EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 4, 2023, 2118-2131
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

J^{2} - Hop Domination in Graphs: Properties and Connections with other Parameters

Javier A. Hassan ${ }^{1, *}$, Alcyn R. Bakkang ${ }^{2}$, Amil-Shab S. Sappari ${ }^{1}$
${ }^{1}$ Mathematics and Sciences Department, College of Arts and Sciences, MSU Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines
${ }^{2}$ Secondary Education Department, College of Education, MSU Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines

Abstract

A subset $T=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ of vertices of a graph G is called a J^{2}-set if $N_{G}^{2}\left[v_{i}\right] \backslash N_{G}^{2}\left[v_{j}\right] \neq \varnothing$ for every $i \neq j$, where $i, j \in\{1,2, \ldots, m\}$. A J^{2}-set T is called a J^{2}-hop dominating in G if for every $a \in V(G) \backslash T$, there exists $b \in T$ such that $d_{G}(a, b)=2$. The J^{2}-hop domination number of G, denoted by $\gamma_{J^{2} h}(G)$, is the maximum cardinality among all J^{2}-hop dominating sets in G. In this paper, we initiate the study on J^{2}-hop domination and we establish its properties and connections with other known parameters in graph theory. We show that every maximum hop independent set is a J^{2}-hop dominating, hence, this parameter is greater than compare to the hop independence parameter on any graph. Moreover, we derive some lower and upper bounds of the parameter for a generalized graph, join and corona of two graphs, respectively. Finally, we obtain exact values of the parameter for some special graphs and shadow graph using the characterization results that are formulated in this study.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: J^{2}-set, J^{2}-hop dominating set, J^{2}-hop domination number

1. Introduction

Hop domination was introduced by Natarajan et al. in [9]. A subset S of a vertices of a graph G is called a hop dominating if for every $a \in V(G) \backslash S$, there exists $b \in S$ such that $d_{G}(a, b)=2$. The minimum cardinality among all hop dominating sets of G, denoted by $\gamma_{h}(G)$, is called the hop domination number of G. This parameter had studied on some families of graphs and graphs obtained from some operations in $[1,2,9]$. Researchers in the field had further investigated this concept, and introduced new variants and obtained some significant results that contributed a lot to the hop domination theory (see [3-8, 10-12]).

In this paper, new parameter called J^{2}-hop domination in a graph will be introduced and investigated. We will establish its relationships with other known parameters in graph

DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4905
Email addresses: javierhassan@msutawi-tawi.edu.ph (J. Hassan)
alcynbakkang@msutawi-tawi.edu.ph (A. Bakkang)
amilshabsappari@msutawi-tawi.edu.ph (A. Sappari)
theory. Moreover, we will determine its bounds or exact values on some special graphs, shadow graph and join of two graphs. We believe that this parameter and its results would give additional insights to researchers in the field and would help them for more research directions in the future.

2. Terminology and Notation

A path graph is a non-empty graph with vertex-set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and edge-set $\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}\right\}$, where the $x_{i}^{\prime} s$ are all distinct. The path of order n is denoted by P_{n}. If G is a graph and u and v are vertices of G, then a path from vertex u to vertex v is sometimes called a u-v path. The cycle graph C_{n} is the graph of order $n \geq 3$ with vertex-set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and edge-set $\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right\}$.

Let $G=(V(G), E(G))$ be a simple and undirected graph. The distance $d_{G}(u, v)$ in G of two vertices u, v is the length of a shortest $u-v$ path in G. The greatest distance between any two vertices in G, denoted by $\operatorname{diam}(G)$, is called the diameter of G.

Two vertices x, y of G are adjacent, or neighbors, if $x y$ is an edge of G. The open neighborhood of x in G is the set $N_{G}(x)=\{y \in V(G): x y \in E(G)\}$. The closed neighborhood of x in G is the set $N_{G}[x]=N_{G}(x) \cup\{x\}$. If $X \subseteq V(G)$, the open neighborhood of X in G is the set $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. The closed neighborhood of X in G is the set $N_{G}[X]=N_{G}(X) \cup X$.

A vertex a in G is a hop neighbor of a vertex b in G if $d_{G}(a, b)=2$. The set $N_{G}^{2}(a)=\left\{b \in V(G): d_{G}(a, b)=2\right\}$ is called the open hop neighborhood of a. The closed hop neighborhood of a in G is given by $N_{G}^{2}[a]=N_{G}^{2}(a) \cup\{a\}$. The open hop neighborhood of $S \subseteq V(G)$ is the set $N_{G}^{2}(S)=\bigcup_{a \in S} N_{G}^{2}(a)$. The closed hop neighborhood of S in G is the set $N_{G}^{2}[S]=N_{G}^{2}(S) \cup S$.

A subset S of $V(G)$ is a hop dominating of G if for every $a \in V(G) \backslash S$, there exists $b \in S$ such that $d_{G}(a, b)=2$. The minimum cardinality among all hop dominating sets of G, denoted by $\gamma_{h}(G)$, is called the hop domination number of G. Any hop dominating set with cardinality equal to $\gamma_{h}(G)$ is called a γ_{h}-set of G.

A subset S of $V(G)$ is called a hop independent if for every pair of distinct vertices $x, y \in S, d_{G}(x, y) \neq 2$. The maximum cardinality of a hop independent set in G, denoted by $\alpha_{h}(G)$, is called the hop independence number of G. Any hop independent set S with cardinality equal to $\alpha_{h}(G)$ is called an α_{h}-set of G.

Let G and H be any two graphs. The join of G and H, denoted by $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set

$$
E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\} .
$$

The corona G and H, denoted by $G \circ H$, the graph obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining the i th vertex of G to every vertex of the ith copy of H. We denote by H^{v} the copy of H in $G \circ H$ corresponding to the vertex $v \in G$
and write $v+H^{v}$ for $\left\langle\{v\}+H^{v}\right\rangle$.
The shadow graph $S(G)$ of graph G is constructed by taking two copies of G, say G_{1} and G_{2}, and then joining each vertex $u \in V\left(G_{1}\right)$ to the neighbors of its corresponding vertex $u^{\prime} \in V\left(G_{2}\right)$.

3. Results

We begin this section by introducing the concept of J^{2}-hop domination in a graph.
Definition 1. Let G be an undirected graph and $m \in N$. A subset $T=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ of vertices of G is called a J^{2}-set if $N_{G}^{2}\left[v_{i}\right] \backslash N_{G}^{2}\left[v_{j}\right] \neq \varnothing$ for every $i \neq j$, where $i, j \in\{1,2, \ldots, m\}$. A J^{2}-set T is called a J^{2}-hop dominating in G, if T is a hop dominating set in G. The J^{2}-hop domination number of G, denoted by $\gamma_{J^{2} h}(G)$, is the maximum cardinality among all J^{2}-hop dominating sets in G. Any J^{2}-hop dominating set T with $|T|=\gamma_{J^{2} h}(G)$ (resp. $|T|=\gamma_{h}(G)$), is called a $\gamma_{J^{2} h^{2}}$-set or the maximum (resp. minimum) J^{2}-hop dominating set of G.

Example 1. Consider the graph G in Figure 1 and let $T=\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$. Notice that $u_{i} \in N_{G}^{2}\left[u_{i}\right] \backslash N_{G}^{2}\left[u_{j}\right] \forall i \neq j$ where $i, j \in\{1,2, \ldots, 6\}$. Thus, T is a J^{2}-set of G. Since $N_{G}^{2}[T]=V(G)$, it follows that T is a J^{2}-hop dominating set of G. Observe that $N_{G}^{2}\left[u_{7}\right] \subseteq N_{G}^{2}\left[u_{3}\right], N_{G}^{2}\left[u_{8}\right] \subseteq N_{G}^{2}\left[u_{3}\right], N_{G}^{2}\left[u_{9}\right] \subseteq N_{G}^{2}\left[u_{1}\right]$, and $N_{G}^{2}\left[u_{10}\right] \subseteq N_{G}^{2}\left[u_{3}\right]$. Thus, T is a maximum J^{2}-hop dominating set of G. Hence, $\gamma_{J^{2} h}(G)=6$.

Figure 1: Graph G with $\gamma_{J^{2} h}(G)=6$

Theorem 1. Let G be any graph of order $m \geq 1$. Then each of the following holds:
(i) $N \subseteq V(G)$ is a γ_{h}-set in G if and only if N is a minimum J^{2} - hop dominating set in G.
(ii) $\gamma_{h}(G) \leq \gamma_{J^{2} h}(G)$.
(iii) $1 \leq \gamma_{J^{2} h}(G) \leq m$.

Proof. (i) Suppose that $N \subseteq V(G)$ is a γ_{h}-set in G. Then N is a minimum hop dominating set in G. It suffices to show that N is a J^{2}-set in G. Suppose on the contrary that N is not a J^{2}-set in G. Then there exist $x, y \in N$ such that either $N_{G}^{2}[x] \backslash N_{G}^{2}[y]=\varnothing$ or $N_{G}^{2}[y] \backslash N_{G}^{2}[x]=\varnothing$. This means that either $N_{G}^{2}[x] \subseteq N_{G}^{2}[y]$ or $N_{G}^{2}[y] \subseteq N_{G}^{2}[x]$. If $N_{G}^{2}[x] \subseteq N_{G}^{2}[y]$, then $D^{\prime}=N \backslash\{x\}$ is a hop dominating set in G, contradicting the minimality of N. Similarly, when $N_{G}^{2}[y] \subseteq N_{G}^{2}[x]$. Consequently, N is a minimum J^{2}-hop dominating set of G.

Conversely, suppose that N is a minimum J^{2}-hop dominating set of G. Then $|N|=\gamma_{h}(G)$ (by definition). It follows that N is a γ_{h}-set in G.
(ii) Let S be a γ_{h}-set of G. Then by (i), S is a minimum J^{2}-hop dominating set in G. Since $\gamma_{J^{2} h}(G)$ is the maximum cardinality among all J^{2}-hop dominating sets in G, it follows that $\gamma_{h}(G)=|S| \leq \gamma_{J^{2} h}(G)$.
(iii) Since $\gamma_{h}(G) \geq 1$ for any graph G of order $m \geq 1$, we have $\gamma_{J^{2} h}(G) \geq 1$ by (ii). Since any J^{2}-hop dominating set N of G is always a subset of $V(G)$, it follows that $\gamma_{J^{2} h}(G) \leq|V(G)|=m$. Therefore, $1 \leq \gamma_{J^{2} h}(G) \leq m$.

Theorem 2. Let G be any graph. Then $N \subseteq V(G)$ is a maximum J^{2}-set if and only if N is a $\gamma_{J^{2} h}$-set of G.

Proof. Let N be a maximum J^{2}-set of G. Assume that N is not a hop dominating set in G. Then there exists $u \in V(G) \backslash N$ such that $u \notin N_{G}^{2}[N]$. This implies that $u \notin N_{G}^{2}[v]$ for every $v \in N$. Let $N^{\prime}=\{u\} \cup N$. Since N is a J^{2}-set in G and $u \in N_{G}^{2}[u]$, it follows that $N_{G}^{2}[a] \backslash N_{G}^{2}[b] \neq \varnothing$ and $N_{G}^{2}[b] \backslash N_{G}^{2}[a] \neq \varnothing$ for every $a \neq b$, where $a, b \in N^{\prime}$. This means that N^{\prime} is a J^{2}-set in G, contradicting the maximality of N. Hence, N is a hop dominating set of G. Since N is a maximum J^{2}-set of G, N is a maximum J^{2}-hop dominating set of G, that is, N is a $\gamma_{J^{2}} h^{\text {-set }}$ of G.

Conversely, suppose that N is a $\gamma_{J^{2} h}$-set of G. Then N is a maximum J^{2}-hop dominating set of G. Hence, the assertion follows.

The following result follows from Theorem 2.
Corollary 1. Let G be a graph and let $N=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a J^{2}-set of G. Then

$$
|N|=k \leq \gamma_{J^{2} h}(G) .
$$

Proposition 1. Given any positive integer $k \geq 1$, we have

$$
\gamma_{J^{2} h}\left(P_{k}\right)=\left\{\begin{array}{l}
1 \text { if } k=1 \\
2 \text { if } k=2,3,4 \\
3 \text { if } k=5 \\
4 \text { if } k=6,7 \\
k-4 \text { if } k \geq 8
\end{array}\right.
$$

Proof. Clearly, $\gamma_{J^{2} h}\left(P_{1}\right)=1, \gamma_{J^{2} h}\left(P_{k}\right)=2$ for $k=2,3,4, \gamma_{J^{2} h}\left(P_{5}\right)=3$ and $\gamma_{J^{2} h}\left(P_{k}\right)=4$ for $k=6,7$. Suppose that $k \geq 8$. Let $P_{k}=\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ and let $S=\left\{a_{3}, a_{4}, \ldots, a_{k-3}, a_{k-2}\right\}$. Then $N_{P_{k}}^{2}[S]=V\left(P_{k}\right)$, showing that S is a hop dominating set in P_{k}. Observe that $a_{i-2} \in N_{P_{k}}^{2}\left[a_{i}\right] \backslash N_{P_{k}}^{2}\left[a_{j}\right]$ and $a_{j+2} \in N_{P_{k}}^{2}\left[a_{j}\right] \backslash N_{P_{k}}^{2}\left[a_{i}\right]$ for all $j>i$, where $i, j \in\{3,4, \ldots, k-3, k-2\}$. Thus, $N_{P_{k}}^{2}\left[a_{i}\right] \backslash N_{P_{k}}^{2}\left[a_{j}\right] \neq \varnothing$ for all $i \neq j$, where $i, j \in\{3,4, \ldots, k-3, k-2\}$, that is, S is a J^{2}-set in P_{k}. Therefore, S is a J^{2}-hop dominating set in P_{k}. Since $N_{P_{k}}^{2}\left[a_{1}\right] \subseteq N_{P_{k}}^{2}\left[a_{3}\right], N_{P_{k}}^{2}\left[a_{2}\right] \subseteq N_{P_{k}}^{2}\left[a_{4}\right], N_{P_{k}}^{2}\left[a_{k}\right] \subseteq N_{P_{k}}^{2}\left[a_{k-2}\right]$, and $N_{P_{k}}^{2}\left[a_{k-1}\right] \subseteq N_{P_{k}}^{2}\left[a_{k-3}\right]$, it follows that S is a maximum J^{2}-hop dominating set of P_{k}. Hence, $\gamma_{J^{2} h}\left(P_{k}\right)=k-4$ for all $k \geq 8$.

Theorem 3. Let G be any graph of order n and N be any J^{2}-hop dominating set of G. Then each of the following holds:
(i) $a \in N$ if and only if $N_{G}^{2}[a] \nsubseteq N_{G}^{2}[b]$ and $N_{G}^{2}[b] \nsubseteq N_{G}^{2}[a] \forall b \in N \backslash\{a\}$.
(ii) $\gamma_{J^{2} h}(G)=|V(G)|=n$ if and only if $N_{G}^{2}\left[v_{i}\right] \nsubseteq N_{G}^{2}\left[v_{j}\right] \forall i \neq j$ where $i, j \in\{1,2, \ldots, n\}$.
(iii) If G is K_{n} or \bar{K}_{n}, then $\gamma_{J^{2} h}(G)=n$ for all $n \geq 1$.

Proof. (i) Let G be a graph and N be a J^{2}-hop dominating set of G. Suppose that $a \in N$. Then $N_{G}^{2}[a] \backslash N_{G}^{2}[b] \neq \varnothing$ and $N_{G}^{2}[b] \backslash N_{G}^{2}[a] \neq \varnothing \forall b \in N \backslash\{a\}$. It follows that $N_{G}^{2}[a] \nsubseteq N_{G}^{2}[b]$ and $N_{G}^{2}[b] \nsubseteq N_{G}^{2}[a] \forall b \in N \backslash\{a\}$.

Conversely, suppose that $N_{G}^{2}[a] \nsubseteq N_{G}^{2}[b]$ and $N_{G}^{2}[b] \nsubseteq N_{G}^{2}[a] \forall b \in N \backslash\{a\}$. This means that $N_{G}^{2}[a] \backslash N_{G}^{2}[b] \neq \varnothing$ and $N_{G}^{2}[b] \backslash N_{G}^{2}[a] \neq \varnothing \forall b \in N \backslash\{a\}$. Hence, $a \in N$.
(ii) Suppose that $\gamma_{J^{2} h}(G)=|V(G)|=n$. Then $N=V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the $\gamma_{J^{2} h^{-s e t}}$ of . Thus, $N_{G}^{2}\left[v_{i}\right] \backslash N_{G}^{2}\left[v_{j}\right] \neq \varnothing \forall i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. It follows that $N_{G}^{2}\left[v_{i}\right] \nsubseteq N_{G}^{2}\left[v_{j}\right] \forall i \neq j$, where $i, j \in\{1,2, \ldots, n\}$.

Conversely, suppose that $N_{G}^{2}\left[v_{i}\right] \nsubseteq N_{G}^{2}\left[v_{j}\right] \forall i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. Then $N_{G}^{2}\left[v_{i}\right] \backslash N_{G}^{2}\left[v_{j}\right] \neq \varnothing \forall i \neq j, i, j \in\{1,2, \ldots, n\}$. It follows that v_{i}, v_{j} are in J^{2}-set S of G $\forall i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. Thus, $S=V(G)$. Consequently,

$$
\gamma_{J^{2} h}(G)=|S|=|V(G)|=n .
$$

(iii) Let $G=K_{n}$ and $V(G)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then $\left\{a_{i}\right\}=N_{G}^{2}\left[a_{i}\right] \nsubseteq N_{G}^{2}\left[a_{j}\right]=\left\{a_{j}\right\}$ $\forall i \neq j$, where $i, j \in\{1,2, \ldots, n\}$. Thus, by (ii), $\gamma_{J^{2} h}(G)=|V(G)|=n$. Similarly, if $G=\bar{K}_{n}$, then $\gamma_{J^{2} h}(G)=|V(G)|=n$.

Theorem 4. Let a, b be positive integers with $2 \leq a \leq b$. Then there exists a connected graph G such that $\gamma_{h}(G)=a$ and $\gamma_{J^{2} h}(G)=b$. In other words, $\gamma_{J^{2} h}(G)-\gamma_{h}(G)$ can be made arbitrarily large.

Proof. For $a=b$, consider \bar{K}_{a}. Then by Theorem 3, $\gamma_{J^{2} h}\left(\bar{K}_{a}\right)=a=\gamma_{h}\left(\bar{K}_{a}\right)$. Suppose that $a<b$. Consider the following two cases:
Case 1: a is odd.
Consider the graph G in Figure 2. Let $m=b-a$ and let $S=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and
 respectively. Hence, $\gamma_{h}(G)=a$ and $\gamma_{J^{2} h}(G)=a+m=b$. Consequently, $\gamma_{h}(G)<\gamma_{J^{2} h}(G)$.

Figure 2: Graph G with $\gamma_{h}(G)<\gamma_{J^{2} h}(G)$

Case 2: a is even.
Consider the graph H in Figure 3. Let $t=b-a$ and let $C=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $C^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{a-2}, v, w, c_{1}, c_{2}, \ldots, c_{t}\right\}$. Then C and C^{\prime} are γ_{h}-set and $\gamma_{J^{2} h^{-} \text {-set in } H \text {, re- }}$ spectively. Therefore, $\gamma_{h}(H)=a$ and $\gamma_{J^{2} h}(H)=a+t=b$, showing that $\gamma_{h}(H)<\gamma_{J^{2} h}(H)$.

Figure 3: Graph H with $\gamma_{h}(H)<\gamma_{J^{2} h}(H)$

Theorem 5. Let G be any graph and let $S \subseteq V(G)$. Then every hop independent set S is a J^{2}-set in G. In particular, every α_{h}-set is a J^{2}-hop dominating set. Moreover, $\alpha_{h}(G) \leq \gamma_{J^{2} h}(G)$.

Proof. Let S be a hop independent set in G. Then $d_{G}(a, b) \neq 2$ for every $a, b \in S$. Suppose on the contrary that S is not a J^{2}-set in G. Then there exist $x, y \in S$ such that $N_{G}^{2}[x] \backslash N_{G}^{2}[y]=\varnothing$ or $N_{G}^{2}[y] \backslash N_{G}^{2}[x]=\varnothing$. It follows that $N_{G}^{2}[x] \subseteq N_{G}^{2}[y]$ or $N_{G}^{2}[y] \subseteq N_{G}^{2}[x]$. In either case, we have $d_{G}(x, y)=2$, a contradiction to the fact that S is a hop independent set in G. Therefore, S is a J^{2}-set in G. Next, let S^{\prime} be an α_{h}-set of G. Then S^{\prime} is a maximum hop independent set of G (by definition). Thus, S^{\prime} is a J^{2}-set in G by the first part. Now, suppose on the contrary that S^{\prime} is not a hop dominating set of G. Then there exists $x \in V(G) \backslash S^{\prime}$ such that $x \notin N_{G}^{2}[y] \forall y \in S^{\prime}$. This means that $d_{G}(x, y) \neq 2$ for all $y \in S^{\prime}$. Thus, $S^{*}=\{x\} \cup S^{\prime}$ is a hop independent set in G, contradicting the maximality of S^{\prime}. Hence, S^{\prime} is a hop dominating set of G, showing that S^{\prime} is a J^{2}-hop dominating in G. Consequently, $\alpha_{h}(G) \leq \gamma_{J^{2} h}(G)$.

Theorem 6. Let G and H be two connected graphs. If $N=N_{G} \cup N_{H} \subseteq V(G+H)$, where N_{G} and N_{H} are J^{2}-sets in G and H, respectively, then N is a J^{2}-set in $G+H$.

Proof. Let $a, b \in N$. Suppose that $a, b \in N_{G}$. If $d_{G}(a, b)=1$, then $a \in N_{G+H}^{2}[a] \backslash N_{G+H}^{2}[b]$ and $b \in N_{G+H}^{2}[b] \backslash N_{G+H}^{2}[a]$. Since a, b are arbitrary, the assertion follows. Assume that $d_{G}(a, b)=2$. Since N_{G} is a J^{2} - set in G, there exist $w, z \in V(G)$ such that $w \in N_{G}^{2}[a] \backslash N_{G}^{2}[b]$ and $z \in N_{G}^{2}[b] \backslash N_{G}^{2}[a]$. Let $s \in N_{G}(w) \cap N_{G}(a)$ and $t \in N_{G}(z) \cap N_{G}(b)$. Then $s \in N_{G+H}^{2}[b] \backslash N_{G+H}^{2}[a]$ and $t \in N_{G+H}^{2}[a] \backslash N_{G+H}^{2}[b]$. Since a, b are arbitrary, N is a J^{2}-set of $G+H$. Next, suppose that $d_{G}(a, b) \geq 3$. Let $u \in N_{G}(a)$ and $v \in N_{G}(b)$, then $u \in N_{G+H}^{2}[b] \backslash N_{G+H}^{2}[a]$ and $v \in N_{G+H}^{2}[a] \backslash N_{G+H}^{2}[b]$. Since a, b are arbitrary, N is a J^{2}-set of $G+H$. Similarly, if $a, b \in N_{H}$, then N is a J^{2}-set of $G+H$. Next, suppose that $a \in N_{G}$ and $b \in N_{H}$. Then $a \in N_{G+H}^{2}[a] \backslash N_{G+H}^{2}[b]$ and $b \in N_{G+H}^{2}[b] \backslash N_{G+H}^{2}[a]$. Since a, b are arbitrary, it follows that N is a J^{2}-set of $G+H$.

Theorem 7. Let G and H be two connected graphs. If $N=N_{G} \cup N_{H} \subseteq V(G+H)$, where N_{G} and N_{H} are J^{2}-hop dominating sets in G and H, respectively, then N is a J^{2}-hop dominating set in $G+H$. Moreover, $\gamma_{J^{2} h}(G+H) \geq \gamma_{J^{2} h}(G)+\gamma_{J^{2} h}(H)$.

Proof. Let $N=N_{G} \cup N_{H}$, where N_{G} and N_{H} are J^{2}-hop dominating sets in G and H, respectively. Since N_{G} and N_{H} are J^{2}-sets in G and H, respectively, it follows that N is a J^{2}-set in $G+H$ by Theorem 6. Since N_{G} and N_{H} are hop dominating sets in G and H, respectively, we have $N_{G}^{2}\left[N_{G}\right]=V(G)$ and $N_{G}^{2}\left[N_{H}\right]=V(H)$. Observe that $N_{G}^{2}\left[N_{G}\right] \subseteq N_{G+H}^{2}\left[N_{G}\right]$ and $N_{H}^{2}\left[N_{H}\right] \subseteq N_{G+H}^{2}\left[N_{H}\right]$. Thus,

$$
N_{G+H}^{2}[N]=N_{G+H}^{2}\left[N_{G} \cup N_{H}\right]=V(G+H),
$$

showing that N is a hop dominating set in $G+H$. Therefore, N is a J^{2}-hop dominating set in $G+H$.

Next, let $N^{\prime}=N_{G}^{\prime} \cup N_{H}^{\prime}$, where N_{G}^{\prime} and N_{H}^{\prime} are $\gamma_{J^{2} h}$-sets in G and H, respectively. Then by the first part, N^{\prime} is a J^{2}-hop dominating set in $G+H$. Consequently,

$$
\gamma_{J^{2} h}(G+H) \geq\left|N^{\prime}\right|=\left|N_{G}^{\prime}\right|+\left|N_{H}^{\prime}\right|=\gamma_{J^{2} h}(G)+\gamma_{J^{2} h}(H) .
$$

Remark 1. The bound given in Theorem 7 is sharp. Moreover, strict inequality is attainable.

For the sharpness, consider the join graph $P_{3}+P_{4}$ in Figure 4. Let $S=\{a, b, e, f\}$. Then $N_{P_{3}+P_{4}}^{2}[S]=V\left(P_{3}+P_{4}\right)$, showing that S is a hop dominating set in $P_{3}+P_{4}$. Observe that $x \in N_{P_{3}+P_{4}}^{2}[x] \backslash N_{P_{3}+P_{4}}^{2}[y]$ and $y \in N_{P_{3}+P_{4}}^{2}[y] \backslash N_{P_{3}+P_{4}}^{2}[x]$ for every $x \neq y$ where $x, y \in S$. This means that $N_{P_{3}+P_{4}}^{2}[x] \backslash N_{P_{3}+P_{4}}^{2}[y] \neq \varnothing$ and $N_{P_{3}+P_{4}}^{2}[y] \backslash N_{P_{3}+P_{4}}^{2}[x] \neq \varnothing$ for every $x \neq y$ where $x, y \in S$. Thus, S is a J^{2}-hop dominating set in $P_{3}+P_{4}$. Since $N_{P_{3}+P_{4}}^{2}[c] \subseteq N_{P_{3}+P_{4}}^{2}[a], N_{P_{3}+P_{4}}^{2}[f] \subseteq N_{P_{3}+P_{4}}^{2}[d]$, and $N_{P_{3}+P_{4}}^{2}[e] \subseteq N_{P_{3}+P_{4}}^{2}[g]$, it follows that S is a maximum J^{2}-hop dominating set of $P_{3}+P_{4}$. Hence, $\gamma_{J^{2} h}\left(P_{3}+P_{5}\right)=4$. By Proposition 1, $\gamma_{J^{2} h}\left(P_{3}\right)=2$ and $\gamma_{J^{2} h}\left(P_{4}\right)=2$. Consequently,

$$
\gamma_{J^{2} h}\left(P_{3}+P_{4}\right)=4=\gamma_{J^{2} h}\left(P_{3}\right)+\gamma_{J^{2} h}\left(P_{4}\right) .
$$

$$
P_{3}+P_{4}:
$$

Figure 4: Graph $P_{3}+P_{4}$ with $\gamma_{J^{2} h}\left(P_{3}+P_{4}\right)=4=\gamma_{J^{2} h}\left(P_{3}\right)+\gamma_{J^{2} h}\left(P_{4}\right)$
For strict inequality, consider the graph $P_{2}+P_{8}$ in Figure 5. Let $S^{\prime}=\{a, b, d, e, f, g, h, i\}$. Then S^{\prime} is a $\gamma_{J^{2} h^{2}}$-set in $P_{2}+P_{8}$. Thus, $\gamma_{J^{2} h}\left(P_{2}+P_{8}\right)=8$. By Proposition 1, $\gamma_{J^{2} h}\left(P_{2}\right)=2$ and $\gamma_{J^{2} h}\left(P_{8}\right)=4$. Hence,

$$
\gamma_{J^{2} h}\left(P_{2}+P_{8}\right)=8>6=\gamma_{J^{2} h}\left(P_{2}\right)+\gamma_{J^{2} h}\left(P_{8}\right) .
$$

Figure 5: Graph $P_{2}+P_{8}$ with $\gamma_{J^{2} h}\left(P_{2}+P_{8}\right)>\gamma_{J^{2} h}\left(P_{2}\right)+\gamma_{J^{2} h}\left(P_{8}\right)$

Theorem 8. Let G be any non-trivial connected graph and H be any connected graph. If $T=\bigcup_{v \in V(G)} T_{v}$, where T_{v} is a maximum J^{2}-set in H^{v} for each $v \in V(G)$, then T is a J^{2}-hop dominating set in $G \circ H$. Moreover, $\gamma_{J^{2} h}(G \circ H) \geq|V(G)| \cdot \gamma_{J^{2} h}(H)$.

Proof. Suppose that $T=\bigcup_{v \in V(G)} T_{v}$, where T_{v} is a maximum J^{2}-set in H^{v} for each $v \in V(G)$. Let $a, b \in T$. Suppose that $a, b \in T_{u}$ for some $u \in V(G)$. If $d_{H}(a, b)=1$, then $a \in N_{G \circ H}^{2}[a] \backslash N_{G \circ H}^{2}[b]$ and $b \in N_{G \circ H}^{2}[b] \backslash N_{G \circ H}^{2}[a]$. It follows that T is a J^{2}-set in $G \circ H$. Assume that $d_{H}(a, b)=2$. Since T_{u} is a J^{2} - set in H^{u}, there exist $w, z \in V\left(H^{u}\right)$ such that $w \in N_{H^{u}}^{2}[a] \backslash N_{H^{u}}^{2}[b]$ and $z \in N_{H^{u}}^{2}[b] \backslash N_{H^{u}}^{2}[a]$. Let $s \in N_{H^{u}}(w) \cap N_{H^{u}}(a)$ and $t \in N_{H^{u}}(z) \cap N_{H^{u}}(b)$. Then $s \in N_{G \circ H}^{2}[b] \backslash N_{G \circ H}^{2}[a]$ and $t \in N_{G \circ H}^{2}[a] \backslash N_{G \circ H}^{2}[b]$. Since a, b are arbitrary, T is a J^{2}-set of $G \circ H$. Next, suppose that $d_{H}(a, b) \geq 3$. Let $u \in N_{H}(a)$ and
$v \in N_{H}(b)$, then $u \in N_{G \circ H}^{2}[b] \backslash N_{G \circ H}^{2}[a]$ and $v \in N_{G \circ H}^{2}[a] \backslash N_{G \circ H}^{2}[b]$. Since a, b are arbitrary, T is a J^{2}-set of $G \circ H$. Next, assume that $a \in T_{x}$ and $b \in T_{y}$ for some $x, y \in V(G), x \neq y$. Then $a \in N_{G \circ H}^{2}[a] \backslash N_{G \circ H}^{2}[b]$ and $b \in N_{G \circ H}^{2}[b] \backslash N_{G \circ H}^{2}[a]$. Thus, $N_{G \circ H}^{2}[a] \backslash N_{G \circ H}^{2}[b] \neq \varnothing$ and $N_{G \circ H}^{2}[b] \backslash N_{G \circ H}^{2}[a] \neq \varnothing$. Since a and b are arbitrary, T is a J^{2}-set in $G \circ H$. Now, since T_{v} is a maximum J^{2}-set in H^{v} for each $v \in V(G)$, it follows that T_{v} is a maximum J^{2}-hop dominating set in H^{v} for every $v \in V(G)$ by Theorem 2. Thus,

$$
\bigcup_{v \in V(G)} V\left(H^{v}\right) \subseteq N_{G \circ H}^{2}[T] .
$$

Now, let $r \in V(G \circ H) \backslash \bigcup_{v \in V(G)} V\left(H^{v}\right)$. Then $r \in V(G)$. Since G is a non-trivial connected graph, there exists $q \in T_{s}$ such that $d_{G \circ H}(r, q)=2$ for some $s \in V(G)$. Hence, $N_{G \circ H}^{2}[T]=V(G \circ H)$, and so T is a J^{2}-hop dominating set in $G \circ H$. Consequently, $\gamma_{J^{2} h}(G \circ H) \geq|V(G)| \cdot \gamma_{J^{2} h}(H)$.

Lemma 1. [7] Let G be a non-trivial connected graph and let G_{1} and G_{2} be two copies of G in the graph $S(G)$. If $w \in V\left(G_{1}\right)$ and $w^{\prime} \in V\left(G_{2}\right)$ is the corresponding vertex of w, then

$$
N_{S(G)}^{2}[w]=N_{G_{1}}^{2}[w] \cup N_{G_{2}}^{2}\left[w^{\prime}\right]=N_{S(G)}^{2}\left[w^{\prime}\right] .
$$

Lemma 2. Let G be a non-trivial connected graph and let G_{1} and G_{2} be two copies of G in the graph $S(G)$. If $N_{G_{1}}^{2}[a] \subseteq N_{G_{1}}^{2}[b]$ or $N_{G_{2}}^{2}[a] \subseteq N_{G_{2}}^{2}[b]$, then $N_{S(G)}^{2}[a] \subseteq N_{S(G)}^{2}[b]$.

Proof. Let $a, b \in V\left(G_{1}\right)$ and suppose that $N_{G_{1}}^{2}[a] \subseteq N_{G_{1}}^{2}[b]$. Let $x \in N_{S(G)}^{2}[a]$. Then $d_{S(G)}(a, x)=2$. If $x \in V\left(G_{1}\right)$, then $d_{G_{1}}(a, x)=2$. So, $x \in N_{G_{1}}^{2}[a]$. Thus, by assumption, $x \in N_{G_{1}}^{2}[b]$. By Lemma $1, x \in N_{S(G)}^{2}[b]$, and we are done. Suppose that $x \in V\left(G_{2}\right)$. Then $x \in N_{G_{2}}^{2}\left[a^{\prime}\right]$ for some $a^{\prime} \in V\left(G_{2}\right)$. Since $N_{G_{2}}^{2}\left[a^{\prime}\right] \subseteq N_{G_{2}}^{2}\left[b^{\prime}\right] \subseteq N_{S(G)}^{2}[b]$, it follows that $x \in N_{S(G)}^{2}[b]$, and so $N_{S(G)}^{2}[a] \subseteq N_{S(G)}^{2}[b]$. Similarly, if $N_{G_{2}}^{2}[a] \subseteq N_{G_{2}}^{2}[b]$, then $N_{S(G)}^{2}[a] \subseteq N_{S(G)}^{2}[b]$.

Theorem 9. Let G be a connected non-trivial graph. Then $T \subseteq V(S(G))$ is a J^{2}-set in $S(G)$ if and only if T satisfies one of the following conditions:
(i) T is a J^{2}-set in G_{1}.
(ii) T is a J^{2}-set in G_{2}.
(iii) $T=T_{G_{1}} \cup T_{G_{2}}$, where $T_{G_{1}} \cup T_{G_{2}}^{\prime}$ and $T_{G_{1}}^{\prime} \cup T_{G_{2}}$ are J^{2}-sets in G_{1} and G_{2}, respectively, where $T_{G_{2}}^{\prime}=\left\{x \in V\left(G_{1}\right): x^{\prime} \in T_{G_{2}}\right\}$ and $T_{G_{1}}^{\prime}=\left\{y \in V\left(G_{2}\right): y^{\prime} \in T_{G_{1}}\right\}$.

Proof. Suppose that T is a J^{2}-set in $S(G)$. Let $T_{G_{1}}=T \cap V\left(G_{1}\right)$ and $T_{G_{2}}=T \cap V\left(G_{2}\right)$. If $T_{G_{2}}=\varnothing$, then $T=T_{G_{1}}$ is a J^{2}-set in G_{1}. If $T_{G_{1}}=\varnothing$, then $T=T_{G_{2}}$ is a J^{2}-set in G_{2}, showing that (i) or (ii) holds. Assume that $T_{G_{1}} \neq \varnothing$ and $T_{G_{2}} \neq \varnothing$. Suppose on the contrary that $S=T_{G_{1}} \cup T_{G_{2}}^{\prime}$ is not a J^{2}-set in G_{1}. Then there exist $a, b \in S$ such
that $N_{G_{1}}^{2}[a] \backslash N_{G_{1}}^{2}[b]=\varnothing$ or $N_{G_{1}}^{2}[b] \backslash N_{G_{1}}^{2}[a]=\varnothing$. It follows that $N_{G_{1}}^{2}[a] \subseteq N_{G_{1}}^{2}[b]$ or $N_{G_{1}}^{2}[b] \subseteq N_{G_{1}}^{2}[a]$. If $a, b \in T_{G_{1}}$, then $a, b \in T$. Since $N_{G_{1}}^{2}[a] \subseteq N_{G_{1}}^{2}[b]$ or $N_{G_{1}}^{2}[b] \subseteq N_{G_{1}}^{2}[a]$, we have $N_{S(G)}^{2}[a] \subseteq N_{S(G)}^{2}[b]$ or $N_{S(G)}^{2}[b] \subseteq N_{S(G)}^{2}[a]$ by Lemma 2. Thus, $N_{S(G)}^{2}[a] \backslash N_{S(G)}^{2}[b]=\varnothing$ or $N_{S(G)}^{2}[b] \backslash N_{S(G)}^{2}[a]=\varnothing$, a contradiction to the fact that T is a J^{2}-set in $S(G)$. Suppose that $a, b \in T_{G_{2}}^{\prime}$. Then $a^{\prime}, b^{\prime} \in T_{G_{2}} \subseteq T$. Since $N_{G_{1}}^{2}[a] \backslash N_{G_{1}}^{2}[b]=\varnothing$ or $N_{G_{1}}^{2}[b] \backslash N_{G_{1}}^{2}[a]=\varnothing$, it follows that $N_{G_{2}}^{2}\left[a^{\prime}\right] \backslash N_{G_{2}}^{2}\left[b^{\prime}\right]=\varnothing$ or $N_{G_{2}}^{2}\left[b^{\prime}\right] \backslash N_{G_{2}}^{2}\left[a^{\prime}\right]=\varnothing$. Thus, $N_{G_{2}}^{2}\left[a^{\prime}\right] \subseteq N_{G_{2}}^{2}\left[b^{\prime}\right]$ or $N_{G_{2}}^{2}\left[b^{\prime}\right] \subseteq N_{G_{2}}^{2}\left[a^{\prime}\right]$, and so

$$
N_{S(G)}^{2}\left[a^{\prime}\right] \subseteq N_{S(G)}^{2}\left[b^{\prime}\right] \text { or } N_{S(G)}^{2}\left[b^{\prime}\right] \subseteq N_{S(G)}^{2}\left[a^{\prime}\right]
$$

by Lemma 2, which is a contradiction. Now, suppose that $a \in T_{G_{1}}$ and $b \in T_{G_{2}}^{\prime}$. Then $b^{\prime} \in T_{G_{2}}$. Since $N_{G_{1}}^{2}[a] \subseteq N_{G_{1}}^{2}[b]$ or $N_{G_{1}}^{2}[b] \subseteq N_{G_{1}}^{2}[a]$, it follows that $N_{S(G)}^{2}[a] \subseteq N_{S(G)}^{2}\left[b^{\prime}\right]$ or $N_{S(G)}^{2}\left[b^{\prime}\right] \subseteq N_{S(G)}^{2}[a]$ by Lemma 1 and Lemma 2, a contradiction. Thus, $S=T_{G_{1}} \cup T_{G_{2}}^{\prime}$ is a J^{2}-set in G_{1}. Similarly, $T_{G_{1}}^{\prime} \cup T_{G_{2}}$ is a J^{2}-set in G_{2}. Thus, (iii) holds.

Conversely, if (i) or (ii) holds, then the assertion follows. Assume that (iii) holds. Let $x, y \in T=T_{G_{1}} \cup T_{G_{2}}$. If $x, y \in T_{G_{1}} \subseteq T_{G_{1}} \cup T_{G_{2}}^{\prime}$, then $N_{G_{1}}^{2}[x] \backslash N_{G_{1}}^{2}[y] \neq \varnothing$ and $N_{G_{1}}^{2}[y] \backslash N_{G_{1}}^{2}[x] \neq \varnothing$ by assumption. This means that $N_{G_{1}}^{2}[x] \nsubseteq N_{G_{1}}^{2}[y]$ and $N_{G_{1}}^{2}[y] \nsubseteq N_{G_{1}}^{2}[x]$. Thus, $N_{S(G)}^{2}[x] \nsubseteq N_{S(G)}^{2}[y]$ and $N_{S(G)}^{2}[y] \nsubseteq N_{S(G)}^{2}[x]$, and we are done. If $x, y \in T_{G_{2}}$, then $x^{\prime}, y^{\prime} \in T_{G_{2}}^{\prime} \subseteq T_{G_{1}} \cup T_{G_{2}}^{\prime}$. Since $T_{G_{1}} \cup T_{G_{2}}^{\prime}$ is a J^{2}-set in G_{1}, we have $N_{G_{1}}^{2}\left[x^{\prime}\right] \nsubseteq N_{G_{1}}^{2}\left[y^{\prime}\right]$ and $N_{G_{1}}^{2}\left[y^{\prime}\right] \nsubseteq N_{G_{1}}^{2}\left[x^{\prime}\right]$. Thus, by Lemma $1, N_{S(G)}^{2}[x] \nsubseteq N_{S(G)}^{2}[y]$ and $N_{S(G)}^{2}[y] \nsubseteq N_{S(G)}^{2}[x]$. Now, assume that $x \in T_{G_{1}}$ and $y \in T_{G_{2}}$. Then $y^{\prime} \in T_{G_{2}}^{\prime}$, and so $x, y^{\prime} \in T_{G_{1}} \cup T_{G_{2}}^{\prime}$. Since $T_{G_{1}} \cup T_{G_{2}}^{\prime}$ is a J^{2}-set in G_{1}, we have $N_{G_{1}}^{2}[x] \nsubseteq N_{G_{1}}^{2}\left[y^{\prime}\right]$ and $N_{G_{1}}^{2}\left[y^{\prime}\right] \nsubseteq N_{G_{1}}^{2}[x]$. Thus, by Lemma $1, N_{S(G)}^{2}[x] \nsubseteq N_{S(G)}^{2}[y]$ and $N_{S(G)}^{2}[y] \nsubseteq N_{S(G)}^{2}[x]$. Since x, y are arbitrary, it follows that T is a J^{2}-set in $S(G)$.

Theorem 10. [5] Let G be a non-trivial connected graph. Then S is a hop dominating set in $S(G)$ if and only if one of the following conditions holds:
(i) S is a hop dominating set in G_{1}.
(ii) S is a hop dominating set in G_{2}.
(iii) $S=S_{G_{1}} \cup S_{G_{2}}$ such that $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ and $S_{G_{1}}^{\prime} \cup S_{G_{2}}$ are hop dominating sets in G_{1} and G_{2}, respectively, where

$$
S_{G_{2}}^{\prime}=\left\{a \in V\left(G_{1}\right): a^{\prime} \in S_{G_{2}}\right\} \text { and } S_{G_{1}}^{\prime}=\left\{b \in V\left(G_{2}\right): b^{\prime} \in S_{G_{1}}\right\} .
$$

Theorem 11. Let G be a connected non-trivial graph. Then $T \subseteq V(S(G))$ is a J^{2}-hop dominating set in $S(G)$ if and only if T satisfies one of the following conditions:
(i) T is a J^{2}-hop dominating set in G_{1}.
(ii) T is a J^{2}-hop dominating set in G_{2}.
(iii) $T=T_{G} \cup T_{H}$, where $T_{G_{1}} \cup T_{G_{2}}^{\prime}$ and $T_{G_{1}}^{\prime} \cup T_{G_{2}}$ are J^{2}-hop dominating sets in G_{1} and G_{2}, respectively, where

$$
T_{G_{2}}^{\prime}=\left\{x \in V\left(G_{1}\right): x^{\prime} \in T_{G_{2}}\right\} \text { and } T_{G_{1}}^{\prime}=\left\{y \in V\left(G_{2}\right): y^{\prime} \in T_{G_{1}}\right\} .
$$

Proof. Suppose that T is a J^{2}-hop dominating set in $S(G)$. Let $T_{G_{1}}=T \cap V\left(G_{1}\right)$ and $T_{G_{2}}=T \cap V\left(G_{2}\right)$. If $T_{G_{2}}=\varnothing$, then $T=S_{G_{1}}$ is a J^{2}-hop dominating set of G_{1}. If $T_{G_{1}}=\varnothing$, then $T=T_{G_{2}}$ is a J^{2}-hop dominating set of G_{2}, showing that (i) or (ii) holds. Now, since T is a J^{2}-set in $S(G), T_{G_{1}} \cup T_{G_{2}}^{\prime}$ and $T_{G_{1}}^{\prime} \cup T_{G_{2}}$ are J^{2}-sets in G_{1} and G_{2}, respectively, by Theorem 9. Also, since T is a hop dominating set in $S(G), T_{G_{1}} \cup T_{G_{2}}^{\prime}$ and $T_{G_{1}}^{\prime} \cup T_{G_{2}}$ are hop dominating sets in G_{1} and G_{2}, respectively, by Theorem 10. Consequently, $T_{G_{1}} \cup T_{G_{2}}^{\prime}$ and $T_{G_{1}}^{\prime} \cup T_{G_{2}}$ are J^{2}-hop dominating sets in G_{1} and G_{2}, respectively.

For the converse, suppose (i) holds. Then T is both a J^{2}-set and a hop dominating in G_{1}. Thus, by Theorem 9 and by Theorem $10, T$ is a J^{2}-hop dominating set in $S(G)$. Similarly, if (ii) holds, then T is a J^{2}-hop dominating set of $S(G)$. Suppose that (iii) holds. Then by Theorem 9 and Theorem 10, T is a J^{2}-hop dominating set of $S(G)$.

Corollary 2. Let G be a connected non-trivial graph. Then

$$
\gamma_{J^{2} h}(S(G))=\gamma_{J^{2} h}(G) .
$$

Proof. Let T be a $\gamma_{J^{2} h}$-set of G. Then by Theorem 11, T is a J^{2}-hop dominating set of $S(G)$. Thus, $\gamma_{J^{2} h}(S(G)) \geq|T|=\gamma_{J^{2} h}(G)$. On the other hand, suppose T^{*} is a
 Theorem 11(i) and (ii). Hence, $\gamma_{J^{2} h}(S(G))=\left|T^{*}\right| \leq \gamma_{J^{2} h}(G)$. Next, suppose T^{*} is of type (iii), say $T^{*}=T_{G_{1}} \cup T_{G_{2}}$. Then $T_{G}^{*}=T_{G_{1}} \cup T_{G_{2}}^{\prime}$ is a J^{2}-hop dominating set of G_{1} by Theorem 11(iii). This implies that $\gamma_{J^{2} h}(S(G))=\left|T^{*}\right|=\left|T_{G}^{*}\right| \leq \gamma_{J^{2} h}(G)$. Consequently, $\gamma_{J^{2} h}(S(G))=\gamma_{J^{2} h}(G)$.

Example 2. Consider the shadow graph $S\left(C_{4}\right)$ of C_{4} in Figure 6. Let $V\left(C_{4}\right)=\{a, b, c, d\}$ and let $N=\{a, b\}$. Then $N_{C_{4}}^{2}[N]=V\left(C_{4}\right), a \in N_{C_{4}}^{2}[a] \backslash N_{C_{4}}^{2}[b]$ and $b \in N_{C_{4}}^{2}[b] \backslash N_{C_{4}}^{2}[a]$. Thus, N is a J^{2}-hop dominating set of C_{4}. Since $N_{C_{4}}^{2}[d]=N_{C_{4}}^{2}[a]$ and $N_{C_{4}}^{2}[c]=N_{C_{4}}^{2}[b]$, it follows that N is a maximum J^{2}-hop dominating set of C_{4}. Hence, $\gamma_{J^{2} h}\left(C_{4}\right)=2$. Observe that $a \in N_{S\left(C_{4}\right)}^{2}[a] \backslash N_{S\left(C_{4}\right)}^{2}[b]$ and $b \in N_{S\left(C_{4}\right)}^{2}[b] \backslash N_{S\left(C_{4}\right)}^{2}[a]$, showing that N is a J^{2}-set in $S\left(C_{4}\right)$. Since $N_{S\left(C_{4}\right)}^{2}[N]=V\left(S\left(C_{4}\right)\right)$, it follows that N is a J^{2}-hop dominating set in $S\left(C_{4}\right)$. By Lemma 1, $N_{S\left(C_{4}\right)}^{2}[u]=N_{S\left(C_{4}\right)}^{2}\left[u^{\prime}\right]$ for every $u \in V\left(C_{4}\right)$. Since $N_{S\left(C_{4}\right)}^{2}[a]=N_{S\left(C_{4}\right)}^{2}[d]$ and $N_{S\left(C_{4}\right)}^{2}[b]=N_{S\left(C_{4}\right)}^{2}[c]$, it follows that N is a maximum J^{2}-hop dominating set of $S\left(C_{4}\right)$. Thus, $\gamma_{J^{2} h}\left(C_{4}\right)=2=\gamma_{J^{2} h}\left(S\left(C_{4}\right)\right)$.

Figure 6: Graph C_{4} with $\gamma_{J^{2} h}\left(C_{4}\right)=2=\gamma_{J^{2} h}\left(S\left(C_{4}\right)\right)$

4. Conclusion

The concept of J^{2}-hop domination has been introduced and initially investigated in this study. Its bounds with respect to other known parameters in graph theory have been determined. In addition, characterizations of J^{2}-hop dominating sets in some graphs and shadow graph have been formulated and were used to solve exact value of the parameter of each of these graphs. Interested researchers may study further this parameter on graphs that were not considered in this study. Further, researchers may consider the investigation on the complexity of solving this parameter and provide application especially in real-life situation, network and other fields.

Acknowledgements

The authors would like to thank Mindanao State University - Tawi-Tawi College of Technology and Oceanography for funding this research. Also, the authors would like to thank the referees for their invaluable comments and suggestions that led to the improvement of the paper.

References

[1] S. Ayyaswamy, B. Krishnakumari, B. Natarjan, and Y. Venkatakrishnan. Bounds on the hop domination number of a tree. Proceedings-Mathematical Sciences., 125(4):449-455, 2015.
[2] S. Ayyaswamy, C. Natarajan, and G. Sathiamoorphy. A note on hop domination
number of some special families of graphs. International Journal of Pure and Applied Mathematics., 119(12):11465-14171, 2018.
[3] J. Hassan and S. Canoy Jr. Connected grundy hop dominating sequences in graphs. Eur. J. Pure Appl. Math., 16(2):1212-1227, 2023.
[4] J. Hassan and S. Canoy Jr. Grundy dominating and grundy hop dominating sequences in graphs: Relationships and some structural properties. Eur. J. Pure Appl. Math., 16(2):1154-1166, 2023.
[5] J. Hassan, S. Canoy Jr., and Chrisley Jade Saromines. Convex hop domination in graphs. Eur. J. Pure Appl. Math., 16(1):319-335, 2023.
[6] J. Hassan, A. Lintasan, and N.H. Mohammad. Some properties and realization problems involving connected outer-hop independent hop domination in graphs. Eur. J. Pure Appl. Math., 16(3):1848-1861, 2023.
[7] Canoy S. Jr. and G. Salasalan. Revisiting domination, hop domination, and global hop domination in graphs. Eur. J. Pure Appl. Math., 14:1415-1428, 2021.
[8] S. Canoy Jr and J. Hassan. Weakly convex hop dominating sets in graphs. Eur. J. Pure Appl. Math., 16(2):1196-1211, 2023.
[9] C. Natarajan and S. Ayyaswamy. Hop domination in graphs ii. Versita,, 23(2):187199, 2015.
[10] Y. Pabilona and H. Rara. Total hop dominating sets in the join, corona and lexicographic product of graphs. Jour. of Algebra and Appl. Math., 2:105-115, 2017.
[11] Y. Pabilona and H. Rara. Connected hop domination in graphs under some binary operations. Asian-Eur. J. Math., 11(5):1850075-1-1850075-11, 2018.
[12] G. Salasalan, S. Canoy Jr., and A. Aradais. Global hop domination numbers of graphs. Eur. J. Pure Appl. Math., 14(1):112-125, 2021.

