Grundy Total Hop Dominating Sequences in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4877Keywords:
Grundy total hop dominating sequence, Grundy total hop domination numberAbstract
Let G = (V (G), E(G)) be an undirected graph with γ(C) ̸= 1 for each component C of G. Let S = (v1, v2, · · · , vk) be a sequence of distint vertices of a graph G, and let Sˆ ={v1, v2, . . . , vk}. Then S is a legal open hop neighborhood sequence if N2G(vi) \Si−1j=1 N2G(vj ) ̸= ∅
for every i ∈ {2, . . . , k}. If, in addition, Sˆ is a total hop dominating set of G, then S is a Grundy total hop dominating sequence. The maximum length of a Grundy total hop dominating sequence in a graph G, denoted by γth gr(G), is the Grundy total hop domination number of G. In this paper, we show that the Grundy total hop domination number of a graph G is between the total hop domination number and twice the Grundy hop domination number of G. Moreover, determine values or bounds of the Grundy total hop domination number of some graphs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.