. Let G be a minimal group that does not satisfy the Basis Property, then G
is semi-prime, and if G is a not soluble, then it must be simple and noncommutative.
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Remark 1. The general linear projective groups PGL(2, q), where q ≥ 5, which q is an
odd number, are not simple, see that in [19, 20], but, PSL(2, q) is simple for q ≥ 4.

We can also getting on more details about this kind of groups in [19]. Since the groups
PGL(2, q) for each q ≥ 5 and q is odd are not simple. So, we can remove it from the class
of the minimal simple group that does not satisfy the Basis Property.

Example 1. If G = S4 =< α, β > is a symmetric group S4 does not satisfy the Basis
Property, such that α = (1234), β = (142), then α2 = (13)(24) and α2β = (34), βα3β =
(13). for more, we can find that

G = S4 =< α2, α2β, βα3β >

That means, there are two bases for the symmetric group S4, first of them consists of three
elements and the other one has two elements, but, this contradicts the concept of the Basis
Property. So the group does not satisfy the Basis Property.

Lemma 5. The groups

PSL(2, 7), PSL(2, 32), PSL(2, 17),

are semi-prime that not satisfy the Basis Property, but, they are not minimal.

proof. According to the article [19], we saw that the three previous groups are semi-
prime, also, since they are simple, then, they must not to be a soluble. According to [13],
the groups do not satisfy the Basis Property. Now by [19], the order of the field GF (q)
has the form q = 8h ± 1, where q = 7, q = 9 or q = 17 , then each of the previous
groups must contains a proper subgroup that is isomorphic to the symmetric group S4,
and according to Example 1, the group S4 does not satisfy the Basis Property, therefore
the groups q = 7, q = 9 or q = 17 where q = 7, q = 9 or q = 17 are not minimal.

4. The Minimal simple groups

Theorem 1. A group G = PSL(2, 5) is a minimal does not satisfy the Basis Property.

proof. According to [19], the groups, which of the form PSL(2, qn), where q is a prime
have a subgroup of the form A5, and since A5 is a simple, then, it is non a soluble and
since every a non soluble group does not satisfy the Basis Property, depending on [13]. On
the other hand, the order of the group PSL(2, q) is given by the following relationship.

|PSL(2, q)| = q(q2 − 1)

2
.

Hence,

|PSL(2, 5)| = 5(52 − 1)

2
= 60.

Since |A5| = 60, so PSL(2, 5) ≈ A5 (is equal to its subgroup of the same order).
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Theorem 2. Let A5 be the alternating group. Then A5 is minimal not satisfy the Basis
Property.

proof. We will find all subgroups of the alternating group A5. According to [19], the
subgroups of the group PSL(2, 5) ≈ A5 can be one of the following groups:

• The order of the even groups D2 or D3 (dihedral groups), where q = 5 ̸= 1 are 4 or 6
respectively and the 2-group D2 satisfies the Basis Property, because it is a primary
group, see [3]. Likewise, the 2-group D3 satisfies the Basis Property, because it is a
metacyclic group, depending on [3].

• The subgroup of a non-commutative group H with the order 5(5−1)
2 = 10, is a 5-

Sylow subgroup Q , which is a primary commutative group isomorphic to C5, and
since|H : Q| = 2. Then Q ⊴ H that means H is the even group of the order 10, and
also H is metacyclic group that satisfies the Basis Property [3].

• The groups PSL(2, 5) ∼= A5, PGL(2, 5) ≥ 60 and PGL(2, 5) are not a subgroup of
A5. Therefore, we find that all the proper subgroups of the group A5 has the Basis
Property, but A5 does not satisfy the Basis Property, because it is simple, as it is
not soluble.

• The alternating group A4 , the symmetric group S4, or the alternating group A5

itself. Since |S4| = 24, then|S4| ∤ |A5| the symmetric group S4 is not a subgroup of
the group A5 . As the group A5 is not proper subgroup of the groupA5.

Now we study the alternating group A4 where |A4| = 12 = 22 · 3, which is a semidirect
product of the Klein group K by the cyclic group < y >=< (123) > whose order is equal
to 3. On the other hand, we have Klein’s group

K =< (12)(34), (13)(24) >= {(1), (12)(34), (13)(24)(14)(23)}

is a primary 2-group of order 4 as that K ⊴ A4. Then the group K can be considered as
a vector space of dimension 2 over the field GF (2). Since K is a ⊴ A4, then y acts as a
linear operator on a vector space of the form ϕy : α −→ y−1αy, for all α ∈ K such that
φ3
y = idK and φ(α) ̸= α for all α ∈ K − {(1)}, φ3

y = idK. In fact

(123)(12)(34)(123) = (14)(32)

(132)(14)(23)(123) = (13)(24)

(132)(13)(24)(123) = (12)(34).

Thus, from the equality

(φ3
y − idK)(α) = (φy − idK)(φ2 + φ+ idK)(α) = 0,

for all α ∈ K.
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From the fact that the operator (φy − idK) is not singular, then φ2 + φ + idK = 0,
therefore the polynomial z2 + z + 1 on the field GF (2) is a minimal polynomial of the
operator φy since it is not decomposing over the field GF (2) [10] on non zero vector of K.
Thus, the condition I1) for automorphism φy for the group, K is fulfilled.

If α ∈ K and u ∈ A4 \ K, then the vectors α and u−1αu are linearly independent
(otherwise, since |u| = 3 and |α| = 2, uα = αu, and the order of uα is equal 6, thus this is
not possible in the groupA4 ). So, there are no proper normal subgroups in the group K
with respect to automorphism.

Therefore, the condition I1) for all elements and for any normal subgroups with respect
to automorphism ϕy, because we can in the previous study with respect to automorphism
φy substitute y by u.

Now according to [3, Theorem 2.5], the group has the Basis Property.
So A5 is a minimal that not satisfy the Basis Property.

Theorem 3. Let G = PSL(3, 4) be a group. Then, a group PSL(3, 4) is not minimal not
satisfy the Basis Property.

proof. We study the group SL(2, 4). Since the identity x2−1 = 0 has unique solution
on the field GF (2), then the center of the group SL(2, 4) coincides with the identity,
so PSL(2, 4) ≈ SL(2, 4) [19, Theorem6.14] and PSL(2, 4) ≈ A5, since |PSL(2, 4)| =
4(42 − 1) = 60. Define the mapping ξ : SL(2, 4) → SL(3, 4) by:

ξ(

[
α β
γ δ

]
) =

 1 0 0
0 α β
0 γ δ


Let’s define the natural homomorphism η : SL(3, 4) → SL(3,4)

Z(SL(3,4) ≈ PSL(3, 4). Thus

ϕ = η ◦ ξ |SL(2,4) is a subgroup of a group T = PSL(3, 4), let ϕ = η ◦ ξ |SL(2,4) and since
the group SL(2, 4) is a simple, then either |T | = 1 or ϕ is onto, but

ϕ(

[
0 1

−1 0

]
) =

 1 0 0
0 0 1
0 −1 0

 ⊈ Z(SL(3, 4)

Therefore, the situation |T | = 1 is not possible, and ϕ is onto and within the subgroups
of the group T = PSL(3, 4), there is a group isomorphic to A5 , and so

|PSL(3, 4)| = |SL(3, 4)|
3

=
(26 − 1)(26 − 22)22

3
> 60.

Hence PSL(3, 4) has a proper subgroup not satisfying the Basis Property and PSL(3, 4)
is not minimal and does not satisfy the Basis Property.

Theorem 4. Let G = PSL(2, 8) be a group. Then, a group PSL(2, 8) is minimal not
satisfying the Basis Property.
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proof. Consider the group PSL(2, 8). From [8]

|PSL(2, 8)| = (8 + 1)8(8− 1) = 9 · 8 · 7 = 504.

Now, by using [19, Theorem 6.25] the subgroups of the group PSL(2, 8) can be one of the
following groups.

• The even groups (dihedral groups) with orders 2(q ± 1) i.e. the groups with orders
2 · 7 or 2 · 9 which form groups the Basis Property, because they are metacyclic
groups.

• The group H of order q(q−1)
d , where d = (2, q − 1) = (2, 7) = 1. Thus the group H

of order (8)(7) = 56 and it is an extension of the primary abelian 2-group Q such
that |Q| = 8, where Q▷H by a group with order 7. Since |PSL(2, 8)| = (7)(8)(9),
then the group Q is a 2-Sylow subgroup of PSL(2, 8). According to [8, Theorem7.1]
2- Sylow subgroup of PSL(2, 8) is composed of matrices of the form

Bβ =

[
1 β
0 1

]
β ∈ GF (8).

(Note that the center of the group SL(2, 8) is equal to the identity, therefore, we can
be considered SL(2, 8) = PSL(2, 8)).Thus we can write that

Q = {Bβ : β ∈ GF (8)}.

Thus, according to the same theory the normalizer N(Q) is composed of matrices of
the form

Bβ =

[
1 β
0 1

]
β ∈ GF (8).[

α β
0 δ

]
, α ̸= 0, δ ̸= 0.

Since

det

[
α β
0 δ

]
= αδ = 1

Then δ = α−1 and

N(Q) = {
[
α β
0 δ

]
: α ∈ F ∗, β ∈ GF (8)}.

We study the matrix Aα, α ̸= 0, α ∈ GF (8)

Aα =

[
α 0
0 α−1

]
.
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It is clear that |α| = 8 − 1 = 7 and |Aα| = 7, A7
α = 1 Now, the matrix of the form

Aα generate a cyclic group of order 7, and so on...

AαBβ =

[
α 0
0 α−1

] [
1 β
0 1

]
=

[
α αβ
0 α−1

]
.

Then N(Q) = <Aα>Q , since

AαBβAα−1 =

[
α αβ
0 α−1

] [
α−1 0

0 α

]
=

[
1 α2β
0 1

]
,

and
<Aα> ∩Q = {1}, Q ⊴ N(Q), N(Q) = Qλ<Aα>.

Thus, we can consider that H = N(Q), and K = <Aα>. Since

BβBγ = Bβ+γ . (1)

Then it can be considered that Q is a vector space over the field GF (8) and the
element Aα of order 7 acts on Q by the rule according to (1)

ϕα : Bβ → Bα−2β, f(α
2) = 0.

Thus if g(z) is a minimum polynomial on the field GF (2), then if β ̸= 0, then

g(ϕα)Bβ = 0 ⇔ g(α−2)β = 0 ⇔ g(α−2) = 0.

Since α−2 ̸= 0, α−2 is the element of the field GF (8) has a minimal polynomial over
the field GF (2), which is irreducible over the field GF (2) and according to [10], we
take the minimum polynomial of the form

f0(z) = z3 + z + 1

or
f0(z) = z3 + z2 + 1.

Thus
degf0(z) = min{l ∈ N : zl ≡ 1(mod7).

Hence, the vector space Q is not reducible, and it follows that all the conditions of
the [3, Theorem 2.5] satisfy for the group H and is a group with the Basis Property.

• The group A4, was indicated earlier in theorem 1 that it is a group with the Basis
Property. The group S4 does not contain in a group PSL(2, 8), then by Theorem 6-
26 Suzuki [20], since in this case q2 = 64 ̸= 1(mod16) also the group PSL(2, 8) does
not contain a group A5 by the same theorem, since q(q2 − 1) = (8)(63) ̸= 0(mod5).
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• If r < 8 ,and q = rm, then r = 2 so we consider the groups PSL(2, 2), PGL(2, 2).
Since the center of the group GL(2, 2) is the identity and GF (2) = {0, 1}, then

PSL(2, 2) ∼= PGL(2, 2) ∼= GL(2, 2) = 2(22 − 1) = 6.

Since the group GL(2, 2) is not abelian of order 6, and has the form

{
[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 0

]
,

[
1 1
1 0

]
,

[
0 1
0 1

]
}.

Hence, it is metacyclic so it is a group with the Basis Property.

Therefore, all cases have been studied, and so the group PSL(2, 8) is minimal not satisfying
the Basis Property.
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