EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 4, 2023, 2049-2065 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Generalized Dense Sets in Bigeneralized Topological **Spaces**

Yasser Farhat¹, Vadakasi Subramanian^{2,*}

¹ Academic Support Department, Abu Dhabi Polytechnic, P. O. Box 111499, Abu Dhabi, United Arab Emirates

² Department of Mathematics, A.K.D.Dharma Raja Women's College, Rajapalayam, India

Abstract. In this article, in a bigeneralized topological space, we introduce an interesting tool namely, (s, v)-dense set, and examine its significance of this set. Also, we give the relationships among nowhere-dense sets defined in both generalized and bigeneralized topological space and give some of their properties by using functions. Finally, we give some applications for (s, v)-dense and (s, v)-nowhere dense sets in a soft set theory.

2020 Mathematics Subject Classifications: 54A05, 54A10

Key Words and Phrases: Bigeneralized topological spaces, $\mu_{(s,v)}$ -open, $\mu_{(s,v)}$ -closed, $\mu_{(s,v)}$ dense, $g_{(s,v)}$ -continuous function.

1. Introduction

In [2], Császár defined the notion of generalized topological space. Some researchers have found various new concepts in this space and examined their nature in a generalized topological space. Especially, nowhere dense and dense sets were introduced by Ekici in a generalized topological space [6]. He has given few results for nowhere-dense and dense sets in a generalized topological space.

Some researchers proved various properties for nowhere dense sets e.g. [9, 12, 14]. Inspired by this, Korczak-Kubiak, et al. introduced two new generalized topologies, namely, μ^{\star} and $\mu^{\star\star}$; then examined the nature of nowhere dense set using μ^{\star} and $\mu^{\star\star}$ [8].

In [7], J.C. Kelly introduced the notion of bitopological space. Motivated by this, C. Boonpok introduced the concept of bigeneralized topological space in 2010 [1]. He proved some results about (m, n)-closed sets in bigeneralized topological space.

In this paper, we define the generalization of dense sets, namely, (s, v)-dense in a bigeneralized topological space. In a bigeneralized topological space, various properties for (s, v)-dense and (s, v)-nowhere dense sets are launched.

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4911

Email addresses: farhat.yasser.10gmail.com (Y. Farhat), vadakasivigneswaran@gmail.com (S.Vadakasi)

The basic definitions and results are presented in section 2 which is useful for the development of the following sections. In section 3, in a bigeneralized topological space, new results for (s, v)-dense sets are proven. The necessary conditions for a given set is (s, v)-dense are given. Section 4, some properties for (s, v)-nowhere dense sets are proven. In a bigeneralized topological space, the relationship between μ -nowhere dense and (s, v)-nowhere dense sets are examined. Finally, the set (s, v)-codense is defined and find few results for this set.

In section 5, the nature of (s, v)-dense and (s, v)-codense sets are examined by functions in a bigeneralized topological space. In the last section, we define a soft set using (s, v)-dense, (s, v)-nowhere dense, and (s, v)-codense sets are defined in a bigeneralized topological space.

2. Preliminaries

Let μ be the collection of subsets of a non-null set X. μ is called *generalized topology* [2] in X if it contains the empty set and is closed under arbitrary union. Then (X, μ) is called *generalized topological space* (GTS) [2]. If μ contains X, then (X, μ) is called as a strong generalized topological space (sGTS) [9].

In, [3], let Q be the subset of (X, μ) ,

- If $Q \in \mu$, then Q is called μ -open.
- If $X Q \in \mu$, then Q is said to be μ -closed.
- The *interior of* Q denoted by $i_{\mu}Q$, is the union of all μ -open sets contained in Q.
- The closure of Q denoted by $c_{\mu}Q$, is the intersection of all μ -closed sets containing Q.

For ease of notation, we write i(Q) and c(Q) when no confusion can arise.

Korczak - Kubiak, et.al [8] defined the following notations;

$$\tilde{\mu} = \{ L \in \mu \mid L \neq \emptyset \}.$$
$$\mu(x) = \{ L \in \mu \mid x \in L \}$$

Let Q be a subset of a generalized topological space (X, μ) . Then Q is said to be ;

- μ -nowhere dense [6] if $ic(Q) = \emptyset$;
- μ -dense [6] if cQ = X;
- μ -codense [5] if c(X Q) = X.

Let μ_1, μ_2 be two GT in a non-null set X. Then (X, μ_1, μ_2) is called as a *bigeneralized* topological space (BGTS) [1].

Let (X, μ_1, μ_2) be a BGTS, $D \subset X$. T The closure of D is notated by $c_s(D)$ and $i_s(D)$ denote the *interior of* D with respect to μ_s , respectively, for s = 1, 2 [1].

In a BGTS (X, μ_1, μ_2) , let $Q, P \subset X$. Then • Q is called (s, v)-closed [1] if $c_s(c_v(Q)) = Q$, where s, v = 1 or 2; $s \neq v$.

- If X Q is (s, v)-closed, then Q is called (s, v)-open [1] where s, v = 1 or 2; $s \neq v$.
- P is called $\mu_{(s,v)}$ -closed [4] if $c_{\mu_v}(P) \subset K$ whenever $P \subset K$ and K is μ_s -open in X, for s, v = 1, 2; $s \neq v$.
- If X P is $\mu_{(s,v)}$ -closed, then P is called $\mu_{(s,v)}$ -open [4] where s, v = 1 or 2; $s \neq v$.

In [1], a subset Q of a BGTS (X, μ_1, μ_2) is called

- (s, v)- μ -regular open if $Q = i_s(c_v(Q))$ for s, v = 1 or 2; $s \neq v$.
- (s, v)- μ -semi-open if $Q \subseteq c_v(i_s(Q))$ for s, v = 1 or $2; s \neq v$.
- (s, v)- μ -preopen if $Q \subseteq i_s(c_v(Q))$ for s, v = 1 or 2; $s \neq v$.
- (s, v)- μ - α -open if $Q \subseteq i_s(c_v(i_s(Q)))$ for s, v = 1 or 2; $s \neq v$.

Lemma 1. [Proposition 3.4, [1]] Let K be a subset of a BGTS (X, μ_1, μ_2) . Then K is (s, v)-closed $\Leftrightarrow K$ is both μ -closed in (X, μ_s) and (X, μ_v) where s, v = 1 or 2; $s \neq v$.

Lemma 2. [Proposition 3.3, [4]] Let (X, μ_1, μ_2) be a BGTS, $K \subset X$. Then K is $\mu_{(s,v)}$ closed where s, v = 1, 2; $s \neq v$ whenever K is μ_v -closed.

Lemma 3. [Lemma 3.2, [9]] Let D, K be two subsets of a generalized topological space (X, μ) . If $K \in \tilde{\mu}$ and $K \cap D = \emptyset$, then $K \cap cD = \emptyset$.

Lemma 4. [Proposition 3.3, [9]] In a GTS $(X, \mu), Q \in \mathcal{D}(\mu) \Leftrightarrow H \cap Q \neq \emptyset$ for any $H \in \tilde{\mu}$ where $\mathcal{D}(\mu) = \{P \subset X \mid c_{\mu}(P) = X\}.$

Lemma 5. [Proposition 2.2, [10]] Let P, Q be two subsets of a GTS (X, μ) . Then the followings are true:

(a) $c_{\mu}(X - P) = X - i_{\mu}(P)$; $i_{\mu}(X - P) = X - c_{\mu}(P)$. (b) If $(X - P) \in \mu$, then $c_{\mu}(P) = P$ and if $P \in \mu$, then $i_{\mu}(P) = P$. (c) If $P \subseteq Q$, then $c_{\mu}(P) \subseteq c_{\mu}(Q)$ and $i_{\mu}(P) \subseteq i_{\mu}(Q)$. (d) $P \subseteq c_{\mu}(P)$ and $i_{\mu}(P) \subseteq P$. (e) $c_{\mu}(c_{\mu}(P)) = c_{\mu}(P)$ and $i_{\mu}(i_{\mu}(P)) = i_{\mu}(P)$.

3. Nature of (s, v)-dense sets

Here, we define a generalized dense set using two generalized topologies namely, (s, v)-dense set, and analyze its nature in a BGTS (X, μ_1, μ_2) .

Definition 1. Let *D* be a non-null subset of a bigeneralized topological space (X, μ_1, μ_2) . Then *D* is called (s, v)-dense if $c_s(c_v(D)) = X$ where s, v = 1, 2 and $s \neq v$.

Moreover, $(s, v) - \mathcal{D}(X) = \{Q \subset X \mid Q \text{ is } (s, v) \text{-dense in } X\}$ for s, v = 1, 2; $s \neq v$.

Example 2. Consider the BGTS (X, μ_1, μ_2) where $X = \{e, f, k, l\}$;

$$\mu_1 = \{\emptyset, \{e\}, \{e, f\}, \{f, k\}, \{e, f, k\}\}$$

and

$$\mu_2 = \{\emptyset, \{e, f\}, \{f, l\}, \{e, f, l\}\}.$$

Then $(s, v) - \mathcal{D}(X) = \{Q \subset X \mid \text{either } e \in Q \text{ or } f \in Q\}$ where s, v = 1, 2; $s \neq v$.

In a GTS, every superset of a (s, v)-dense set is (s, v)-dense where s, v = 1, 2 and $s \neq v$.

Theorem 3. Let (X, μ_1, μ_2) be a BGTS and Q be a non-null subset of X. Then Q is (s, v)-dense $\Leftrightarrow c_v Q \cap H \neq \emptyset$ for every H is a non-null μ_s -open set where s, v = 1, 2 and $s \neq v$.

Proof. Suppose $Q \in (s, v) - \mathcal{D}(X)$ for s, v = 1, 2; $s \neq v$, then $c_s(c_v(Q)) = X$ and so $X - (c_s(c_v(Q))) = \emptyset$ where s, v = 1, 2 and $s \neq v$. By Lemma 5, $X - (c_s(c_v(Q))) =$ $i_s(X - (c_v(Q)))$, so that $i_s(X - (c_v(Q))) = \emptyset$ which implies that $c_v(Q) \cap H \neq \emptyset$ for every H is a non-null μ_s -open set where s, v = 1, 2 and $s \neq v$. Conversely, assume that, $c_v(Q) \cap H \neq \emptyset$ for every H is a non-null μ_s -open set where s, v = 1, 2 and $s \neq v$. Then $i_s(X - (c_v(Q))) = \emptyset$ and so $c_s(c_v(Q)) = X$, by Lemma 5 where s, v = 1, 2 and $s \neq v$. Hence Q is (s, v)-dense for s, v = 1, 2 and $s \neq v$.

Theorem 4 and Example 5 are described in the below diagram.

Theorem 4. In a BGTS (X, μ_1, μ_2) , if K is either μ_s -dense or μ_v -dense, then K is (s, v)-dense where s, v = 1, 2; $s \neq v$.

Proof. Assume that, K is μ_s -dense where for s = 1, 2. Then $c_s(K) = X$ for s = 1, 2. Take s = 2 and v = 1. Then K is μ_2 -dense. Since $K \subset c_1(K)$ we have $c_2(K) \subset c_2(c_1(K))$. Hence

$$K \in (2,1) - \mathcal{D}(X) \tag{1}$$

Take s = 1 and v = 2. Then K is μ_1 -dense. Since $K \subset c_2(K)$ we have $c_1(K) \subset c_1(c_2(K))$. Thus,

$$K \in (1,2) - \mathcal{D}(X) \tag{2}$$

From (1) & (2), K is (s, v)-dense where s, v = 1, 2 and $s \neq v$. Similarly, we can prove that K is (s, v)-dense if K is μ_v -dense where s, v = 1, 2 and $s \neq v$.

Example 5 describes that the Theorem 4 is not reversible. Generally, $(1, 2) - \mathcal{D}(X) \neq (2, 1) - \mathcal{D}(X)$ in a bigeneralized topological space as given in Example 6.

Example 5. Consider the bigeneralized topological space $(X, \mu_1, \mu_2), X = \{e, f, k, l\};$

$$\mu_1 = \{\emptyset, \{e, l\}, \{f, l\}, \{e, f, l\}\}\$$

and

$$\mu_2 = \{\emptyset, \{e, k\}, \{f, k\}, \{e, f, k\}\}.$$

Here $\{k\}$ is (2, 1)-dense. But $\{k\}$ is not μ_1 -dense. Also, $\{l\}$ is (1, 2)-dense. But $\{l\}$ is not μ_2 -dense.

Example 6. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{e, f, k, l\}$;

$$\mu_1 = \{\emptyset, \{e, f\}, \{f, k\}, \{e, f, k\}\}$$

and

$$\mu_2 = \{\emptyset, \{e\}, \{e, l\}, \{k, l\}, \{e, k, l\}\}.$$

Then

$$\begin{split} \bullet & (1,2) - \mathcal{D}(X) = \{\{e\}, \{f\}, \{k\}, \{l\}, \{e, f\}, \{e, k\}, \{e, l\}, \{f, k\}, \{f, l\}, \{k, l\}, \{e, f, k\}, \{e, f, k\}, \{e, f\}, \{e, k\}, \{e, l\}, \{f, k\}, \{f, l\}, \{e, f, k\}, \{e, f, k\}, \{e, k, l\}, \{f, k\}, \{e, f, k\}, \{e, k, l\}, \{f, k\}, \{e, f, k\}, \{e, k, l\}, \{f, k\}, \{f, k\}, \{e, f, k\}, \{e, k, l\}, \{f, k\}, \{f, k\}, \{e, f, k\}, \{e, k, l\}, \{f, k\}, \{f, k\}, \{e, f, k\}, \{e, k, l\}, \{f, k\}, \{g, k\}, \{$$

Theorem 7. Let μ_1 and μ_2 be two generalized topologies in X. If $\mu_s \subseteq \mu_v$, then $(v, s) - \mathcal{D}(X) \subseteq (s, v) - \mathcal{D}(X)$ where s, v = 1, 2 and $s \neq v$.

Proof. We give the detailed proof only for s = 1 and v = 2. Suppose that $\mu_1 \subseteq \mu_2$ and $Q \in (2,1) - \mathcal{D}(X)$, then $c_2(c_1(Q)) = X$. By Lemma 4, $c_1(Q) \cap H \neq \emptyset$ for every $H \in \tilde{\mu}_2$. Take $G \in \tilde{\mu}_1$ we get $G \in \tilde{\mu}_2$ for that $c_1(Q) \cap G \neq \emptyset$. Since $Q \subset c_2(Q)$ we have $c_1(Q) \subset c_1(c_2(Q))$. Thus, $c_1(c_2(Q)) \cap G \neq \emptyset$. Since G is an arbitrary non-null μ_1 -open set we have $c_1(c_1(c_2(Q))) = X$, by Lemma 4. Hence $c_1(c_2(Q)) = X$, by Lemma 5(e). Therefore, $Q \in (1, 2) - \mathcal{D}(X)$.

Theorem 8. Let (X, μ_1, μ_2) be a BGTS and D be a non-null subset of X. If $D \in (s, v) - D(X)$, then $D \cap H \neq \emptyset$ for every H is a non-null (s, v)-open set in X for s, v = 1, 2; $s \neq v$.

Proof. Take s = 1 and v = 2. Assume that, D is (1, 2)-dense. Then $c_1(c_2(D)) = X$. Let H be a non-null (1, 2)-open set. By Lemma 1,

$$H \in \tilde{\mu_1} \tag{3}$$

$$H \in \tilde{\mu_2} \tag{4}$$

Then $c_2(D) \cap H \neq \emptyset$, by Lemma 4 and (3). From (4) and $c_2(D) \cap H \neq \emptyset$ we have $D \cap H \neq \emptyset$, by Lemma 3. Thus, $D \cap H \neq \emptyset$ for every H is a non-null (1,2)-open set. Take s = 2 and v = 1. By similar considerations in the above case, we get the proof.

Theorem 9. Let (X, μ_1, μ_2) be a BGTS, $D \subset X$. If $D \cap H \neq \emptyset$ for every $H \neq \emptyset$ is $\mu_{(s,v)}$ -open, then $D \in (s, v) - \mathcal{D}(X)$; s, v = 1, 2 and $s \neq v$.

Proof. We give the detailed proof for s = 1 and v = 2 only. Suppose that $D \cap H \neq \emptyset$ for every H is non-null $\mu_{(1,2)}$ -open. By Theorem 4, we have to prove D is μ_2 -dense. Let $B \in \tilde{\mu_2}$. Then B is a non-null $\mu_{(1,2)}$ -open set in X, by Lemma 2. By assumption, $D \cap B \neq \emptyset$. Therefore, D is a μ_2 -dense set. Hence D is a (1,2)-dense set.

The below Example 10 describes that the converse part of Theorem 9 is generally not true.

Example 10. Take $X = \{e, f, k, l\};$

$$\mu_1 = \{\emptyset, \{e, f\}, \{f, l\}, \{e, f, l\}\}$$

and

$$\mu_2 = \{\emptyset, \{e, k\}, \{f, k\}, \{e, f, k\}\}.$$

 $\begin{array}{l} \text{Then } \mu_{(1,2)} = \{ \emptyset, \{e\}, \{f\}, \{l\}, \{e, f\}, \{e, k\}, \{e, l\}, \{f, k\}, \{f, l\}, \{e, f, k\}, \{e, f, l\} \} \text{ and } \\ \mu_{(2,1)} = \{ \emptyset, \{e\}, \{f\}, \{k\}, \{e, f\}, \{e, k\}, \{f, k\}, \{f, l\}, \{e, f, k\}, \{e, f, l\}, \{f, k, l\} \}. \end{array}$

Take $P = \{e\}$. Then $P \in (1,2) - \mathcal{D}(X)$. But $P \cap Q = \emptyset$ where $Q = \{l\}$ is a non-null $\mu_{(1,2)}$ -open set. Let $M = \{f\} \subset X$. Then $M \in (2,1) - \mathcal{D}(X)$. But $M \cap L = \emptyset$ where $L = \{e\}$ is a non-null $\mu_{(2,1)}$ -open set.

$$Q \in \tilde{\mu}_s \longrightarrow Q \quad is \quad (s,v) - \mu - semi \quad open.$$

$$Q \quad is \quad (s,v) - \mu - preopen \qquad Q \quad is \quad (s,v) - \mu - \alpha - open$$

The following Lemma 6 describes the above diagram.

Lemma 6. Let (X, μ_1, μ_2) be a BGTS. If $Q \in \tilde{\mu}_s$, then the below results are true. (a) Q is (s, v)- μ -semi open.

(b) Q is (s, v)- μ -preopen.

(c) Q is (s, v)- μ - α -open where s, v = 1, 2 and $s \neq v$.

Proof. We give the detailed proof for (b) only. Suppose that, $Q \in \tilde{\mu}_s$ for s = 1, 2. Then $i_s(Q) = Q$ for s = 1, 2. Since $Q \subset c_v(Q)$ for v = 1, 2 we have $i_s(Q) \subset i_s(c_v(Q))$ where s, v = 1, 2 and $s \neq v$. Thus, $Q \subset i_s(c_v(Q))$ where s, v = 1, 2 and $s \neq v$. Hence Q is a (s, v)- μ -preopen set in X for s, v = 1, 2; $s \neq v$.

Theorem 11. Let (X, μ_1, μ_2) be a BGTS. Then $D \in (s, v) - \mathcal{D}(X)$ if any one of the following is true.

(a) $D \cap M \neq \emptyset$ for every M is a non-null (s, v)- μ -semi open set in X

(b) $D \cap M \neq \emptyset$ for every M is a non-null (s, v)- μ -preopen set in X

(c) D ∩ M ≠ Ø for every M is a non-null (s, v)-μ-α-open set in X where s, v = 1, 2; s ≠ v. Proof. We give the detailed proof for (b) only. Suppose that D ∩ M ≠ Ø for every M is a non-null (s, v)-μ-preopen set in X where s, v = 1, 2 and s ≠ v. It is enough to prove, D is μ_s-dense set in X for s = 1, 2, by Theorem 4. Let B ∈ μ̃_s for s = 1, 2. By Lemma 6, B is a non-null (s, v)-μ-preopen set in X where s, v = 1, 2 and s ≠ v. By assumption, D ∩ B ≠ Ø. Therefore, D is a μ_s-dense set for s = 1, 2. Hence D is (s, v)-dense where s, v = 1, 2 and s ≠ v.

Example 12 explains that the reverse part of Theorem 11 is generally not true.

Example 12. (a) Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{e, f, k, l, r\}$;

$$\mu_1 = \{\emptyset, \{e, f\}, \{e, l\}, \{f, l\}, \{e, f, l\}\}$$

and

$$\mu_2 = \{\emptyset, \{e, f, k\}, \{e, f, l\}, \{e, k, r\}, \{e, f, k, l\}, \{e, f, k, r\}, X\}.$$

Take $A = \{k, l, r\}$. Then A is (1,2)-dense set. But $A \cap G = \emptyset$ where $G = \{e, f\}$ is a non-null $\mu_{(1,2)}$ - μ -semi open set. Let $B = \{l, r\} \subset X$. Then B is (2,1)-dense set. But $B \cap H = \emptyset$ where $H = \{e, f, k\}$ is a non-null $\mu_{(2,1)}$ - μ -semi-open set.

(b) Consider the BGTS $(X, \mu_1, \mu_2), X = [0, 3];$

$$\mu_1 = \{\emptyset, [0, 2), (1, 3], [0, 3]\}$$

and

$$\mu_2 = \{\emptyset, [0, \frac{3}{2}], (1, 2], [0, 2]\}.$$

Let $A = (0,1) \cup (\frac{3}{2},3]$. Then $A \in (s,v) - \mathcal{D}(X)$ where s, v = 1, 2 and $s \neq v$. But $A \cap B = \emptyset$ where $B = \{\frac{3}{2}\}$ is a non-null (s,v)- μ -preopen set in X where s, v = 1, 2; $s \neq v$.

(c) Consider the BGTS $(X, \mu_1, \mu_2), X = [0, 4];$

$$\mu_1 = \{\emptyset, [0, 2), (1, 2)\}$$

and

$$\mu_2 = \{ \emptyset, [0, 2), (1, 2], (1, 3), [0, 2], [0, 3) \}.$$

Let $P = (0,1) \cup [2,4]$. Then $P \in (1,2) - \mathcal{D}(X)$. But $P \cap Q = \emptyset$ where Q = [1,2) is a non-null (s,v)- μ - α -pen set in X where s, v = 1, 2 and $s \neq v$. Let $C = (0,1) \cup [3,4]$. Then C is (2,1)-dense set in X. But $C \cap D = \emptyset$ where D = [1,3) is a non-null (s,v)- μ - α -pen set in X where s, v = 1, 2 and $s \neq v$.

4. Generalized nowhere dense sets

Here, we find the new results for (s, v)-nowhere dense set in a BGTS.

Definition 13. [13] Let (X, μ_1, μ_2) be a BGTS and $D \subset X$. Then D is called (s, v)-nowhere dense if $i_s(c_v(D)) = \emptyset$ where s, v = 1, 2 and $s \neq v$.

We notated, $(s, v) - \mathcal{N}(X) = \{Q \subset X \mid Q \text{ is } (s, v) \text{-nowhere dense in } X\}$ where s, v = 1, 2; $s \neq v$.

Example 14. Take $X = \{e, f, k, l\};$

$$\mu_1 = \{\emptyset, \{e, f\}, \{e, k\}, \{e, f, k\}\}\$$

and

$$\mu_2 = \{\emptyset, \{e, l\}, \{f, l\}, \{e, f, l\}\}.$$

Then $\{k\}$ is a non-null (s, v)-nowhere dense set in (X, μ_1, μ_2) where s, v = 1, 2; $s \neq v$.

In a bigeneralized topological space, if $Q \in (s, v) - \mathcal{N}(X)$ and $P \subset Q$, then $P \in (s, v) - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$.

Theorem 15. In a BGTS (X, μ_1, μ_2) , $D \in (s, v) - \mathcal{N}(X)$ if and only if $c_v(D) \in (s, v) - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$.

In a BGTS (X, μ_1, μ_2) , $(1, 2) - \mathcal{N}(X) \neq (2, 1) - \mathcal{N}(X)$ as shown by the below Example 16. Also, this example shows that $(s, v) - \mathcal{N}(X)$ is not closed under finite union in general.

Example 16. Let (X, μ_1, μ_2) be a BGTS where $X = \{e, f, k, l\};$

$$\mu_1 = \{\emptyset, \{e, l\}, \{f, l\}, \{e, f, l\}\}$$

and

$$\mu_2 = \{\emptyset, \{e, f\}, \{f, l\}, \{e, f, l\}\}.$$

Then

Here $\{e\}$ and $\{l\}$ are in $(1,2) - \mathcal{N}(X)$. But $\{e,l\} \notin (1,2) - \mathcal{N}(X)$. Also, $\{e\}$ and $\{f\}$ are in $(2,1) - \mathcal{N}(X)$. But $\{e,f\} \notin (2,1) - \mathcal{N}(X)$.

Theorem 17. Let μ_1 and μ_2 be two generlized topologies on a non-null set X. If $\mu_s \subseteq \mu_v$, then $(v, s) - \mathcal{N}(X) \subseteq (s, v) - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$.

Proof. We give the detailed proof only for s = 1 and v = 2. Assume that,

$$\mu_1 \subseteq \mu_2 \tag{5}$$

Let $D \in (2,1) - \mathcal{N}(X)$. Then $i_2(c_1(D)) = \emptyset$. Suppose $i_1(c_2(D)) \neq \emptyset$. There exists $K \in \tilde{\mu}_1$ such that $K \subset c_2(D)$. From (5), $K \in \tilde{\mu}_2$. Then $i_2(c_2(D)) \neq \emptyset$. By (5) we get $c_2(D) \subset c_1(D)$. Thus, $i_2(c_1(D)) \neq \emptyset$ which is not possible. Therefore, $i_1(c_2(D)) = \emptyset$. Hence $D \in (1,2) - \mathcal{N}(X)$.

The following Theorem 19 describes the below diagram.

$$\begin{array}{ccc} \mu_v - nowhere & dense & \longrightarrow (s,v) - nowhere & dense \\ & & \uparrow \\ & & \mu_s - nowhere & dense \end{array}$$

The following Example 18 shows that the existence of the below Theorem 19.

Example 18. (a) Fix s = 1, v = 2. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$;

$$\mu_1 = \{\emptyset, \{p, r\}, \{q, r\}, \{p, q, r\}\}$$

and

$$\mu_2 = \{\emptyset, \{p, r\}, \{q, r\}, \{p, s\}\{p, q, r\}, \{p, r, s\}, X\}.$$

Obviously, $\mu_1 \subset \mu_2$. Take $K = \{p, s\}$ and $L = \{q\}$. Then K is a μ_1 -nowhere dense set and L is a μ_2 -nowhere dense set. Here, both K and L are in $(1, 2) - \mathcal{N}(X)$.

(b) Fix s = 2, v = 1. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$;

$$\mu_1 = \{\emptyset, \{p, s\}, \{r, s\}, \{q, s\} \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}$$

and

$$\mu_2 = \{\emptyset, \{q, s\}, \{r, s\}, \{q, r, s\}\}.$$

Clearly, $\mu_2 \subset \mu_1$. Take $H = \{r\}$ and $D = \{p, r\}$. Then H is a μ_1 -nowhere dense set and D is a μ_2 -nowhere dense set. Also, both H and D are in $(2, 1) - \mathcal{N}(X)$.

Theorem 19. Let μ_1, μ_2 be two generlized topologies on X and $\mu_s \subseteq \mu_v$ where s, v = 1, 2and $s \neq v$. If $P \subset X$ is μ_v -nowhere dense set or μ_s -nowhere dense set, then $P \in (s, v) - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$.

Proof. We give the detailed proof only for s = 2 and v = 1. Assume that,

$$\mu_2 \subseteq \mu_1 \tag{6}$$

Let P be a μ_1 -nowhere dense set. Then $i_1(c_1(P)) = \emptyset$. Suppose $i_2(c_1(P)) \neq \emptyset$. Then there is $Q \in \tilde{\mu}_2$ such that $Q \subset c_1(P)$. From (6), $Q \in \tilde{\mu}_1$. Then $i_1(c_1(P)) \neq \emptyset$ which is not possible. Therefore, $i_2(c_1(P)) = \emptyset$. Hence $P \in (2, 1) - \mathcal{N}(X)$.

Let P be a μ_2 -nowhere dense set. Then $i_2(c_2(P)) = \emptyset$. Suppose $i_2(c_1(P)) \neq \emptyset$. Then there is a set $M \in \tilde{\mu}_2$ such that $M \subset c_1(P)$. By (6), $i_2(c_2(P)) \neq \emptyset$ which is not possible. Therefore, $i_2(c_1(P)) = \emptyset$. Hence $P \in (2, 1) - \mathcal{N}(X)$.

In Theorem 19, the condition " $\mu_s \subseteq \mu_v$ " where s, v = 1, 2; $s \neq v$ " is necessary as shown in Example 20.

Example 20. Take $X = \{e, f, k, l\};$

$$\mu_1 = \{\emptyset, \{e, k\}, \{e, l\}, \{f, l\}, \{e, f, l\}, \{e, k, l\}, X\}$$

and

$$\mu_2 = \{\emptyset, \{e, f\}, \{f, k\}, \{e, l\}, \{f, l\}, \{e, f, k\}, \{e, f, l\}, \{e, k, l\}, \{f, k, l\}, X\}.$$

Let $P = \{f, k\}$. Then $i_1(c_1(P)) = i_1(\{f, k\}) = \emptyset$ and so P is μ_1 -nowhere dense set. But $P \notin (2, 1) - \mathcal{N}(X)$. Let $M = \{e, k\}$. Then $i_2(c_2(M)) = i_2(\{e, k\}) = \emptyset$ and so M is a μ_2 -nowhere dense set. But $M \notin (1, 2) - \mathcal{N}(X)$. Let $C = \{k, l\}$. Then $i_2(c_2(C)) = i_2(\{k, l\}) = \emptyset$ and so C is a μ_2 -nowhere dense set. But $C \notin (2, 1) - \mathcal{N}(X)$.

Consider the BGTS $(X, \mu_1, \mu_2), X = [0, 3];$

$$\mu_1 = \{\emptyset, [0, \frac{3}{2}), (1, 2], [0, 2]\}$$

and

$$\mu_2 = \{ \emptyset, [0, 1), (1, 2), [0, 2) \}$$

Let $D = [\frac{3}{2}, 3]$. Then D is a μ_1 -nowhere dense set in X. But $D \notin (1, 2) - \mathcal{N}(X)$.

The below Theorem 22 describes the above diagram. Example 21 proves the existence of the below Theorem 22.

Example 21. (a) Fix s = 1, v = 2. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$;

$$\mu_1 = \{\emptyset, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\}\}$$

and

$$\mu_2 = \{\emptyset, \{p, r\}, \{q, r\}, \{p, q, r\}\}.$$

Obviously, $\mu_2 \subset \mu_1$. Consider, $L = \{q, s\}$. Then $i_1(c_2(L)) = \emptyset$ and so $L \in (1, 2) - \mathcal{N}(X)$. Here, $i_1(c_1(L)) = \emptyset$ and $i_2(c_2(L)) = \emptyset$. Thus, L is a μ_1 -nowhere dense set and also a μ_2 -nowhere dense set.

(b) Fix s = 2, v = 1. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$;

$$\mu_1 = \{\emptyset, \{p, s\}, \{q, s\}, \{p, q, s\}\}$$

and

$$\mu_2 = \{\emptyset, \{p\}, \{p, s\}, \{q, s\}, \{p, q, s\}\}$$

Clearly, $\mu_1 \subset \mu_2$. Take $K = \{q, r\}$ then we get $i_2(c_1(K)) = \emptyset$ and hence $K \in (2, 1) - \mathcal{N}(X)$. Now, $i_1(c_1(K)) = \emptyset$ and $i_2(c_2(K)) = \emptyset$ which implies that K is a μ_1 -nowhere dense set and also a μ_2 -nowhere dense set.

Theorem 22. Let μ_1, μ_2 be two generlized topologies on X and $\mu_v \subseteq \mu_s$ where s, v = 1, 2; $s \neq v$. If $Q \in (s, v) - \mathcal{N}(X)$, then Q is μ_v -nowhere dense and also μ_s -nowhere dense where s, v = 1, 2; $s \neq v$.

Proof. We give the detailed proof for s = 1 and v = 2 only. Assume that, $\mu_2 \subseteq \mu_1$. Let Q be a (1,2)-nowhere dense set. Then $i_1(c_2(Q)) = \emptyset$.

Suppose $i_1(c_1(Q)) \neq \emptyset$. By assumption, $i_1(c_2(Q)) \neq \emptyset$ which is a contradiction. Therefore, $i_1(c_1(Q)) = \emptyset$.

If $i_2(c_2(Q)) \neq \emptyset$, then there is a set $M \in \tilde{\mu}_2$ such that $M \subset c_2(Q)$. By assumption, $M \in \tilde{\mu}_1$. Thus, $i_1(c_2(Q)) \neq \emptyset$ which is a contradiction. Therefore, $i_2(c_2(Q)) = \emptyset$.

Theorem 23. Let (X, μ_1, μ_2) be a BGTS and $K \subset X$. If $K \in (s, v) - \mathcal{N}(X)$ then $c_v(K) - K \in (s, v) - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$.

Proof. Let $K \in (s,v) - \mathcal{N}(X)$ where s, v = 1, 2; $s \neq v$. Take s = 1 and v = 2. Then K is a (1,2)-nowhere dense set in X. Since $c_2(K) - K \subset c_2(K)$ we have $c_2(c_2(K) - K) \subset c_2(c_2(K))$. By Lemma 5 (e), $c_2(c_2(K) - K) \subset c_2(K)$. Then $i_1(c_2(c_2(K) - K)) \subset i_1(c_2(K))$ and so $i_1(c_2(c_2(K) - K)) = \emptyset$, by assumption. Therefore, $c_2(K) - K \in (1,2) - \mathcal{N}(X)$. By similar argument in the above case, we get $c_1(K) - K \in (2,1) - \mathcal{N}(X)$.

Example 24. Consider the bigeneralized topological space $(X, \mu_1, \mu_2), X = \{e, f, k, l\};$

$$\mu_1 = \{\emptyset, \{e, k\}, \{f, k\}, \{e, f, k\}\}$$

and

$$\mu_2 = \{\emptyset, \{k\}, \{e, k\}, \{f, k\}, \{e, f, k\}\}.$$

Take $Q = \{k\}$ we get $c_2(Q) - Q = \{e, f, l\}$ and so $i_1(c_2(c_2(Q) - Q)) = \emptyset$. Thus, $c_2(Q) - Q \in (1, 2) - \mathcal{N}(X)$. But $Q \notin (1, 2) - \mathcal{N}(X)$.

Choose $L = \{f, k\}$ so that $c_1(L) - L = \{e, l\}$ and so $i_2(c_1(c_1(L) - L)) = \emptyset$ implies that $c_1(L) - L \in (2, 1) - \mathcal{N}(X)$. But $L \notin (2, 1) - \mathcal{N}(X)$.

Theorem 25. Let (X, μ_1, μ_2) be a BGTS. For s, v = 1, 2 and $s \neq v$, if $D \in (s, v) - \mathcal{N}(X)$, then the followings are true.

(a) $K \not\subseteq D$ for all K is a non-null (s, v)- μ -preopen set in X.

(b) $K \not\subseteq D$ for all K is a non-null (s, v)- μ -regular open set in X.

(c) $K \not\subseteq D$ for all K is a non-null (s, v)-open set in X.

(d) $K \not\subseteq D$ for all K is a non-null (s, v)- μ - α -open set in X.

Proof. We give the detailed proof for (a) only. Assume that, $D \in (s, v) - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$. Then $i_s(c_v(D)) = \emptyset$ where s, v = 1, 2 and $s \neq v$. Suppose there is a non-null (s, v)- μ -preopen set M in X such that

$$M \subset D \tag{7}$$

where s, v = 1, 2 and $s \neq v$. Here,

$$M \subset i_s(c_v(M)) \tag{8}$$

where s, v = 1, 2 and $s \neq v$. From (7), we have $i_s(c_v(M)) \subset i_s(c_v(D))$ which implies that $M \subset i_s(c_v(D))$ where s, v = 1, 2 and $s \neq v$, by (8). Then $i_s(c_v(D)) \neq \emptyset$ which is not possible. Therefore, there is no non-null (s, v)- μ -preopen set M in X such that $M \subset D$ where s, v = 1, 2 and $s \neq v$. Hence D does not contain any non-null (s, v)- μ -preopen set in X where s, v = 1, 2 and $s \neq v$.

Theorem 26. Let (X, μ_1, μ_2) be a BGTS. If $D \in (s, v) - \mathcal{N}(X)$, then $K \nsubseteq D$ for all $K \in \tilde{\mu_s}$ where s, v = 1, 2; $s \neq v$.

Proof. Assume that, $D \in (s, v) - \mathcal{N}(X)$ where s, v = 1, 2; $s \neq v$. Take s = 1 and v = 2. Then $D \in (1, 2) - \mathcal{N}(X)$. If there is $H \in \mu_1$ such that $H \subset D$, then $i_1(H) \subset D$ and so $i_1(H) \subset c_2(D)$. This implies $i_1(i_1(H)) \subset i_1(c_2(D))$. By Lemma 5 (e), $i_1(H) \subset i_1(c_2(D))$. By assumption, $H \subset i_1(c_2(D))$. Thus, $i_1(c_2(D)) \neq \emptyset$ which is not possible. Therefore, D does not contain any non-null μ_1 -open set. Take s = 2 and v = 1. Then $D \in (2, 1) - \mathcal{N}(X)$. By similar arguments in the above case, we get the proof.

In the rest of this section, we introduce a new tool namely, (s, v)-codense, and give some of its properties in a BGTS (X, μ_1, μ_2) .

Definition 27. Let (X, μ_1, μ_2) be a BGTS and $E \subset X$. Then E is (s, v)-codense if $c_s(c_v(X - E)) = X$ where s, v = 1, 2 and $s \neq v$.

Example 28. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{e, f, k, l\}$;

$$\mu_1 = \{\emptyset, \{e, f\}, \{f, l\}, \{e, f, l\}\}\$$

and

$$\mu_2 = \{\emptyset, \{e, k\}, \{f, k\}, \{e, f, k\}\}.$$

Take $A = \{k, l\}$ we get $X - A = \{e, f\}$ and so $c_1(c_2(\{e, f\})) = X$. Thus, A is a (1, 2)codense set in X. Also, $c_2(c_1(\{e, f\})) = X$. Therefore, A is a (2, 1)-codense set. Hence A
is (s, v)-codense where s, v = 1, 2 and $s \neq v$.

Theorem 29. In a BGTS (X, μ_1, μ_2) , if $E \in (s, v) - \mathcal{N}(X)$, then E is μ_s -codense where s, v = 1, 2 and $s \neq v$.

Proof. Given $E \in (s, v) - \mathcal{N}(X)$ for s, v = 1, 2; $s \neq v$. Then $i_s(c_v(E)) = \emptyset$ and so $X - (i_s(c_v(E))) = X$ where s, v = 1, 2 and $s \neq v$. This implies $c_s(X - (c_v(E))) = X$ where s, v = 1, 2 and $s \neq v$ which implies that $c_s(X - E) = X$ for s = 1, 2. Therefore, E is a μ_s -codense set in X for s = 1, 2.

Example 30 explains that the reverse implication of Theorem 29 need not be true.

Example 30. Consider the BGTS (X, μ_1, μ_2) where $X = \{e, f, k, l, r\}$;

$$\mu_1 = \{ \emptyset, \{e, f\}, \{e, k\}, \{e, f, k\}, \{e, f, l\}, \{e, f, k, l\} \}$$

and

$$\mu_2 = \{\emptyset, \{e, f\}, \{f, l\}, \{e, r\}, \{e, f, l\}, \{e, f, r\}, \{e, f, l, r\}\}$$

Choose $P = \{f, k, r\}$, then $c_2(X - P) = X$. But $P \notin (2, 1) - \mathcal{N}(X)$. For, $i_2(c_1(P)) = i_2(X) = \{e, f, l, r\} \neq \emptyset$.

Consider, $Q = \{f, l, r\}$ we have $c_1(X - Q) = c_1(\{e, k\}) = X$. But $Q \notin (1, 2) - \mathcal{N}(X)$. For, $i_1(c_2(Q)) = i_1(X) = \{e, f, k, l\} \neq \emptyset$.

Proposition 31. Let (X, μ_1, μ_2) be a BGTS. Then E is a (s, v)-codense set in X if and only if $i_s(i_v(E)) = \emptyset$ where s, v = 1, 2 and $s \neq v$.

Proposition 32. Let (X, μ_1, μ_2) be a BGTS. If $E \in (s, v) - \mathcal{N}(X)$, then E is a (s, v)-codense set in X.

Proposition 33. Let (X, μ_1, μ_2) be a BGTS. Then $E \in (s, v) - \mathcal{D}(X)$ if and only if X - E is (s, v)-codense where s, v = 1, 2 and $s \neq v$.

Proposition 34. Let (X, μ_1, μ_2) be a BGTS. If E is a (s, v)-codense set in X, then there is no non-null (s, v)-open set H such that $H \subset E$ where s, v = 1, 2 and $s \neq v$.

The reverse implication of Proposition 34 is generally not true as given by the below Example 35.

Example 35. (a) Consider the bigeneralized topological space (X, μ_1, μ_2) where X = [0, 4];

$$\mu_1 = \{\emptyset, [0, 2), (1, 3], [0, 3]\}$$

and

$$\mu_2 = \{ \emptyset, [0, \frac{3}{2}), (1, 3], [0, 3] \}.$$

Let A = [0, 2). Here B = (1, 3] is (2, 1)-open set. Also, $B \nsubseteq A$. But $i_2(i_1(A)) = [0, \frac{3}{2}) \neq \emptyset$.

(b) Consider the bigeneralized topological space (X, μ_1, μ_2) where X = [0, 3];

$$\mu_1 = \{ \emptyset, [0, \frac{3}{2}), (1, 2), (1, 3), [0, 3) \}$$

and

$$\mu_2 = \{ \emptyset, [0, 2), (1, 3), [0, 3) \}.$$

Take A = [0, 2). Here B = (1, 3) is (1, 2)-open set. Also, $B \nsubseteq A$. But $i_1(i_2(A)) = [0, \frac{3}{2}) \neq \emptyset$.

5. Sets via Functions

In this section, we give some properties for (s, v)-dense and (s, v)-nowhere dense sets under generalized continuous functions in a bigeneralized topological space.

Now, we recall some basic definitions defined in [4].

Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be two BGTS and $h: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be a map. Then

• h is called (s, v)-generalized continuous $(\mu_{(s,v)}$ -continuous) if $h^{-1}(B)$ is $\mu_{(s,v)}$ -closed in X for every μ_v -closed B of Y where s, v = 1, 2 and $s \neq v$.

• h is called as μ_s -continuous if $h^{-1}(C)$ is μ_s -closed in X for every μ_s -closed C of Y for s = 1, 2.

• h is said to be μ_s -open if h(D) is μ_s -open of Y for every μ_s -open D of X for s = 1, 2.

Theorem 36. Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be two bigeneralized topological spaces, $h: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be a $\mu_{(s,v)}$ -continuous function where s, v = 1, 2 and $s \neq v$. If $Q \cap P \neq \emptyset$ for every P is non-null $\mu_{(s,v)}$ -open, then $h(Q) \in (s, v) - \mathcal{D}(Y)$ where $Q \subset X$; s, v = 1, 2 and $s \neq v$.

Proof. It is enough to prove, $h(Q) \in \mathcal{D}(\mu_Y^v)$ where v = 1, 2, by Theorem 4. Take v = 2. Let $P \in \tilde{\mu}_Y^2$. Then Y - P is μ_Y^2 -closed. By hypothesis, $h^{-1}(Y - P)$ is $\mu_{(1,2)}$ -closed in X. Then $h^{-1}(P)$ is non-null $\mu_{(1,2)}$ -open. By hypothesis, $Q \cap h^{-1}(P) \neq \emptyset$. This implies $h^{-1}(h(Q)) \cap h^{-1}(P) \neq \emptyset$ which implies that $h^{-1}(h(Q) \cap P) \neq \emptyset$. Thus, $h(Q) \cap P \neq \emptyset$. Hence $h(Q) \in \mathcal{D}(\mu_Y^2)$. Take v = 1. Then by the same arguments in the above case, we get $h(Q) \in \mathcal{D}(\mu_Y^1)$. Hence $h(Q) \in \mathcal{D}(\mu_Y^v)$ where v = 1, 2.

Theorem 37. Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be two bigeneralized topological spaces, $P, Q \subset X, h: (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be a μ_s -continuous function for s = 1, 2. Then the followings are true.

(a) If $P \in \mathcal{D}(\mu_v)$, then $h(P) \in (s, v) - \mathcal{D}(Y)$ where s, v = 1, 2 and $s \neq v$.

(b) If Q is μ_v -codense and h is one-one, then h(Q) is (s, v)-codense in Y where s, v = 1, 2and $s \neq v$.

Proof. (a). It is enough to prove, $h(P) \in \mathcal{D}(\mu_v)$ in Y where v = 1, 2, by Theorem 4. Assume that, $P \in \mathcal{D}(\mu_v)$ in X for v = 1, 2. Take v = 1. Then $P \in \mathcal{D}(\mu_1)$ in X. Let $M \in \tilde{\mu}_1$. Then Y - M is μ_1 -closed in Y. By hypothesis, $h^{-1}(Y - M)$ is μ_1 -closed set in X. Then $h^{-1}(M)$ is a non-null μ_1 -open set in X. By hypothesis, $P \cap h^{-1}(M) \neq \emptyset$. This implies

 $h^{-1}(h(P)) \cap h^{-1}(M) \neq \emptyset$, since $P \subset h^{-1}(h(P))$ which implies that $h^{-1}(h(P) \cap M) \neq \emptyset$. Thus, $h(P) \cap M \neq \emptyset$. Hence $h(P) \in \mathcal{D}(\mu_1)$ in Y. Take v = 2. Then by similar arguments in the above case, we get $h(P) \in \mathcal{D}(\mu_2)$ in Y. Hence $h(P) \in \mathcal{D}(\mu_v)$ in Y where v = 1, 2.

(b) Let Q be a μ_v -codense set in X for v = 1, 2. Then $X - Q \in \mathcal{D}(\mu_v)$ in X for v = 1, 2. By (a), $h(X - Q) \in (s, v) - \mathcal{D}(Y)$ where s, v = 1, 2 and $s \neq v$. Since h is one-one, $h(X) - h(Q) \in (s, v) - \mathcal{D}(Y)$ where s, v = 1, 2 and $s \neq v$. Therefore, $Y - h(Q) \in (s, v) - \mathcal{D}(Y)$ where s, v = 1, 2 and $s \neq v$. Hence h(Q) is (s, v)-codense in Y where s, v = 1, 2; $s \neq v$.

Theorem 38. Let (X, μ_X^1, μ_X^2) and (Y, μ_Y^1, μ_Y^2) be two bigeneralized topological spaces, $K, L \subset Y, h : (X, \mu_X^1, \mu_X^2) \to (Y, \mu_Y^1, \mu_Y^2)$ be a μ_s -open, one-one function for s = 1, 2. Then the followings are true.

(a) If $K \in \mathcal{D}(\mu_v)$ in Y, then $h^{-1}(K) \in (s, v) - \mathcal{D}(X)$ where s, v = 1, 2 and $s \neq v$.

(b) If L is μ_v -codense in Y, then $h^{-1}(L)$ is (s, v)-codense where s, v = 1, 2 and $s \neq v$.

Proof. The trivial proof is omitted.

6. (s, v)-dense sets applications

In 1999, Molodstov introduced a new mathematical tool namely, soft set theory [11]. It has been used for dealing with uncertainty. Most of the researchers presented an application of soft sets in decision-making problems.

Motivated, by this we try to give an example of the soft set using (s, v)-dense and (s, v)-nowhere dense sets in a bigeneralized topological space.

Example 39. Consider the BGTS (X, μ_1, μ_2) where $X = \{a, b, c, d\}$;

$$\mu_1 = \{\emptyset, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\};$$

and

$$\mu_2 = \{\emptyset, \{b, c\}, \{b, d\}, \{b, c, d\}\}.$$

Here,

•
$$(1,2) - \mathcal{D}(X) = exp(X)$$
 where $exp(X)$ is the power set of X.
• $(2,1) - \mathcal{D}(X) = \{\{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,c,$

Let $U = \{a, c\}$ be a subset of X and $E = \{(1, 2)\text{-dense set}, (2, 1)\text{-dense set}, both\} = \{e_1, e_2, e_3\}$ is the set of parameters. Define a map F from E to exp(U) by, $F(e_1) = \{c\}; F(e_2) = \{a\}; F(e_3) = \{a, c\}$. Then the pair (F, E) is a soft set over U.

Example 40. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{a, b, c, d\}$;

$$\mu_1 = \{\emptyset, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$$

and

$$\mu_2 = \{\emptyset, \{a\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$

Here,

• $(1,2) - \mathcal{N}(X) = \{\emptyset, \{a\}, \{d\}, \{a,d\}\};$ • $(2,1) - \mathcal{N}(X) = \{\emptyset, \{b\}, \{c\}, \{d\}, \{b,d\}, \{c,d\}\}.$

Let $U = \{a, c, d\}$ be a subset of X and $E = \{(1, 2)$ -nowhere dense set, (2, 1)-nowhere dense set, both $\} = \{e_1, e_2, e_3\}$ is the set of parameters. Consider the map F from E into the power set of U. Defined by $F(e_1) = \{a\}$; $F(e_2) = \{c\}$; $F(e_3) = \{d\}$. Then (F, E) is a soft set over U.

Example 41. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{a, b, c, d\}$;

$$\mu_1 = \{\emptyset, \{a\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$$

and

$$\mu_2 = \{\emptyset, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

Here,

• (1,2)-codense sets = { \emptyset , {a}, {b}, {c}, {d}, {a,d}, {b,c}, {b,d}, {c,d}, {b,c,d}}. • (2,1)-codense sets = { \emptyset , {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {a,b,c}, {a,b,c},

Let $U = \{a, c, d\}$ be a subset of X and $E = \{(1, 2)\text{-codense set}, (2, 1)\text{-codense set}, (1, 2)\text{-codense but not } (2, 1)\text{-codense}, (2, 1)\text{-codense but not } (1, 2)\text{-codense}, (1, 2)\text{-codense and } (2, 1)\text{-codense } \} = \{e_1, e_2, e_3, e_4, e_5\}$ is the set of parameters. Consider the map F from E into the power set of U. Defined by $F(e_1) = \{a\}; F(e_2) = \{c\}; F(e_3) = \{c, d\}; F(e_4) = \{a, c\}; F(e_5) = \{d\}$. Then we get the pair (F, E) is a soft set over U.

Example 42. Consider the generalized topological space (X, η_1, η_2) where $X = \{a, b, c, d\}$; η_1 and η_2 are defined in above Example 40, that is; we take $\eta_1 = \mu_2$ and $\eta_2 = \mu_1$. Then we get;

- η_1 -nowhere dense sets = { \emptyset , {b}, {d}, {b, d}};
- η_2 -nowhere dense sets = { \emptyset , {c}, {d}, {c, d}};
- η_1 -dense sets = {{a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, c, d}, X};
- η_2 -dense sets = {{a, b}, {b, c}, {a, b, c}, {a, b, d}, {b, c, d}, X};
- $(1,2) \mathcal{N}(X) = \{\emptyset, \{b\}, \{c\}, \{d\}, \{b,d\}, \{c,d\}\};$
- $(2,1) \mathcal{N}(X) = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}.$

Let $U = \{a, b, c\}$ be a non-null subset of X and $E = \{\eta_1\text{-nowhere dense set, }\eta_2\text{-nowhere dense set, }\eta_2\text{-nowhere dense set, }\eta_2\text{-nowhere dense set, }\eta_2\text{-nowhere dense set, }(2, 1)\text{-nowhere dense set}\} = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ is the set of parameters. Take F be a function defined from E to the subsets of U by; $F(e_1) = \{b\}; F(e_2) = \{c\}; F(e_3) = \{a, c\}; F(e_4) = \{b, c\}; F(e_5) = \{d\}; F(e_6) = \{a\}$. Thus, (F, E) is a soft set over U.

7. Conclusion

In this article, various properties for (s, v)-dense and (s, v)-nowhere dense sets are proved, which are useful to easily check the characterization of a given set in a bigeneralized topological space.

References

- Chawalit Boonpok. Weakly open functions on bigeneralized topological spaces. Int. Journal of Math. Analysis, 4(18):891–897, 2010.
- [2] Akos Császár. Generalized open sets. Acta mathematica hungarica, 75, 1997.
- [3] Akos Császár. Generalized open sets in generalized topologies. Acta mathematica hungarica, 106, 2005.
- [4] Wichai Dungthaisong, Chawalit Boonpok, and Chokchai Viriyapong. Generalized closed sets in bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1175–1184, 2011.
- [5] E. Ekici. Generalized submaximal spaces. Acta Math. Hungar., 134:132 138, 2012.
- [6] Erdal Ekici. Generalized hyperconnectedness. Acta Mathematica Hungarica, 133, 2011.
- [7] J.C. Kelly. Bitopological spaces. Pro. London Math. Soc., 3(13):71 79, 1969.
- [8] Ewa Korczak-Kubiak, Anna Loranty, and Ryszard J Pawlak. Baire generalized topological spaces, generalized metric spaces and infinite games. Acta Mathematica Hungarica, 140(3):203–231, 2013.
- [9] Zhaowen Li and Funing Lin. Baireness on generalized topological spaces. Acta Mathematica Hungarica, 139(4), 2013.
- [10] W. K. Min. Almost continuity on generalized topological spaces. Acta Math. Hungar., 125:121 – 125, 2009.
- [11] D. Molodtsov. Soft set theory-first results. Comput. Math. Appl., 37:19 31, 1999.
- [12] V Renukadevi and S Vadakasi. Modifications of strongly nodec spaces. Communications in Advanced Mathematical Sciences, 2:99–112, 2018.
- [13] Binod Chandra Tripathy S. Acharjee and Kyriakos Papadopoulos. Two forms of pairwise lindelöfness and some results related to hereditary class in a bigeneralized topological space. New Mathematics and Natural Computation, 13(2):181–193, 2017.
- [14] Preecha Yupapin Vadakasi Subramanian, Yasser Farhat. On nowhere dense sets. European Journal of Pure and Applied Mathematics, 15(2):403–414, 2022.