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Abstract. In this article, in a bigeneralized topological space, we introduce an interesting tool
namely, (s,v)-dense set, and examine its significance of this set. Also, we give the relationships
among nowhere-dense sets defined in both generalized and bigeneralized topological space and give
some of their properties by using functions. Finally, we give some applications for (s,v)-dense and
(s,v)-nowhere dense sets in a soft set theory.
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1. Introduction

In [2], Csaszar defined the notion of generalized topological space. Some researchers
have found various new concepts in this space and examined their nature in a generalized
topological space. Especially, nowhere dense and dense sets were introduced by Ekici in
a generalized topological space [6]. He has given few results for nowhere-dense and dense
sets in a generalized topological space.

Some researchers proved various properties for nowhere dense sets e.g. [9, 12, 14]. In-
spired by this, Korczak-Kubiak, et al. introduced two new generalized topologies, namely,
w* and p**; then examined the nature of nowhere dense set using p* and p** [8].

In [7], J.C. Kelly introduced the notion of bitopological space. Motivated by this, C.
Boonpok introduced the concept of bigeneralized topological space in 2010 [1]. He proved
some results about (m,n)-closed sets in bigeneralized topological space.

In this paper, we define the generalization of dense sets, namely, (s,v)-dense in a
bigeneralized topological space. In a bigeneralized topological space, various properties
for (s,v)-dense and (s, v)-nowhere dense sets are launched.
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The basic definitions and results are presented in section 2 which is useful for the
development of the following sections. In section 3, in a bigeneralized topological space,
new results for (s,v)-dense sets are proven. The necessary conditions for a given set is
(s,v)-dense are given. Section 4, some properties for (s,v)-nowhere dense sets are proven.
In a bigeneralized topological space, the relationship between p-nowhere dense and (s, v)-
nowhere dense sets are examined. Finally, the set (s,v)-codense is defined and find few
results for this set.

In section 5, the nature of (s,v)-dense and (s, v)-codense sets are examined by func-
tions in a bigeneralized topological space. In the last section, we define a soft set using
(s,v)-dense, (s,v)-nowhere dense, and (s,v)-codense sets are defined in a bigeneralized
topological space.

2. Preliminaries

Let u be the collection of subsets of a non-null set X. u is called generalized topol-
ogy [2] in X if it contains the empty set and is closed under arbitrary union. Then (X, 1)
is called generalized topological space (GTS) [2]. If  contains X, then (X, u) is called as
a strong generalized topological space (sGTS) [9].

In, [3], let @ be the subset of (X, ),
o If Q € pu, then @ is called p-open.
o If X —(@Q € p, then @ is said to be p-closed.
e The interior of Q denoted by 7,Q), is the union of all y-open sets contained in Q).
e The closure of ) denoted by c¢,Q, is the intersection of all p-closed sets containing ().

For ease of notation, we write i(Q) and ¢(Q) when no confusion can arise.

Korczak - Kubiak, et.al [8] defined the following notations;

fi={Lepu|L#0}.
na)={Leu|zeL).

Let @ be a subset of a generalized topological space (X, u). Then @ is said to be ;
e u-nowhere dense [6] if ic(Q) =0 ;
e i-dense [6] if cQ = X ;
o y-codense [5] if ¢(X — Q) = X.

Let p1, p2 be two GT in a non-null set X. Then (X, 1, p2) is called as a bigeneralized
topological space (BGTS) [1].

Let (X, p1, p2) be a BGTS, D C X. T The closure of D is notated by cs(D) and is(D)
denote the interior of D with respect to us, respectively, for s = 1,2 [1].

In a BGTS (X, p1, p2), let @, P C X. Then
e () is called (s,v)-closed [1] if ¢5(cy(Q)) = @, where s,v =1 or 2 ; s # v.
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o If X — @ is (s,v)-closed, then @ is called (s,v)-open [1] where s,v =1 or 2 ; s # v.

o P is called s ,-closed [4] if ¢, (P) C K whenever P C K and K is pus-open in X, for
s, v=1,2; s #wv.

o If X — P is p,)-closed, then P is called ps ,-open [4] where s,v =1or 2 ; s # v.

In [1], a subset @ of a BGTS (X, 1, u2) is called

s, v)-p-reqular open if Q = is(cy(Q)) for s,v =1or 2 ; s # v.
s, v)-p-semi-open if Q C ¢,(is(Q)) for s,v =1 or 2 ; s # v.
s,v)-p-preopen if Q C is(cy(Q)) for s,v =1 or 2 ; s # v.
s,v)-p-a-open if Q Cig(cy(is(Q))) for s, =1or 2 ; s #v.

Lemma 1. [Proposition 3.4, [1]] Let K be a subset of a BGTS (X, yu1, p2). Then K is
(s,v)-closed < K is both p-closed in (X, ps) and (X, p,,) where s,v =1or 2 ; s # v.

Lemma 2. [Proposition 3.3, [4]] Let (X, u1,p2) be a BGTS, K C X. Then K is pi(s)-
closed where s,v = 1,2 ; s # v whenever K is p,-closed.

Lemma 3. [Lemma 3.2, [9]] Let D, K be two subsets of a generalized topological space
(X,pu). K € iand KND =0, then KNeD = 0.

Lemma 4. [Proposition 3.3, [9]] In a GTS (X, pu), Q € D(u) < HNQ # 0 for any H € i
where D(p) ={P C X | cu,(P) = X}.

Lemma 5. [Proposition 2.2, [10]] Let P,Q be two subsets of a GTS (X, u). Then the
followings are true:

) cu(X = P) =X —iy(P) 5 ip(X — P) = X — cu(P).
b) If (X — P) € u, then ¢,(P) = P and if P € pu, then i,(P) = P.

(a
(b)
(c) If P C @, then ¢, (P) C cu(Q) and i,(P) C i,(Q).
(d) P C¢u(P) and i, (P) C P.

(

€) cu(cu(P)) = cu(P) and 1, (ip(P)) = in(P).
3. Nature of (s, v)-dense sets

Here, we define a generalized dense set using two generalized topologies namely,
(s,v)-dense set, and analyze its nature in a BGTS (X, p1, po).

Definition 1. Let D be a non-null subset of a bigeneralized topological space (X, pu1, p2).
Then D is called (s,v)-dense if cs(cy(D)) = X where s,v = 1,2 and s # v.

Moreover, (s,v) —D(X) ={Q C X | Q is (s,v)-dense in X} for s,v =1,2; s # v
Example 2. Consider the BGTS (X, p1, o) where X = {e, f, k,1};
H1 = {®7 {6}, {6, f}7 {fv k}a {67 f: k}}

and
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M2 = {(Dv {6, f}a {f: l}a {6, f7 l}}
Then (s,v) — D(X) ={Q C X | either e € Q or f € Q} where s,v =1,2; s # v.
In a GTS, every superset of a (s, v)-dense set is (s, v)-dense where s,v = 1,2 and s # v.

Theorem 3. Let (X, pu1,u2) be a BGTS and Q be a non-null subset of X. Then Q is
(s,v)-dense & c,Q N H # 0 for every H is a non-null ps-open set where s,v = 1,2 and
s #£ .

Proof. Suppose Q € (s,v) — D(X) for s,v = 1,2 ; s # v, then cs(c,(Q)) = X and
s0 X — (es(c(Q))) = 0 where s,v = 1,2 and s # v. By Lemma 5, X — (cs(cp(Q))) =
is(X — (c(Q))), so that is(X — (cy(Q))) = 0 which implies that ¢,(Q) N H # O for
every H is a non-null ps-open set where s,v = 1,2 and s # v. Conversely, assume that,
co(Q) N H #£ 0 for every H is a non-null us-open set where s,v = 1,2 and s # v. Then
is(X = (cp(Q))) = 0 and so c5(cy(Q)) = X, by Lemma 5 where s,v = 1,2 and s # v. Hence
Q is (s,v)-dense for s,v =1,2 and s # v.

Theorem 4 and Example 5 are described in the below diagram.

/\/\

— dense — dense — dense

\/\/

Theorem 4. In a BGTS (X, u1,p2), if K is either us-dense or p,-dense, then K is
(s,v)-dense where s,v =1,2 ; s #v.

Proof. Assume that, K is us-dense where for s = 1,2. Then cs(K) = X for s =1,2.
Take s =2 and v = 1. Then K is pg-dense. Since K C ¢1(K) we have co(K) C ca(c1(K)).
Hence

K € (2,1) - D(X) (1)

Take s =1 and v = 2. Then K is j1-dense. Since K C ca(K) we have ¢1(K) C ¢1(ca(K)).
Thus,
Ke(1,2) -DX) (2)

From (1) & (2), K is (s,v)-dense where s,v = 1,2 and s # v. Similarly, we can prove
that K is (s,v)-dense if K is u,-dense where s,v = 1,2 and s # v.

Example 5 describes that the Theorem 4 is not reversible. Generally, (1,2) — D(X) #
(2,1) = D(X) in a bigeneralized topological space as given in Example 6.

Example 5. Consider the bigeneralized topological space (X, u1,u2), X = {e, f, k,1};
H1 = {@7 {67 l}a {fa l}a {6, fa l}}

and
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M2 = {®7 {e? k}? {fa k}a {ea I k}}

Here {k} is (2,1)-dense. But {k} is not pi-dense. Also, {l} is (1,2)-dense. But {l} is not
pa-dense.

Example 6. Consider the bigeneralized topological space (X, u1, u2) where X = {e, f, k, l};
H1 = {@7 {6, f}a {f’ k}, {67 f? k}}

and

M2 = {Q)v {6}7 {67 l}7 {kv l}, {67 k, l}}
Then
e (1,2)-D(X) = {{e}, {/ 1. {k}. {l}. {e, f}. {e. b}, {e, 1} {f, B} {f, 1 Ak, 1} {e, £, B} {e, f,
I} e, k, U}, {f k,1}, X}
;(f}, 1))(;77()() ={{eb {fh{e. fhAe kb {e, 11 {f, kLA I {e, £ kY e, £ 1) {e, B, 13 {,
Thus, (1,2) — D(X) # (2,1) — D(X).

Theorem 7. Let py and uo be two generalized topologies in X. If ps C iy, then (v,s) —
D(X) C (s,v) — D(X) where s,v =1,2 and s # v.

Proof. We give the detailed proof only for s = 1 and v = 2. Suppose that 1 C o
and Q € (2,1) — D(X), then c2(c1(Q)) = X. By Lemma 4, c1(Q) N H # O for every
H € [ip. Take G € i1 we get G € fiz for that ¢1(Q) NG # 0. Since Q C ¢2(Q) we have
c1(Q) C ci(c2(Q)). Thus, c1(c2(Q)) NG # 0. Since G is an arbitrary non-null p1-open
set we have ci(c1(c2(Q))) = X, by Lemma 4. Hence ci(c2(Q)) = X, by Lemma 5(e).
Therefore, Q € (1,2) — D(X).

Theorem 8. Let (X, pi, p2) be a BGTS and D be a non-null subset of X. If D € (s,v) —
D(X), then DN H # 0 for every H is a non-null (s,v)-open set in X for s,v = 1,2 ;
s # .

Proof. Take s =1 and v = 2. Assume that, D is (1,2)-dense. Then ci(c2(D)) = X.
Let H be a non-null (1,2)-open set. By Lemma 1,

H € iy (3)
H € ji (4)
Then co(D)NH # 0, by Lemma 4 and (3). From (4) and co(D)NH # O we have DNH # (),

by Lemma 3. Thus, DN H # () for every H is a non-null (1,2)-open set. Take s =2 and
v = 1. By similar considerations in the above case, we get the proof.

Theorem 9. Let (X, p1,u2) be a BGTS, D C X. If DN H # 0 for every H # ) is
H(sw)-open, then D € (s,v) — D(X); s,v=1,2 and s # v.

Proof. We give the detailed proof for s =1 and v = 2 only. Suppose that D N H # ()
for every H is non-null p 2)-open. By Theorem 4, we have to prove D is pz-dense.
Let B € pig. Then B is a non-null p y-open set in X, by Lemma 2. By assumption,
DN B # 0. Therefore, D is a po-dense set. Hence D is a (1,2)-dense set.
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The below Example 10 describes that the converse part of Theorem 9 is generally not
true.

Example 10. Take X = {e, f,k,1};

p = {0, {e, f1Af, 1} {e, £, 11}
and

pe = {0, {e,k},{f, K} {e, f.k}}.

Then H(1,2) = {®7 {6}, {f}7 {l}’ {8, f}7 {6, k}v {6, l}a {fa k}a {f7 l}v {6, [ k}a {6, s l}} and
N(Z,l) - {Q)’ {6}, {f}7 {k}7 {67 f}7 {ev k}v {f? k}7 {fv l}, {67 fa k}, {67 fa l}7 {fa k? l}}

Take P = {e}. Then P € (1,2) — D(X). But PN Q = () where Q@ = {l} is a non-null
p1,2)-open set. Let M = {f} C X. Then M € (2,1) — D(X). But M N L = () where
L = {e} is a non-null yi(5;)-open set.

Q € [is Q is (s,v) —p—semi open.

!

Q is (s,v) —pu — preopen Q is (s,v) —pu—a—open
The following Lemma 6 describes the above diagram.

Lemma 6. Let (X, u1,u2) be a BGTS. If Q € fis, then the below results are true.
(a) Q is (s,v)-pu-semi open.

(b) Q is (s,v)-p-preopen.

(¢) Q is (s,v)-pu-a-open where s,v = 1,2 and s # v.

Proof. We give the detailed proof for (b) only. Suppose that, @ € fis for s = 1,2.
Then i5(Q) = @ for s = 1,2. Since @ C ¢,(Q) for v = 1,2 we have i5(Q) C is(cy(Q))
where s,v = 1,2 and s # v. Thus, Q C is5(c,(Q)) where s,v = 1,2 and s # v. Hence Q is
a (s,v)-pu-preopen set in X for s,v =1,2; s # v.

Theorem 11. Let (X, p1,p2) be a BGTS. Then D € (s,v) — D(X) if any one of the

following is true.

(a) DN M # 0 for every M is a non-null (s,v)-pu-semi open set in X

(b) DN M # () for every M is a non-null (s, v)-u-preopen set in X

(¢) DN M # 0 for every M is a non-null (s, v)-u-a-open set in X where s,v = 1,2; s # v.
Proof. We give the detailed proof for (b) only. Suppose that D N M # () for every M

is a non-null (s,v)-p-preopen set in X where s,v = 1,2 and s # v. It is enough to prove,

D is ps-dense set in X for s = 1,2, by Theorem 4. Let B € jis for s = 1,2. By Lemma

6, B is a non-null (s, v)-u-preopen set in X where s,v = 1,2 and s # v. By assumption,

D N B # (). Therefore, D is a ps-dense set for s = 1,2. Hence D is (s,v)-dense where

s,v=1,2 and s # v.
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Example 12 explains that the reverse part of Theorem 11 is generally not true.

Example 12. (a) Consider the bigeneralized topological space (X, 1, ps) where X =
{e, fok,Lr};

H1 = {@7 {ea f}7 {67 l}7 {fv l}, {67 fa l}}
and
w2 = {0, {e, f,k},{e, f,1},{e;k,r},{e, f, k, 1}, {e, f, k,r}, X}

Take A = {k,l,r}. Then A is (1,2)-dense set. But AN G = 0 where G = {e, f} is a
non-null fi(; 2)-p-semi open set. Let B = {l,r} C X. Then B is (2,1)-dense set. But
BN H = () where H = {e, f,k} is a non-null pi5 1)-p-semi-open set.

(b) Consider the BGTS (X, p1, 2), X = [0, 3];

1 = {®7 [07 2)7 (17 3]7 [07 3]}

and

H2 = {(Dv [07 %]7 (17 2]7 [07 2]}
Let A= (0,1)U(2,3]. Then A € (s,v) —D(X) where s,v =1,2 and s # v. But ANB =)
where B = {%} is a non-null (s,v)-p-preopen set in X where s,v =1,2 ; s # v.

(c) Consider the BGTS (X, u1, u2), X = [0, 4];
Hn1 = {®7 [07 2)? (L 2)}

and

H2 = {(Z)’ [07 2)7 (17 2]7 (173)7 [O’ 2]7 [07 3)}

Let P = (0,1) U [2,4]. Then P € (1,2) — D(X). But PN Q = 0 where Q = [1,2) is a
non-null (s,v)-p-a-pen set in X where s,v = 1,2 and s # v. Let C = (0,1) U [3,4]. Then
C'is (2,1)-dense set in X. But C N D = () where D = [1,3) is a non-null (s, v)-p-a-pen set
in X where s,v =1,2 and s # v.

4. Generalized nowhere dense sets

Here, we find the new results for (s,v)-nowhere dense set in a BGTS.

Definition 13. [13] Let (X, u1,u2) be a BGTS and D C X. Then D is called (s,v)-
nowhere dense if is(cy(D)) = () where s,v = 1,2 and s # v.

We notated, (s,v)—N(X) ={Q C X | Qs (s,v)-nowhere dense in X } where s,v = 1,2
58 F£ .



Y. Farhat, V. Subramanian / Eur. J. Pure Appl. Math, 16 (4) (2023), 2049-2065 2056
Example 14. Take X = {e, f, k,l};
p = {0, {e, f},{e. k},{e, f. k}}
and
p2 = {0, {e, 1}, {f, 1}, {e, f,1}}.
Then {k} is a non-null (s,v)-nowhere dense set in (X, p, p2) where s,v =1,2 ; s # v.

In a bigeneralized topological space, if @ € (s,v) — N(X) and P C @, then P €
(s,v) — N(X) where s,v =1,2 and s # v.

Theorem 15. In a BGTS (X, u1,p2), D € (s,v) — N(X) if and only if ¢,(D) € (s,v) —
N(X) where s,v =1,2 and s # v.

In a BGTS (X, p1, p2), (1,2) =N (X) # (2,1) = N (X) as shown by the below Example
6 . Also, this example shows that (s,v)—N(X) is not closed under finite union in general.

Example 16. Let (X, 1, p2) be a BGTS where X = {e, f, k,1};
H1 = {@7 {67 l}a {fa l}a {6, fa l}}

and
H2 = {®7 {67 f}7 {f,l}, {67 f,l}}
Then
o (1,2) = N(X) = {0, {e}, {k}, {1}, {e, K}, {k, 1}
* (2,1) = N(X) ={0,{e}, {f}, {k}, {e, K}, {f k}}.
Thus, (2,1) — N(X) # (1,2) - N(X).

Here {e} and {I} are in (1,2) — N(X). But {e,l} ¢ (1,2) — N(X). Also, {e} and {f} are
n (2,1) — N(X). But {e, f} ¢ (2,1) — N'(X).

Theorem 17. Let py and ps be two generlized topologies on a non-null set X. If pgs C py,
then (v, s) — N(X) C (s,v) — N(X) where s,v =1,2 and s # v.
Proof. We give the detailed proof only for s =1 and v = 2. Assume that,

1 € o (5)

Let D € (2,1) — N(X). Then izs(c1(D)) = 0. Suppose i1(ca(D)) # 0. There exists K € [iy
such that K C co(D). From (5), K € fia. Then ia(c2(D)) # 0. By (5) we get ca(D) C
c1(D). Thus, is(c1(D)) # 0 which is not possible. Therefore, i1(ca(D)) = 0. Hence D €
(1,2) — N(X).

The following Theorem 19 describes the below diagram.
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ly — nowhere dense —— (s,v) — nowhere dense

I

s — nowhere dense

The following Example 18 shows that the existence of the below Theorem 19.

Example 18. (a) Fix s = 1,v = 2. Consider the bigeneralized topological space (X, u1,
p2) where X = {p,q,r, s};

= A{0,{p,r},{a, 7}, {p,q,7}}

and

H2 = {Q)v {p, 7“}, {q7 T}v {p, S}{pa q, 7“}, {p7 T, 3}7 X}

Obviously, 1 C pa. Take K = {p, s} and L = {q}. Then K is a pj-nowhere dense set and
L is a pg-nowhere dense set. Here, both K and L are in (1,2) — N(X).

(b) Fix s = 2,v = 1. Consider the bigeneralized topological space (X, 1, pio) where X =
{p,q,7 s}

H1 = {@, {p7 5}7 {7“, 8}7 {Q7 S}{p, q, 8}? {pv r, 8}7 {q7 T, 8}7 X}

and

H2 = {Q)v {Q7 3}7 {T‘, S}, {q7 r 3}}

Clearly, ps C p1. Take H = {r} and D = {p,r}. Then H is a pj-nowhere dense set and
D is a pg-nowhere dense set. Also, both H and D are in (2,1) — N(X).

Theorem 19. Let p1, o be two generlized topologies on X and ps C p,, where s,v =1,2
and s #v. If P C X is p,-nowhere dense set or ps-nowhere dense set, then P € (s,v) —
N(X) where s,v =1,2 and s # v.

Proof. We give the detailed proof only for s =2 and v = 1. Assume that,

p2 € p1 (6)

Let P be a py-nowhere dense set. Then i1(c1(P)) = 0. Suppose is(c1(P)) # (. Then there
is Q € [z such that Q C c1(P). From (6), Q € fin. Then i1(c1(P)) # 0 which is not
possible. Therefore, ia(c1(P)) = 0. Hence P € (2,1) — N(X).

Let P be a po-nowhere dense set. Then ia(ca(P)) = (0. Suppose iz(c1(P)) # 0. Then
there is a set M € [ia such that M C ¢;(P). By (6), i2(ca(P)) # 0 which is not possible.
Therefore, ia(c1(P)) = 0. Hence P € (2,1) — N(X).

In Theorem 19, the condition “us C p,” where s,v = 1,2 ; s # v” is necessary as
shown in Example 20.
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Example 20. Take X = {e, f, k,[};
p = {0 {e, k}. {e, 1}, {f, 1} {e. [, 1} . {e, k, 1}, X}
and
p2 = {0, {e, f1 S kY e, 3 {1 {e, £k} {e, £ 0} {e b 1 {0 R 1 X

Let P = {f,k}. Then i;(c1(P)) = i1({f,k}) = 0 and so P is pj-nowhere dense set. But
P ¢ (2,1) — N(X). Let M = {e,k}. Then is(ca(M)) = iz2({e,k}) = 0 and so M is a po-
nowhere dense set. But M ¢ (1,2)—N(X). Let C = {k,1}. Then is(c2(C)) = ia({k,1}) =0
and so C is a pg-nowhere dense set. But C' ¢ (2,1) — N (X).

Consider the BGTS (X, p1, pu2), X = [0, 3];
p=1{0,0,3),(1,2],[0,2]}
and
2 = {0,10,1),(1,2),[0,2)}
Let D = [3,3]. Then D is a pj-nowhere dense set in X. But D ¢ (1,2) — N(X).

ty — nowhere dense «—— (s,v) — nowhere dense

!

s —nowhere dense

The below Theorem 22 describes the above diagram. Example 21 proves the existence
of the below Theorem 22.

Example 21. (a) Fix s = 1,v = 2. Consider the bigeneralized topological space (X, 1,
u2) where X = {p,q,r,s};

= A{0,{p,a}, {p,r}. {a, 7}, {p, ¢, 7}}

and

p2 = {0, {p,7},{a,7},{p,q;r}}.

Obviously, po C py. Consider, L = {q, s}. Then i1(ca(L)) = ) and so L € (1,2) — N (X).
Here, i1(c1(L)) = 0 and ia(co(L)) = 0. Thus, L is a pj-nowhere dense set and also a
pa-nowhere dense set.

(b) Fix s = 2,v = 1. Consider the bigeneralized topological space (X, u1, p2) where X =
{p.q,r s}

p = A{0,{p, s}, {a, s}, {p,q,s}}
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and

p2 = {0,{p},{p, s}, {a, s}, {pr, ¢, s}}.

Clearly, 1 C pgo. Take K = {q,r} then we get is(c1(K)) = () and hence K € (2,1)—-N(X).
Now, i1(c1(K)) = 0 and ia(c2(K)) = () which implies that K is a pi-nowhere dense set
and also a pe-nowhere dense set.

Theorem 22. Let uy, puo be two generlized topologies on X and p, C pus where s,v =1,2
;s £ If Q € (s,v) — N(X), then Q is py,-nowhere dense and also ps-nowhere dense
where s,v =1,2 ; s # v.

Proof. We give the detailed proof for s =1 and v = 2 only. Assume that, ps C py. Let
Q be a (1,2)-nowhere dense set. Then i1(c2(Q)) = 0.

Suppose i1(c1(Q)) # 0. By assumption, i1(c2(Q)) # O which is a contradiction. Therefore,
i1(c1(Q)) = 0.

If ia(c2(Q)) # 0, then there is a set M € fig such that M C c2(Q). By assumption, M € [i;.
Thus, i1(c2(Q)) # 0 which is a contradiction. Therefore, i2(c2(Q)) = 0.

Theorem 23. Let (X, p1, pu2) be a BGTS and K C X. If K € (s,v) —N(X) then ¢,(K)—
K € (s,v) = N(X) where s,v =1,2 and s # v.

Proof. Let K € (s,v) — N(X) where s,v =1,2 ; s #v. Take s =1 and v = 2. Then
K is a (1,2)-nowhere dense set in X. Since ca(K) — K C c2(K) we have ca(ca(K) — K) C
ca(ca(K)). By Lemma 5 (e), co(co(K)—K) C co(K). Then i1(ca(co(K) — K)) C i1(c2(K))
and so i1(c2(ca(K) — K)) = 0, by assumption. Therefore, co(K)— K € (1,2) — N (X). By
similar argument in the above case, we get c1(K) — K € (2,1) — N(X).

Example 24. Consider the bigeneralized topological space (X, u1,pu2), X = {e, f, k,1};
H1 = {@, {6, k}v {f7 k}7 {67 f7 k}}

and

H2 = {®7 {k}v {6, k}v {f7 k}7 {67 f) k}}

Take Q@ = {k} we get 2(Q) — Q = {e, f,1} and so i1(c2(c2(Q) — Q)) = 0. Thus,
2(Q) ~ Q € (1,2) — N(X). But Q ¢ (1,2) ~ N(X).

Choose L = {f,k} so that ¢;(L) — L = {e,l} and so ia(ci(c1(L) — L)) = () implies that
c(L)—Le(2,1)—N(X).But L ¢ (2,1) — N(X).

Theorem 25. Let (X, p1, pu2) be a BGTS. For s,v =1,2 and s # v, if D € (s,v) — N (X),
then the followings are true.

(a) K ¢ D for all K is a non-null (s, v)-pu-preopen set in X.

(b) K ¢ D for all K is a non-null (s, v)-p-regular open set in X.
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(¢) K ¢ D for all K is a non-null (s, v)-open set in X.
(d) K ¢ D for all K is a non-null (s, v)-p-a-open set in X.

Proof. We give the detailed proof for (a) only. Assume that, D € (s,v) — N (X) where
s,v =1,2 and s # v. Then i45(c, (D)) = ) where s,v = 1,2 and s # v. Suppose there is a
non-null (s,v)-p-preopen set M in X such that

McD (7)
where s,v = 1,2 and s # v. Here,
M Cis(cp(M)) (8)

where s,v = 1,2 and s # v. From (7), we have is(c,(M)) C is(cy(D)) which implies that
M C is(cy(D)) where s,v = 1,2 and s # v, by (8). Then is(c,(D)) # 0 which is not
possible. Therefore, there is no non-null (s,v)-p-preopen set M in X such that M C D
where s,v = 1,2 and s # v. Hence D does not contain any non-null (s, v)-u-preopen set
in X where s,v=1,2 and s # v.

Theorem 26. Let (X, ui,p2) be a BGTS. If D € (s,v) — N(X), then K € D for all
K € iy where s,v=1,2 ; s #v.

Proof. Assume that, D € (s,v) =N (X) where s,v =1,2 ; s #v. Take s =1 and v = 2.
Then D € (1,2) — N(X). If there is H € p1 such that H C D, then i1(H) C D and so
i1(H) C ca(D). This implies i1(i1(H)) C i1(c2(D)). By Lemma 5 (e), i1(H) C i1(ca(D)).
By assumption, H C i1(ca(D)). Thus, i1(c2(D)) # 0 which is not possible. Therefore, D
does not contain any non-null py-open set. Take s =2 andv = 1. Then D € (2,1)—N(X).
By similar arguments in the above case, we get the proof.

In the rest of this section, we introduce a new tool namely, (s,v)-codense, and give
some of its properties in a BGTS (X, u1, pt2).

Definition 27. Let (X, pu1,u2) be a BGTS and E C X. Then E is (s,v)-codense if
cs(cp(X — F)) = X where s,v = 1,2 and s # v.

Example 28. Consider the bigeneralized topological space (X, u1, u2) where X = {e, f, k,};
p =A{0,{e, f1,{f. 1}, {e, f, 1}}

and
p2 = {0, {e, k}, {f, k}. {e, f, k}}.

Take A = {k,l} we get X — A = {e, f} and so ci(c2({e, f})) = X. Thus, A is a (1,2)-
codense set in X. Also, ca(c1({e, f})) = X. Therefore, A is a (2, 1)-codense set. Hence A
is (s,v)-codense where s,v = 1,2 and s # v.
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Theorem 29. In a BGTS (X, u1,u2), if E € (s,v) — N (X), then E is us-codense where
s,v=1,2 and s # v.

Proof. Given E € (s,v) — N(X) for s,v = 1,2 ; s # v. Then is(cy(E)) = 0 and so
X — (is(cy(F))) = X where s,v =1,2 and s # v. This implies cs(X — (¢, (E))) = X where
s,v = 1,2 and s # v which implies that cs(X — E) = X for s = 1,2. Therefore, E is a
us-codense set in X for s=1,2.

Example 30 explains that the reverse implication of Theorem 29 need not be true.
Example 30. Consider the BGTS (X, u1, u2) where X = {e, f,k,l,r};
H1 = {®7{€7f}7{eak}a{evfak}a{eva}a{eaka?l}}
and
H2 = {®7 {6, f}a {f7 l}a {6, ’I”}, {67 f? l}7 {67 fa T}) {6, f7 la T‘}}
Choose P = {f,k,r}, then co(X — P) = X. But P ¢ (2,1) — N(X). For, is(c1(P)) =
i2(X) = {e. .1} £ 0.
Consider, @ = {f, 1,7} we have ¢1(X — Q) = c1({e, k}) = X. But Q ¢ (1,2) — N(X). For,
i1(c2(Q)) = ir(X) = {e, f, k. 1} # 0.

Proposition 31. Let (X, u1,p2) be a BGTS. Then E is a (s,v)-codense set in X if and
only if is(iy(E)) = 0 where s,v =1,2 and s # v.

Proposition 32. Let (X, pu1,u2) be a BGTS. If E € (s,v) — N(X), then E is a (s,v)-
codense set in X.

Proposition 33. Let (X, u1,u2) be a BGTS. Then E € (s,v) —D(X) if and only if X — FE
is (s,v)-codense where s,v = 1,2 and s # v.

Proposition 34. Let (X, pu1,p2) be a BGTS. If E is a (s,v)-codense set in X, then there
is no non-null (s,v)-open set H such that H C E where s,v = 1,2 and s # v.

The reverse implication of Proposition 34 is generally not true as given by the below
Example 35.

Example 35. (a) Consider the bigeneralized topological space (X, pui,pus) where X =
[0, 4];

n1 = {@, [07 2)7 (L 3]7 [Oa 3]}

and

M2 = {@7 [07 %)7 (17 3]7 [0’3]}
Let A =[0,2). Here B = (1,3] is (2,1)-open set. Also, B ¢ A. But is(i1(A)) = [0, 3) # 0.

(b) Consider the bigeneralized topological space (X, u1, pu2) where X = |0, 3];
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M1 = {®7 [07 %)7 (17 2)7 (1, 3)7 [073>}

and

M2 = {(Z), [Oa 2)a (17 3), [07 3)}
Take A = [0,2). Here B = (1,3) is (1,2)-open set. Also, B ¢ A. But iy (i2(A)) = [0,3) # 0.

5. Sets via Functions

In this section, we give some properties for (s, v)-dense and (s, v)-nowhere dense sets
under generalized continuous functions in a bigeneralized topological space.

Now, we recall some basic definitions defined in [4].

Let (X, pk, %) and (Y, i, p3) be two BGTS and h : (X, uk, u%) — (Y, i, 43 ) be
a map. Then
o h is called (s,v)-generalized continuous (fi(sy)-continuous) if h™'(B) is fu(s,)-closed in
X for every p,-closed B of Y where s,v = 1,2 and s # v.
e h is called as jus-continuous if h=1(C) is ps-closed in X for every pg-closed C of Y for
s=1,2.
e h is said to be pg-open if h(D) is ps-open of Y for every ps-open D of X for s =1, 2.

Theorem 36. Let (X, uk,pu%) and (Y, ud, 12) be two bigeneralized topological spaces,
h (X, phe, 1%) — (Y, s, 143) be a [i(s,0)-continuous function where s,v =1,2 and s # v.
If QNP # ) for every P is non-null ji(s ,)-open, then h(Q) € (s,v) —D(Y) where Q C X;
s,v=1,2 and s # v.

Proof. It is enough to prove, h(Q) € D(uy,) where v = 1,2, by Theorem 4. Take
v=2. Let P € ji}. ThenY — P is u3--closed. By hypothesis, h"1(Y — P) is fi(1,2)-closed
in X. Then h=(P) is non-null p(1,2)-open. By hypothesis, Q N h=Y(P) # (0. This implies
h=Y(h(Q)) N h=Y(P) # O which implies that h=*(h(Q) N P) # 0. Thus, h(Q) N P # 0.
Hence h(Q) € D(u3). Take v =1. Then by the same arguments in the above case, we get
h(Q) € D(ui.). Hence h(Q) € D(u¥) where v =1,2.

Theorem 37. Let (X, uk,p%) and (Y,ud, p2) be two bigeneralized topological spaces,
P,Q C X, h: (X,puk,p%) — (Y, ud, 12 be a ps-continuous function for s = 1,2. Then
the followings are true.
(a) If P € D(uy), then h(P) € (s,v) — D(Y) where s,v = 1,2 and s # v.
(b) If @ is p,-codense and h is one-one, then h(Q) is (s,v)-codense in Y where s,v = 1,2
and s # v.

Proof. (a). It is enough to prove, h(P) € D(u,) in Y where v = 1,2, by Theorem
4. Assume that, P € D(u,) in X for v = 1,2. Take v = 1. Then P € D(u;) in X. Let
M € ji;. Then Y — M is p-closed in Y. By hypothesis, h=1(Y — M) is uj-closed set in X.
Then A~1(M) is a non-null yj-open set in X. By hypothesis, PNh~!(M) # (). This implies
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h=Y(h(P)) N h=' (M) # 0, since P € h='(h(P)) which implies that h~1(h(P) N M) # 0.
Thus, h(P) N M # (). Hence h(P) € D(u1) in Y. Take v = 2. Then by similar arguments
in the above case, we get h(P) € D(uz2) in Y. Hence h(P) € D(uy) in Y where v =1, 2.

(b) Let @ be a u,-codense set in X for v = 1,2. Then X — Q € D(uy) in X for v =1,2.
By (a), h(X — Q) € (s,v) — D(Y) where s,v = 1,2 and s # v. Since h is one-one,
h(X)—h(Q) € (s,v)—D(Y) where s,v = 1,2 and s # v. Therefore, Y —h(Q) € (s,v)—D(Y)
where s,v = 1,2 and s # v. Hence h(Q) is (s,v)-codense in Y where s,v =1,2 ; s # v.

Theorem 38. Let (X, uk,pu%) and (Y, ud, 12) be two bigeneralized topological spaces,
K, L CY,h: (X, uk p%) — (Y,13,14%) be a pus-open, one-one function for s = 1,2.
Then the followings are true.

(a) If K € D(uy) in Y, then h™1(K) € (s,v) — D(X) where s,v = 1,2 and s # v.

(b) If L is p,-codense in Y, then h=!(L) is (s, v)-codense where s,v = 1,2 and s # v.

Proof. The trivial proof is omitted.

6. (s,v)-dense sets applications

In 1999, Molodstov introduced a new mathematical tool namely, soft set theory
[11]. It has been used for dealing with uncertainty. Most of the researchers presented an
application of soft sets in decision-making problems.
Motivated, by this we try to give an example of the soft set using (s,v)-dense and
(s,v)-nowhere dense sets in a bigeneralized topological space.

Example 39. Consider the BGTS (X, u1, u2) where X = {a,b,c,d};
M1 = {®a {av b}a {CL, C}v {av d}7 {CL, b, C}> {CL, b, d}a {av ¢, d}a X};

and

wa = {0,{b,c},{b,d},{b,c,d}}.
Here,
e (1,2) = D(X) = exp(X) where exp(X) is the power set of X.
° (dQ}, 1‘))(;D(X) = {{a}, {b},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,

Let U = {a,c} be a subset of X and E = {(1,2)-dense set, (2,1)-dense set, both} =
{e1,e2,e3} is the set of parameters. Define a map F from E to exp(U) by, F(e1) =
{c}; F(e2) = {a}; F(e3) = {a,c}. Then the pair (F, E) is a soft set over U.

Example 40. Consider the bigeneralized topological space (X, u1, u2) where X = {a, b, ¢, d};

1= {@, {b}v {a7 b}v {av 0}7 {a7 b, C}}
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and

H2 = {(Z)v {(I}, {CL, C}a {b7 C}a {(I, b, C}}
Here,
e (1,2) = N(X) = {0,{a},{d},{a,d} };
* (2,1) = N(X) = {0, {b}, {c}, {d}, {b.d} {c,d}}.

Let U = {a, c,d} be asubset of X and E = {(1,2)-nowhere dense set, (2, 1)-nowhere dense
set, both} = {e1, eq, e3} is the set of parameters. Consider the map F' from E into the
power set of U. Defined by F(e1) = {a}; F(e2) = {c}; F(e3) = {d}. Then (F, E) is a soft
set over U.

Example 41. Consider the bigeneralized topological space (X, u1, pu2) where X = {a, b, ¢, d};

1= {@, {a}v {CL, d}7 {Cv d}7 {a7 Gy d}}

and

M2 = {(b’ {C}v {CL, b}a {CL, C}v {ba C}v {CL, b’ C}}
Here,
e (1,2)-codense sets = {0, {a}, {b},{c}, {d}, {a,d},{b,c},{b,d}, {c,d}, {b,c,d}}.
; ;2}7}1)-000181186 sets = {0, {a}, {0}, {c}, {d},{a, b}, {a, c}, {a, d},{b, c}, {b,d}, {a, b, c}, {a,

Let U = {a,c,d} be a subset of X and F = {(1,2)-codense set, (2,1)-codense set, (1,2)-
codense but not (2,1)-codense, (2,1)-codense but not (1,2)-codense, (1,2)-codense and
(2,1)-codense } = {e1,ea,€3,€e4,€5} is the set of parameters. Consider the map F' from
E into the power set of U. Defined by F(e;) = {a}; F(e2) = {c}; F(e3) = {c,d}; F(e4) =
{a,c}; F(es5) = {d}. Then we get the pair (F, F) is a soft set over U.

Example 42. Consider the generalized topological space (X, 11, 12) where X = {a, b, ¢, d};
71 and 72 are defined in above Example 40, that is; we take n; = ps and 72 = p1. Then
we get;

e ni-nowhere dense sets = {0, {b}, {d}, {b,d}};

e ng-nowhere dense sets = {0, {c}, {d},{c,d}};

e n-dense sets = {{a, b}, {a,c},{a,b,c},{a,b,d},{a,c,d}, X};
e 1o-dense sets = {{a, b}, {b,c},{a,b,c},{a,b,d},{b,c,d}, X};
e (1,2) - N(X) = {(bv {b}, {c}, {d}, {b,d}, {c,d}};

° (27 1) - N(X) = {@, {a}7 {d}7 {a’v d}}

Let U = {a,b,c} be a non-null subset of X and E = {n;-nowhere dense set, nz-nowhere
dense set, n1-dense set, no-dense set, (1,2)-nowhere dense set, (2, 1)-nowhere dense set} =
{e1,e2,e3,e4,e5,e6} is the set of parameters. Take F be a function defined from E to
the subsets of U by; F(e1) = {b}; F(e2) = {c}; F(e3) = {a,c}; F(es) = {b,c}; F(es) =
{d}; F(es) = {a}. Thus, (F, E) is a soft set over U.
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7. Conclusion

In this article, various properties for (s,v)-dense and (s, v)-nowhere dense sets are

proved, which are useful to easily check the characterization of a given set in a bigeneralized
topological space.
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