EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 4, 2023, 2049-2065
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Generalized Dense Sets in Bigeneralized Topological Spaces

Yasser Farhat ${ }^{1}$, Vadakasi Subramanian ${ }^{2, *}$
${ }^{1}$ Academic Support Department, Abu Dhabi Polytechnic, P. O. Box 111499, Abu Dhabi, United Arab Emirates
${ }^{2}$ Department of Mathematics, A.K.D.Dharma Raja Women's College, Rajapalayam, India

Abstract

In this article, in a bigeneralized topological space, we introduce an interesting tool namely, (s, v)-dense set, and examine its significance of this set. Also, we give the relationships among nowhere-dense sets defined in both generalized and bigeneralized topological space and give some of their properties by using functions. Finally, we give some applications for (s, v)-dense and (s, v)-nowhere dense sets in a soft set theory.

2020 Mathematics Subject Classifications: 54A05, 54A10
Key Words and Phrases: Bigeneralized topological spaces, $\mu_{(s, v)}$-open, $\mu_{(s, v)}$-closed, $\mu_{(s, v)^{-}}$ dense, $g_{(s, v)}$-continuous function.

1. Introduction

In [2], Császár defined the notion of generalized topological space. Some researchers have found various new concepts in this space and examined their nature in a generalized topological space. Especially, nowhere dense and dense sets were introduced by Ekici in a generalized topological space [6]. He has given few results for nowhere-dense and dense sets in a generalized topological space.

Some researchers proved various properties for nowhere dense sets e.g. [9, 12, 14]. Inspired by this, Korczak-Kubiak, et al. introduced two new generalized topologies, namely, μ^{\star} and $\mu^{\star \star}$; then examined the nature of nowhere dense set using μ^{\star} and $\mu^{\star \star}[8]$.

In [7], J.C. Kelly introduced the notion of bitopological space. Motivated by this, C. Boonpok introduced the concept of bigeneralized topological space in 2010 [1]. He proved some results about (m, n)-closed sets in bigeneralized topological space.

In this paper, we define the generalization of dense sets, namely, (s, v)-dense in a bigeneralized topological space. In a bigeneralized topological space, various properties for (s, v)-dense and (s, v)-nowhere dense sets are launched.

[^0]Email addresses: farhat.yasser.1@gmail.com (Y. Farhat), vadakasivigneswaran@gmail.com (S.Vadakasi)

The basic definitions and results are presented in section 2 which is useful for the development of the following sections. In section 3, in a bigeneralized topological space, new results for (s, v)-dense sets are proven. The necessary conditions for a given set is (s, v)-dense are given. Section 4, some properties for (s, v)-nowhere dense sets are proven. In a bigeneralized topological space, the relationship between μ-nowhere dense and (s, v) nowhere dense sets are examined. Finally, the set (s, v)-codense is defined and find few results for this set.

In section 5 , the nature of (s, v)-dense and (s, v)-codense sets are examined by functions in a bigeneralized topological space. In the last section, we define a soft set using (s, v)-dense, (s, v)-nowhere dense, and (s, v)-codense sets are defined in a bigeneralized topological space.

2. Preliminaries

Let μ be the collection of subsets of a non-null set $X . \mu$ is called generalized topology [2] in X if it contains the empty set and is closed under arbitrary union. Then (X, μ) is called generalized topological space (GTS) [2]. If μ contains X, then (X, μ) is called as a strong generalized topological space (sGTS) [9].

In, [3], let Q be the subset of (X, μ),

- If $Q \in \mu$, then Q is called μ-open.
- If $X-Q \in \mu$, then Q is said to be μ-closed.
- The interior of Q denoted by $i_{\mu} Q$, is the union of all μ-open sets contained in Q.
- The closure of Q denoted by $c_{\mu} Q$, is the intersection of all μ-closed sets containing Q.

For ease of notation, we write $i(Q)$ and $c(Q)$ when no confusion can arise.
Korczak - Kubiak, et.al [8] defined the following notations;

$$
\begin{gathered}
\tilde{\mu}=\{L \in \mu \mid L \neq \emptyset\} . \\
\mu(x)=\{L \in \mu \mid x \in L\} .
\end{gathered}
$$

Let Q be a subset of a generalized topological space (X, μ). Then Q is said to be ;

- μ-nowhere dense [6] if $i c(Q)=\emptyset$;
- μ-dense [6] if $c Q=X$;
- μ-codense [5] if $c(X-Q)=X$.

Let μ_{1}, μ_{2} be two GT in a non-null set X. Then $\left(X, \mu_{1}, \mu_{2}\right)$ is called as a bigeneralized topological space (BGTS) [1].

Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS, $D \subset X$. T The closure of D is notated by $c_{s}(D)$ and $i_{s}(D)$ denote the interior of D with respect to μ_{s}, respectively, for $s=1,2[1]$.

In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, let $Q, P \subset X$. Then

- Q is called (s, v)-closed [1] if $c_{s}\left(c_{v}(Q)\right)=Q$, where $s, v=1$ or $2 ; s \neq v$.
- If $X-Q$ is (s, v)-closed, then Q is called (s, v)-open [1] where $s, v=1$ or $2 ; s \neq v$.
- P is called $\mu_{(s, v)}$-closed [4] if $c_{\mu_{v}}(P) \subset K$ whenever $P \subset K$ and K is μ_{s}-open in X, for $s, v=1,2 ; s \neq v$.
- If $X-P$ is $\mu_{(s, v)}$-closed, then P is called $\mu_{(s, v)}$-open [4] where $s, v=1$ or $2 ; s \neq v$.

In [1], a subset Q of a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$ is called

- (s, v) - μ-regular open if $Q=i_{s}\left(c_{v}(Q)\right)$ for $s, v=1$ or $2 ; s \neq v$.
- (s, v) - μ-semi-open if $Q \subseteq c_{v}\left(i_{s}(Q)\right)$ for $s, v=1$ or $2 ; s \neq v$.
- (s, v) - μ-preopen if $Q \subseteq i_{s}\left(c_{v}(Q)\right)$ for $s, v=1$ or $2 ; s \neq v$.
- $(s, v)-\mu$ - α-open if $Q \subseteq i_{s}\left(c_{v}\left(i_{s}(Q)\right)\right)$ for $s, v=1$ or $2 ; s \neq v$.

Lemma 1. [Proposition 3.4, [1]] Let K be a subset of a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$. Then K is (s, v)-closed $\Leftrightarrow K$ is both μ-closed in $\left(X, \mu_{s}\right)$ and $\left(X, \mu_{v}\right)$ where $s, v=1$ or $2 ; s \neq v$.

Lemma 2. [Proposition 3.3, [4]] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS, $K \subset X$. Then K is $\mu_{(s, v)^{-}}$ closed where $s, v=1,2 ; s \neq v$ whenever K is μ_{v}-closed.

Lemma 3. [Lemma 3.2, [9]] Let D, K be two subsets of a generalized topological space (X, μ). If $K \in \tilde{\mu}$ and $K \cap D=\emptyset$, then $K \cap c D=\emptyset$.

Lemma 4. [Proposition 3.3, [9]] In a GTS $(X, \mu), Q \in \mathcal{D}(\mu) \Leftrightarrow H \cap Q \neq \emptyset$ for any $H \in \tilde{\mu}$ where $\mathcal{D}(\mu)=\left\{P \subset X \mid c_{\mu}(P)=X\right\}$.

Lemma 5. [Proposition 2.2, [10]] Let P, Q be two subsets of a GTS (X, μ). Then the followings are true:
(a) $c_{\mu}(X-P)=X-i_{\mu}(P) ; i_{\mu}(X-P)=X-c_{\mu}(P)$.
(b) If $(X-P) \in \mu$, then $c_{\mu}(P)=P$ and if $P \in \mu$, then $i_{\mu}(P)=P$.
(c) If $P \subseteq Q$, then $c_{\mu}(P) \subseteq c_{\mu}(Q)$ and $i_{\mu}(P) \subseteq i_{\mu}(Q)$.
(d) $P \subseteq c_{\mu}(P)$ and $i_{\mu}(P) \subseteq P$.
(e) $c_{\mu}\left(c_{\mu}(P)\right)=c_{\mu}(P)$ and $i_{\mu}\left(i_{\mu}(P)\right)=i_{\mu}(P)$.

3. Nature of (s, v)-dense sets

Here, we define a generalized dense set using two generalized topologies namely, (s, v)-dense set, and analyze its nature in a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$.

Definition 1. Let D be a non-null subset of a bigeneralized topological space (X, μ_{1}, μ_{2}). Then D is called (s, v)-dense if $c_{s}\left(c_{v}(D)\right)=X$ where $s, v=1,2$ and $s \neq v$.

Moreover, $(s, v)-\mathcal{D}(X)=\{Q \subset X \mid Q$ is (s, v)-dense in $X\}$ for $s, v=1,2 ; s \neq v$.
Example 2. Consider the $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e\},\{e, f\},\{f, k\},\{e, f, k\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, f\},\{f, l\},\{e, f, l\}\} .
$$

Then $(s, v)-\mathcal{D}(X)=\{Q \subset X \mid$ either $e \in Q$ or $f \in Q\}$ where $s, v=1,2 ; s \neq v$.
In a GTS, every superset of a (s, v)-dense set is (s, v)-dense where $s, v=1,2$ and $s \neq v$.
Theorem 3. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and Q be a non-null subset of X. Then Q is (s, v)-dense $\Leftrightarrow c_{v} Q \cap H \neq \emptyset$ for every H is a non-null μ_{s}-open set where $s, v=1,2$ and $s \neq v$.

Proof. Suppose $Q \in(s, v)-\mathcal{D}(X)$ for $s, v=1,2 ; s \neq v$, then $c_{s}\left(c_{v}(Q)\right)=X$ and so $X-\left(c_{s}\left(c_{v}(Q)\right)\right)=\emptyset$ where $s, v=1,2$ and $s \neq v$. By Lemma 5, $X-\left(c_{s}\left(c_{v}(Q)\right)\right)=$ $i_{s}\left(X-\left(c_{v}(Q)\right)\right)$, so that $i_{s}\left(X-\left(c_{v}(Q)\right)\right)=\emptyset$ which implies that $c_{v}(Q) \cap H \neq \emptyset$ for every H is a non-null μ_{s}-open set where $s, v=1,2$ and $s \neq v$. Conversely, assume that, $c_{v}(Q) \cap H \neq \emptyset$ for every H is a non-null μ_{s}-open set where $s, v=1,2$ and $s \neq v$. Then $i_{s}\left(X-\left(c_{v}(Q)\right)\right)=\emptyset$ and so $c_{s}\left(c_{v}(Q)\right)=X$, by Lemma 5 where $s, v=1,2$ and $s \neq v$. Hence Q is (s, v)-dense for $s, v=1,2$ and $s \neq v$.

Theorem 4 and Example 5 are described in the below diagram.

Theorem 4. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, if K is either μ_{s}-dense or μ_{v}-dense, then K is (s, v)-dense where $s, v=1,2 ; s \neq v$.

Proof. Assume that, K is μ_{s}-dense where for $s=1,2$. Then $c_{s}(K)=X$ for $s=1,2$. Take $s=2$ and $v=1$. Then K is μ_{2}-dense. Since $K \subset c_{1}(K)$ we have $c_{2}(K) \subset c_{2}\left(c_{1}(K)\right)$. Hence

$$
\begin{equation*}
K \in(2,1)-\mathcal{D}(X) \tag{1}
\end{equation*}
$$

Take $s=1$ and $v=2$. Then K is μ_{1}-dense. Since $K \subset c_{2}(K)$ we have $c_{1}(K) \subset c_{1}\left(c_{2}(K)\right)$. Thus,

$$
\begin{equation*}
K \in(1,2)-\mathcal{D}(X) \tag{2}
\end{equation*}
$$

From (1) छ (2), K is (s, v)-dense where $s, v=1,2$ and $s \neq v$. Similarly, we can prove that K is (s, v)-dense if K is μ_{v}-dense where $s, v=1,2$ and $s \neq v$.

Example 5 describes that the Theorem 4 is not reversible. Generally, $(1,2)-\mathcal{D}(X) \neq$ $(2,1)-\mathcal{D}(X)$ in a bigeneralized topological space as given in Example 6.

Example 5. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}), $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, l\},\{f, l\},\{e, f, l\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, k\},\{f, k\},\{e, f, k\}\} .
$$

Here $\{k\}$ is $(2,1)$-dense. But $\{k\}$ is not μ_{1}-dense. Also, $\{l\}$ is $(1,2)$-dense. But $\{l\}$ is not μ_{2}-dense.

Example 6. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, f\},\{f, k\},\{e, f, k\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e\},\{e, l\},\{k, l\},\{e, k, l\}\} .
$$

Then

- $(1,2)-\mathcal{D}(X)=\{\{e\},\{f\},\{k\},\{l\},\{e, f\},\{e, k\},\{e, l\},\{f, k\},\{f, l\},\{k, l\},\{e, f, k\},\{e, f$, $l\},\{e, k, l\},\{f, k, l\}, X\}$.
- $(2,1)-\mathcal{D}(X)=\{\{e\},\{f\},\{e, f\},\{e, k\},\{e, l\},\{f, k\},\{f, l\},\{e, f, k\},\{e, f, l\},\{e, k, l\},\{f$, $k, l\}, X\}$.
Thus, $(1,2)-\mathcal{D}(X) \neq(2,1)-\mathcal{D}(X)$.
Theorem 7. Let μ_{1} and μ_{2} be two generalized topologies in X. If $\mu_{s} \subseteq \mu_{v}$, then $(v, s)-$ $\mathcal{D}(X) \subseteq(s, v)-\mathcal{D}(X)$ where $s, v=1,2$ and $s \neq v$.

Proof. We give the detailed proof only for $s=1$ and $v=2$. Suppose that $\mu_{1} \subseteq \mu_{2}$ and $Q \in(2,1)-\mathcal{D}(X)$, then $c_{2}\left(c_{1}(Q)\right)=X$. By Lemma 4, $c_{1}(Q) \cap H \neq \emptyset$ for every $H \in \tilde{\mu}_{2}$. Take $G \in \tilde{\mu}_{1}$ we get $G \in \tilde{\mu}_{2}$ for that $c_{1}(Q) \cap G \neq \emptyset$. Since $Q \subset c_{2}(Q)$ we have $c_{1}(Q) \subset c_{1}\left(c_{2}(Q)\right)$. Thus, $c_{1}\left(c_{2}(Q)\right) \cap G \neq \emptyset$. Since G is an arbitrary non-null μ_{1}-open set we have $c_{1}\left(c_{1}\left(c_{2}(Q)\right)\right)=X$, by Lemma 4. Hence $c_{1}\left(c_{2}(Q)\right)=X$, by Lemma $5(e)$. Therefore, $Q \in(1,2)-\mathcal{D}(X)$.

Theorem 8. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and D be a non-null subset of X. If $D \in(s, v)-$ $\mathcal{D}(X)$, then $D \cap H \neq \emptyset$ for every H is a non-null (s, v)-open set in X for $s, v=1,2$; $s \neq v$.

Proof. Take $s=1$ and $v=2$. Assume that, D is $(1,2)$-dense. Then $c_{1}\left(c_{2}(D)\right)=X$. Let H be a non-null (1,2)-open set. By Lemma 1,

$$
\begin{align*}
& H \in \tilde{\mu_{1}} \tag{3}\\
& H \in \tilde{\mu_{2}} \tag{4}
\end{align*}
$$

Then $c_{2}(D) \cap H \neq \emptyset$, by Lemma 4 and (3). From (4) and $c_{2}(D) \cap H \neq \emptyset$ we have $D \cap H \neq \emptyset$, by Lemma 3. Thus, $D \cap H \neq \emptyset$ for every H is a non-null $(1,2)$-open set. Take $s=2$ and $v=1$. By similar considerations in the above case, we get the proof.

Theorem 9. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS, $D \subset X$. If $D \cap H \neq \emptyset$ for every $H \neq \emptyset$ is $\mu_{(s, v)}$-open, then $D \in(s, v)-\mathcal{D}(X) ; s, v=1,2$ and $s \neq v$.

Proof. We give the detailed proof for $s=1$ and $v=2$ only. Suppose that $D \cap H \neq \emptyset$ for every H is non-null $\mu_{(1,2)}$-open. By Theorem 4, we have to prove D is μ_{2}-dense. Let $B \in \tilde{\mu_{2}}$. Then B is a non-null $\mu_{(1,2)}$-open set in X, by Lemma 2. By assumption, $D \cap B \neq \emptyset$. Therefore, D is a μ_{2}-dense set. Hence D is a $(1,2)$-dense set.

The below Example 10 describes that the converse part of Theorem 9 is generally not true.

Example 10. Take $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, f\},\{f, l\},\{e, f, l\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, k\},\{f, k\},\{e, f, k\}\} .
$$

Then $\mu_{(1,2)}=\{\emptyset,\{e\},\{f\},\{l\},\{e, f\},\{e, k\},\{e, l\},\{f, k\},\{f, l\},\{e, f, k\},\{e, f, l\}\}$ and $\mu_{(2,1)}=\{\emptyset,\{e\},\{f\},\{k\},\{e, f\},\{e, k\},\{f, k\},\{f, l\},\{e, f, k\},\{e, f, l\},\{f, k, l\}\}$.

Take $P=\{e\}$. Then $P \in(1,2)-\mathcal{D}(X)$. But $P \cap Q=\emptyset$ where $Q=\{l\}$ is a non-null $\mu_{(1,2)}$-open set. Let $M=\{f\} \subset X$. Then $M \in(2,1)-\mathcal{D}(X)$. But $M \cap L=\emptyset$ where $L=\{e\}$ is a non-null $\mu_{(2,1) \text {-open set. }}$.

The following Lemma 6 describes the above diagram.
Lemma 6. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If $Q \in \tilde{\mu}_{s}$, then the below results are true.
(a) Q is $(s, v)-\mu$-semi open.
(b) Q is (s, v) - μ-preopen.
(c) Q is $(s, v)-\mu$ - α-open where $s, v=1,2$ and $s \neq v$.

Proof. We give the detailed proof for (b) only. Suppose that, $Q \in \tilde{\mu}_{s}$ for $s=1,2$. Then $i_{s}(Q)=Q$ for $s=1,2$. Since $Q \subset c_{v}(Q)$ for $v=1,2$ we have $i_{s}(Q) \subset i_{s}\left(c_{v}(Q)\right)$ where $s, v=1,2$ and $s \neq v$. Thus, $Q \subset i_{s}\left(c_{v}(Q)\right)$ where $s, v=1,2$ and $s \neq v$. Hence Q is a (s, v) - μ-preopen set in X for $s, v=1,2 ; s \neq v$.

Theorem 11. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. Then $D \in(s, v)-\mathcal{D}(X)$ if any one of the following is true.
(a) $D \cap M \neq \emptyset$ for every M is a non-null (s, v) - μ-semi open set in X
(b) $D \cap M \neq \emptyset$ for every M is a non-null (s, v) - μ-preopen set in X
(c) $D \cap M \neq \emptyset$ for every M is a non-null $(s, v)-\mu$ - α-open set in X where $s, v=1,2 ; s \neq v$.

Proof. We give the detailed proof for (b) only. Suppose that $D \cap M \neq \emptyset$ for every M is a non-null $(s, v)-\mu$-preopen set in X where $s, v=1,2$ and $s \neq v$. It is enough to prove, D is μ_{s}-dense set in X for $s=1,2$, by Theorem 4. Let $B \in \tilde{\mu}_{s}$ for $s=1,2$. By Lemma $6, B$ is a non-null $(s, v)-\mu$-preopen set in X where $s, v=1,2$ and $s \neq v$. By assumption, $D \cap B \neq \emptyset$. Therefore, D is a μ_{s}-dense set for $s=1,2$. Hence D is (s, v)-dense where $s, v=1,2$ and $s \neq v$.

Example 12 explains that the reverse part of Theorem 11 is generally not true.
Example 12. (a) Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $\{e, f, k, l, r\}$;

$$
\mu_{1}=\{\emptyset,\{e, f\},\{e, l\},\{f, l\},\{e, f, l\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, f, k\},\{e, f, l\},\{e, k, r\},\{e, f, k, l\},\{e, f, k, r\}, X\} .
$$

Take $A=\{k, l, r\}$. Then A is (1,2)-dense set. But $A \cap G=\emptyset$ where $G=\{e, f\}$ is a non-null $\mu_{(1,2)}-\mu$-semi open set. Let $B=\{l, r\} \subset X$. Then B is $(2,1)$-dense set. But $B \cap H=\emptyset$ where $H=\{e, f, k\}$ is a non-null $\mu_{(2,1)}-\mu$-semi-open set.
(b) Consider the $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right), X=[0,3]$;

$$
\mu_{1}=\{\emptyset,[0,2),(1,3],[0,3]\}
$$

and

$$
\mu_{2}=\left\{\emptyset,\left[0, \frac{3}{2}\right],(1,2],[0,2]\right\} .
$$

Let $A=(0,1) \cup\left(\frac{3}{2}, 3\right]$. Then $A \in(s, v)-\mathcal{D}(X)$ where $s, v=1,2$ and $s \neq v$. But $A \cap B=\emptyset$ where $B=\left\{\frac{3}{2}\right\}$ is a non-null (s, v) - μ-preopen set in X where $s, v=1,2 ; s \neq v$.
(c) Consider the $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right), X=[0,4]$;

$$
\mu_{1}=\{\emptyset,[0,2),(1,2)\}
$$

and

$$
\mu_{2}=\{\emptyset,[0,2),(1,2],(1,3),[0,2],[0,3)\} .
$$

Let $P=(0,1) \cup[2,4]$. Then $P \in(1,2)-\mathcal{D}(X)$. But $P \cap Q=\emptyset$ where $Q=[1,2)$ is a non-null $(s, v)-\mu-\alpha$-pen set in X where $s, v=1,2$ and $s \neq v$. Let $C=(0,1) \cup[3,4]$. Then C is $(2,1)$-dense set in X. But $C \cap D=\emptyset$ where $D=[1,3)$ is a non-null $(s, v)-\mu-\alpha$-pen set in X where $s, v=1,2$ and $s \neq v$.

4. Generalized nowhere dense sets

Here, we find the new results for (s, v)-nowhere dense set in a BGTS.
Definition 13. [13] Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and $D \subset X$. Then D is called (s, v) nowhere dense if $i_{s}\left(c_{v}(D)\right)=\emptyset$ where $s, v=1,2$ and $s \neq v$.

We notated, $(s, v)-\mathcal{N}(X)=\{Q \subset X \mid Q$ is (s, v)-nowhere dense in $X\}$ where $s, v=1,2$; $s \neq v$.

Example 14. Take $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, f\},\{e, k\},\{e, f, k\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, l\},\{f, l\},\{e, f, l\}\} .
$$

Then $\{k\}$ is a non-null (s, v)-nowhere dense set in $\left(X, \mu_{1}, \mu_{2}\right)$ where $s, v=1,2 ; s \neq v$.
In a bigeneralized topological space, if $Q \in(s, v)-\mathcal{N}(X)$ and $P \subset Q$, then $P \in$ $(s, v)-\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$.

Theorem 15. In a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right), D \in(s, v)-\mathcal{N}(X)$ if and only if $c_{v}(D) \in(s, v)-$ $\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$.

In a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right),(1,2)-\mathcal{N}(X) \neq(2,1)-\mathcal{N}(X)$ as shown by the below Example 16. Also, this example shows that $(s, v)-\mathcal{N}(X)$ is not closed under finite union in general.

Example 16. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS where $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, l\},\{f, l\},\{e, f, l\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, f\},\{f, l\},\{e, f, l\}\} .
$$

Then

- $(1,2)-\mathcal{N}(X)=\{\emptyset,\{e\},\{k\},\{l\},\{e, k\},\{k, l\}\}$
- $(2,1)-\mathcal{N}(X)=\{\emptyset,\{e\},\{f\},\{k\},\{e, k\},\{f, k\}\}$.

Thus, $(2,1)-\mathcal{N}(X) \neq(1,2)-\mathcal{N}(X)$.
Here $\{e\}$ and $\{l\}$ are in $(1,2)-\mathcal{N}(X)$. But $\{e, l\} \notin(1,2)-\mathcal{N}(X)$. Also, $\{e\}$ and $\{f\}$ are in $(2,1)-\mathcal{N}(X)$. But $\{e, f\} \notin(2,1)-\mathcal{N}(X)$.

Theorem 17. Let μ_{1} and μ_{2} be two generlized topologies on a non-null set X. If $\mu_{s} \subseteq \mu_{v}$, then $(v, s)-\mathcal{N}(X) \subseteq(s, v)-\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$.

Proof. We give the detailed proof only for $s=1$ and $v=2$. Assume that,

$$
\begin{equation*}
\mu_{1} \subseteq \mu_{2} \tag{5}
\end{equation*}
$$

Let $D \in(2,1)-\mathcal{N}(X)$. Then $i_{2}\left(c_{1}(D)\right)=\emptyset$. Suppose $i_{1}\left(c_{2}(D)\right) \neq \emptyset$. There exists $K \in \tilde{\mu}_{1}$ such that $K \subset c_{2}(D)$. From (5), $K \in \tilde{\mu}_{2}$. Then $i_{2}\left(c_{2}(D)\right) \neq \emptyset$. By (5) we get $c_{2}(D) \subset$ $c_{1}(D)$. Thus, $i_{2}\left(c_{1}(D)\right) \neq \emptyset$ which is not possible. Therefore, $i_{1}\left(c_{2}(D)\right)=\emptyset$. Hence $D \in$ $(1,2)-\mathcal{N}(X)$.

The following Theorem 19 describes the below diagram.

The following Example 18 shows that the existence of the below Theorem 19.
Example 18. (a) Fix $s=1, v=2$. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\}$;

$$
\mu_{1}=\{\emptyset,\{p, r\},\{q, r\},\{p, q, r\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{p, r\},\{q, r\},\{p, s\}\{p, q, r\},\{p, r, s\}, X\} .
$$

Obviously, $\mu_{1} \subset \mu_{2}$. Take $K=\{p, s\}$ and $L=\{q\}$. Then K is a μ_{1}-nowhere dense set and L is a μ_{2}-nowhere dense set. Here, both K and L are in $(1,2)-\mathcal{N}(X)$.
(b) Fix $s=2, v=1$. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $\{p, q, r, s\}$;

$$
\mu_{1}=\{\emptyset,\{p, s\},\{r, s\},\{q, s\}\{p, q, s\},\{p, r, s\},\{q, r, s\}, X\}
$$

and

$$
\mu_{2}=\{\emptyset,\{q, s\},\{r, s\},\{q, r, s\}\} .
$$

Clearly, $\mu_{2} \subset \mu_{1}$. Take $H=\{r\}$ and $D=\{p, r\}$. Then H is a μ_{1}-nowhere dense set and D is a μ_{2}-nowhere dense set. Also, both H and D are in $(2,1)-\mathcal{N}(X)$.

Theorem 19. Let μ_{1}, μ_{2} be two generlized topologies on X and $\mu_{s} \subseteq \mu_{v}$ where $s, v=1,2$ and $s \neq v$. If $P \subset X$ is μ_{v}-nowhere dense set or μ_{s}-nowhere dense set, then $P \in(s, v)-$ $\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$.

Proof. We give the detailed proof only for $s=2$ and $v=1$. Assume that,

$$
\begin{equation*}
\mu_{2} \subseteq \mu_{1} \tag{6}
\end{equation*}
$$

Let P be a μ_{1}-nowhere dense set. Then $i_{1}\left(c_{1}(P)\right)=\emptyset$. Suppose $i_{2}\left(c_{1}(P)\right) \neq \emptyset$. Then there is $Q \in \tilde{\mu}_{2}$ such that $Q \subset c_{1}(P)$. From (6$), Q \in \tilde{\mu}_{1}$. Then $i_{1}\left(c_{1}(P)\right) \neq \emptyset$ which is not possible. Therefore, $i_{2}\left(c_{1}(P)\right)=\emptyset$. Hence $P \in(2,1)-\mathcal{N}(X)$.

Let P be a μ_{2}-nowhere dense set. Then $i_{2}\left(c_{2}(P)\right)=\emptyset$. Suppose $i_{2}\left(c_{1}(P)\right) \neq \emptyset$. Then there is a set $M \in \tilde{\mu}_{2}$ such that $M \subset c_{1}(P)$. By (6), $i_{2}\left(c_{2}(P)\right) \neq \emptyset$ which is not possible. Therefore, $i_{2}\left(c_{1}(P)\right)=\emptyset$. Hence $P \in(2,1)-\mathcal{N}(X)$.

In Theorem 19, the condition " $\mu_{s} \subseteq \mu_{v}$ " where $s, v=1,2 ; s \neq v$ " is necessary as shown in Example 20.

Example 20. Take $X=\{e, f, k, l\} ;$

$$
\mu_{1}=\{\emptyset,\{e, k\},\{e, l\},\{f, l\},\{e, f, l\},\{e, k, l\}, X\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, f\},\{f, k\},\{e, l\},\{f, l\},\{e, f, k\},\{e, f, l\},\{e, k, l\},\{f, k, l\}, X\} .
$$

Let $P=\{f, k\}$. Then $i_{1}\left(c_{1}(P)\right)=i_{1}(\{f, k\})=\emptyset$ and so P is μ_{1}-nowhere dense set. But $P \notin(2,1)-\mathcal{N}(X)$. Let $M=\{e, k\}$. Then $i_{2}\left(c_{2}(M)\right)=i_{2}(\{e, k\})=\emptyset$ and so M is a $\mu_{2}{ }^{-}$ nowhere dense set. But $M \notin(1,2)-\mathcal{N}(X)$. Let $C=\{k, l\}$. Then $i_{2}\left(c_{2}(C)\right)=i_{2}(\{k, l\})=\emptyset$ and so C is a μ_{2}-nowhere dense set. But $C \notin(2,1)-\mathcal{N}(X)$.

Consider the $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right), X=[0,3]$;

$$
\mu_{1}=\left\{\emptyset,\left[0, \frac{3}{2}\right),(1,2],[0,2]\right\}
$$

and

$$
\mu_{2}=\{\emptyset,[0,1),(1,2),[0,2)\}
$$

Let $D=\left[\frac{3}{2}, 3\right]$. Then D is a μ_{1}-nowhere dense set in X. But $D \notin(1,2)-\mathcal{N}(X)$.

The below Theorem 22 describes the above diagram. Example 21 proves the existence of the below Theorem 22 .

Example 21. (a) Fix $s=1, v=2$. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\}$;

$$
\mu_{1}=\{\emptyset,\{p, q\},\{p, r\},\{q, r\},\{p, q, r\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{p, r\},\{q, r\},\{p, q, r\}\} .
$$

Obviously, $\mu_{2} \subset \mu_{1}$. Consider, $L=\{q, s\}$. Then $i_{1}\left(c_{2}(L)\right)=\emptyset$ and so $L \in(1,2)-\mathcal{N}(X)$. Here, $i_{1}\left(c_{1}(L)\right)=\emptyset$ and $i_{2}\left(c_{2}(L)\right)=\emptyset$. Thus, L is a μ_{1}-nowhere dense set and also a μ_{2}-nowhere dense set.
(b) Fix $s=2, v=1$. Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=$ $\{p, q, r, s\}$;

$$
\mu_{1}=\{\emptyset,\{p, s\},\{q, s\},\{p, q, s\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{p\},\{p, s\},\{q, s\},\{p, q, s\}\} .
$$

Clearly, $\mu_{1} \subset \mu_{2}$. Take $K=\{q, r\}$ then we get $i_{2}\left(c_{1}(K)\right)=\emptyset$ and hence $K \in(2,1)-\mathcal{N}(X)$. Now, $i_{1}\left(c_{1}(K)\right)=\emptyset$ and $i_{2}\left(c_{2}(K)\right)=\emptyset$ which implies that K is a μ_{1}-nowhere dense set and also a μ_{2}-nowhere dense set.

Theorem 22. Let μ_{1}, μ_{2} be two generlized topologies on X and $\mu_{v} \subseteq \mu_{s}$ where $s, v=1,2$; $s \neq v$. If $Q \in(s, v)-\mathcal{N}(X)$, then Q is μ_{v}-nowhere dense and also μ_{s}-nowhere dense where $s, v=1,2 ; s \neq v$.

Proof. We give the detailed proof for $s=1$ and $v=2$ only. Assume that, $\mu_{2} \subseteq \mu_{1}$. Let Q be a $(1,2)$-nowhere dense set. Then $i_{1}\left(c_{2}(Q)\right)=\emptyset$.

Suppose $i_{1}\left(c_{1}(Q)\right) \neq \emptyset$. By assumption, $i_{1}\left(c_{2}(Q)\right) \neq \emptyset$ which is a contradiction. Therefore, $i_{1}\left(c_{1}(Q)\right)=\emptyset$.

If $i_{2}\left(c_{2}(Q)\right) \neq \emptyset$, then there is a set $M \in \tilde{\mu}_{2}$ such that $M \subset c_{2}(Q)$. By assumption, $M \in \tilde{\mu}_{1}$. Thus, $i_{1}\left(c_{2}(Q)\right) \neq \emptyset$ which is a contradiction. Therefore, $i_{2}\left(c_{2}(Q)\right)=\emptyset$.

Theorem 23. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and $K \subset X$. If $K \in(s, v)-\mathcal{N}(X)$ then $c_{v}(K)-$ $K \in(s, v)-\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$.

Proof. Let $K \in(s, v)-\mathcal{N}(X)$ where $s, v=1,2 ; s \neq v$. Take $s=1$ and $v=2$. Then K is a $(1,2)$-nowhere dense set in X. Since $c_{2}(K)-K \subset c_{2}(K)$ we have $c_{2}\left(c_{2}(K)-K\right) \subset$ $c_{2}\left(c_{2}(K)\right)$. By Lemma $5(e), c_{2}\left(c_{2}(K)-K\right) \subset c_{2}(K)$. Then $i_{1}\left(c_{2}\left(c_{2}(K)-K\right)\right) \subset i_{1}\left(c_{2}(K)\right)$ and so $i_{1}\left(c_{2}\left(c_{2}(K)-K\right)\right)=\emptyset$, by assumption. Therefore, $c_{2}(K)-K \in(1,2)-\mathcal{N}(X)$. By similar argument in the above case, we get $c_{1}(K)-K \in(2,1)-\mathcal{N}(X)$.

Example 24. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}), $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, k\},\{f, k\},\{e, f, k\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{k\},\{e, k\},\{f, k\},\{e, f, k\}\} .
$$

Take $Q=\{k\}$ we get $c_{2}(Q)-Q=\{e, f, l\}$ and so $i_{1}\left(c_{2}\left(c_{2}(Q)-Q\right)\right)=\emptyset$. Thus, $c_{2}(Q)-Q \in(1,2)-\mathcal{N}(X)$. But $Q \notin(1,2)-\mathcal{N}(X)$.

Choose $L=\{f, k\}$ so that $c_{1}(L)-L=\{e, l\}$ and so $i_{2}\left(c_{1}\left(c_{1}(L)-L\right)\right)=\emptyset$ implies that $c_{1}(L)-L \in(2,1)-\mathcal{N}(X)$. But $L \notin(2,1)-\mathcal{N}(X)$.

Theorem 25. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. For $s, v=1,2$ and $s \neq v$, if $D \in(s, v)-\mathcal{N}(X)$, then the followings are true.
(a) $K \nsubseteq D$ for all K is a non-null (s, v) - μ-preopen set in X.
(b) $K \nsubseteq D$ for all K is a non-null (s, v) - μ-regular open set in X.
(c) $K \nsubseteq D$ for all K is a non-null (s, v)-open set in X.
(d) $K \nsubseteq D$ for all K is a non-null $(s, v)-\mu$ - α-open set in X.

Proof. We give the detailed proof for (a) only. Assume that, $D \in(s, v)-\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$. Then $i_{s}\left(c_{v}(D)\right)=\emptyset$ where $s, v=1,2$ and $s \neq v$. Suppose there is a non-null (s, v) - μ-preopen set M in X such that

$$
\begin{equation*}
M \subset D \tag{7}
\end{equation*}
$$

where $s, v=1,2$ and $s \neq v$. Here,

$$
\begin{equation*}
M \subset i_{s}\left(c_{v}(M)\right) \tag{8}
\end{equation*}
$$

where $s, v=1,2$ and $s \neq v$. From (7), we have $i_{s}\left(c_{v}(M)\right) \subset i_{s}\left(c_{v}(D)\right)$ which implies that $M \subset i_{s}\left(c_{v}(D)\right)$ where $s, v=1,2$ and $s \neq v$, by (8). Then $i_{s}\left(c_{v}(D)\right) \neq \emptyset$ which is not possible. Therefore, there is no non-null (s, v) - μ-preopen set M in X such that $M \subset D$ where $s, v=1,2$ and $s \neq v$. Hence D does not contain any non-null (s, v) - μ-preopen set in X where $s, v=1,2$ and $s \neq v$.

Theorem 26. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If $D \in(s, v)-\mathcal{N}(X)$, then $K \nsubseteq D$ for all $K \in \tilde{\mu_{s}}$ where $s, v=1,2 ; s \neq v$.

Proof. Assume that, $D \in(s, v)-\mathcal{N}(X)$ where $s, v=1,2 ; s \neq v$. Take $s=1$ and $v=2$. Then $D \in(1,2)-\mathcal{N}(X)$. If there is $H \in \mu_{1}$ such that $H \subset D$, then $i_{1}(H) \subset D$ and so $i_{1}(H) \subset c_{2}(D)$. This implies $i_{1}\left(i_{1}(H)\right) \subset i_{1}\left(c_{2}(D)\right)$. By Lemma $5(e), i_{1}(H) \subset i_{1}\left(c_{2}(D)\right)$. By assumption, $H \subset i_{1}\left(c_{2}(D)\right)$. Thus, $i_{1}\left(c_{2}(D)\right) \neq \emptyset$ which is not possible. Therefore, D does not contain any non-null μ_{1}-open set. Take $s=2$ and $v=1$. Then $D \in(2,1)-\mathcal{N}(X)$. By similar arguments in the above case, we get the proof.

In the rest of this section, we introduce a new tool namely, (s, v)-codense, and give some of its properties in a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$.

Definition 27. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and $E \subset X$. Then E is (s, v)-codense if $c_{s}\left(c_{v}(X-E)\right)=X$ where $s, v=1,2$ and $s \neq v$.

Example 28. Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{e, f, k, l\}$;

$$
\mu_{1}=\{\emptyset,\{e, f\},\{f, l\},\{e, f, l\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, k\},\{f, k\},\{e, f, k\}\} .
$$

Take $A=\{k, l\}$ we get $X-A=\{e, f\}$ and so $c_{1}\left(c_{2}(\{e, f\})\right)=X$. Thus, A is a $(1,2)$ codense set in X. Also, $c_{2}\left(c_{1}(\{e, f\})\right)=X$. Therefore, A is a $(2,1)$-codense set. Hence A is (s, v)-codense where $s, v=1,2$ and $s \neq v$.

Theorem 29. In a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$, if $E \in(s, v)-\mathcal{N}(X)$, then E is μ_{s}-codense where $s, v=1,2$ and $s \neq v$.

Proof. Given $E \in(s, v)-\mathcal{N}(X)$ for $s, v=1,2 ; s \neq v$. Then $i_{s}\left(c_{v}(E)\right)=\emptyset$ and so $X-\left(i_{s}\left(c_{v}(E)\right)\right)=X$ where $s, v=1,2$ and $s \neq v$. This implies $c_{s}\left(X-\left(c_{v}(E)\right)\right)=X$ where $s, v=1,2$ and $s \neq v$ which implies that $c_{s}(X-E)=X$ for $s=1,2$. Therefore, E is a μ_{s}-codense set in X for $s=1,2$.

Example 30 explains that the reverse implication of Theorem 29 need not be true.
Example 30. Consider the BGTS (X, μ_{1}, μ_{2}) where $X=\{e, f, k, l, r\}$;

$$
\mu_{1}=\{\emptyset,\{e, f\},\{e, k\},\{e, f, k\},\{e, f, l\},\{e, f, k, l\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{e, f\},\{f, l\},\{e, r\},\{e, f, l\},\{e, f, r\},\{e, f, l, r\}\} .
$$

Choose $P=\{f, k, r\}$, then $c_{2}(X-P)=X$. But $P \notin(2,1)-\mathcal{N}(X)$. For, $i_{2}\left(c_{1}(P)\right)=$ $i_{2}(X)=\{e, f, l, r\} \neq \emptyset$.

Consider, $Q=\{f, l, r\}$ we have $c_{1}(X-Q)=c_{1}(\{e, k\})=X$. But $Q \notin(1,2)-\mathcal{N}(X)$. For, $i_{1}\left(c_{2}(Q)\right)=i_{1}(X)=\{e, f, k, l\} \neq \emptyset$.
Proposition 31. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. Then E is a (s, v)-codense set in X if and only if $i_{s}\left(i_{v}(E)\right)=\emptyset$ where $s, v=1,2$ and $s \neq v$.

Proposition 32. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If $E \in(s, v)-\mathcal{N}(X)$, then E is a (s, v) codense set in X.

Proposition 33. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. Then $E \in(s, v)-\mathcal{D}(X)$ if and only if $X-E$ is (s, v)-codense where $s, v=1,2$ and $s \neq v$.

Proposition 34. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If E is a (s, v)-codense set in X, then there is no non-null (s, v)-open set H such that $H \subset E$ where $s, v=1,2$ and $s \neq v$.

The reverse implication of Proposition 34 is generally not true as given by the below Example 35.

Example 35. (a) Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ [0, 4];

$$
\mu_{1}=\{\emptyset,[0,2),(1,3],[0,3]\}
$$

and

$$
\mu_{2}=\left\{\emptyset,\left[0, \frac{3}{2}\right),(1,3],[0,3]\right\} .
$$

Let $A=[0,2)$. Here $B=(1,3]$ is $(2,1)$-open set. Also, $B \nsubseteq A$. But $i_{2}\left(i_{1}(A)\right)=\left[0, \frac{3}{2}\right) \neq \emptyset$.
(b) Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=[0,3]$;

$$
\mu_{1}=\left\{\emptyset,\left[0, \frac{3}{2}\right),(1,2),(1,3),[0,3)\right\}
$$

and

$$
\mu_{2}=\{\emptyset,[0,2),(1,3),[0,3)\} .
$$

Take $A=[0,2)$. Here $B=(1,3)$ is $(1,2)$-open set. Also, $B \nsubseteq A$. But $i_{1}\left(i_{2}(A)\right)=\left[0, \frac{3}{2}\right) \neq \emptyset$.

5. Sets via Functions

In this section, we give some properties for (s, v)-dense and (s, v)-nowhere dense sets under generalized continuous functions in a bigeneralized topological space.

Now, we recall some basic definitions defined in [4].
Let $\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right)$ and $\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be two BGTS and $h:\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right) \rightarrow\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be a map. Then

- h is called (s, v)-generalized continuous ($\mu_{(s, v)}$-continuous) if $h^{-1}(B)$ is $\mu_{(s, v)}$-closed in X for every μ_{v}-closed B of Y where $s, v=1,2$ and $s \neq v$.
- h is called as μ_{s}-continuous if $h^{-1}(C)$ is μ_{s}-closed in X for every μ_{s}-closed C of Y for $s=1,2$.
- h is said to be μ_{s}-open if $h(D)$ is μ_{s}-open of Y for every μ_{s}-open D of X for $s=1,2$.

Theorem 36. Let $\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right)$ and $\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be two bigeneralized topological spaces, $h:\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right) \rightarrow\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be a $\mu_{(s, v)}$-continuous function where $s, v=1,2$ and $s \neq v$. If $Q \cap P \neq \emptyset$ for every P is non-null $\mu_{(s, v)}$-open, then $h(Q) \in(s, v)-\mathcal{D}(Y)$ where $Q \subset X$; $s, v=1,2$ and $s \neq v$.

Proof. It is enough to prove, $h(Q) \in \mathcal{D}\left(\mu_{Y}^{v}\right)$ where $v=1,2$, by Theorem 4. Take $v=2$. Let $P \in \tilde{\mu}_{Y}^{2}$. Then $Y-P$ is μ_{Y}^{2}-closed. By hypothesis, $h^{-1}(Y-P)$ is $\mu_{(1,2)}$-closed in X. Then $h^{-1}(P)$ is non-null $\mu_{(1,2)}$-open. By hypothesis, $Q \cap h^{-1}(P) \neq \emptyset$. This implies $h^{-1}(h(Q)) \cap h^{-1}(P) \neq \emptyset$ which implies that $h^{-1}(h(Q) \cap P) \neq \emptyset$. Thus, $h(Q) \cap P \neq \emptyset$. Hence $h(Q) \in \mathcal{D}\left(\mu_{Y}^{2}\right)$. Take $v=1$. Then by the same arguments in the above case, we get $h(Q) \in \mathcal{D}\left(\mu_{Y}^{1}\right)$. Hence $h(Q) \in \mathcal{D}\left(\mu_{Y}^{v}\right)$ where $v=1,2$.

Theorem 37. Let $\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right)$ and $\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be two bigeneralized topological spaces, $P, Q \subset X, h:\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right) \rightarrow\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be a μ_{s}-continuous function for $s=1,2$. Then the followings are true.
(a) If $P \in \mathcal{D}\left(\mu_{v}\right)$, then $h(P) \in(s, v)-\mathcal{D}(Y)$ where $s, v=1,2$ and $s \neq v$.
(b) If Q is μ_{v}-codense and h is one-one, then $h(Q)$ is (s, v)-codense in Y where $s, v=1,2$ and $s \neq v$.

Proof. (a). It is enough to prove, $h(P) \in \mathcal{D}\left(\mu_{v}\right)$ in Y where $v=1,2$, by Theorem 4. Assume that, $P \in \mathcal{D}\left(\mu_{v}\right)$ in X for $v=1,2$. Take $v=1$. Then $P \in \mathcal{D}\left(\mu_{1}\right)$ in X. Let $M \in \tilde{\mu}_{1}$. Then $Y-M$ is μ_{1}-closed in Y. By hypothesis, $h^{-1}(Y-M)$ is μ_{1}-closed set in X. Then $h^{-1}(M)$ is a non-null μ_{1}-open set in X. By hypothesis, $P \cap h^{-1}(M) \neq \emptyset$. This implies
$h^{-1}(h(P)) \cap h^{-1}(M) \neq \emptyset$, since $P \subset h^{-1}(h(P))$ which implies that $h^{-1}(h(P) \cap M) \neq \emptyset$. Thus, $h(P) \cap M \neq \emptyset$. Hence $h(P) \in \mathcal{D}\left(\mu_{1}\right)$ in Y. Take $v=2$. Then by similar arguments in the above case, we get $h(P) \in \mathcal{D}\left(\mu_{2}\right)$ in Y. Hence $h(P) \in \mathcal{D}\left(\mu_{v}\right)$ in Y where $v=1,2$.
(b) Let Q be a μ_{v}-codense set in X for $v=1,2$. Then $X-Q \in \mathcal{D}\left(\mu_{v}\right)$ in X for $v=1,2$. By (a), $h(X-Q) \in(s, v)-\mathcal{D}(Y)$ where $s, v=1,2$ and $s \neq v$. Since h is one-one, $h(X)-h(Q) \in(s, v)-\mathcal{D}(Y)$ where $s, v=1,2$ and $s \neq v$. Therefore, $Y-h(Q) \in(s, v)-\mathcal{D}(Y)$ where $s, v=1,2$ and $s \neq v$. Hence $h(Q)$ is (s, v)-codense in Y where $s, v=1,2 ; s \neq v$.

Theorem 38. Let $\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right)$ and $\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be two bigeneralized topological spaces, $K, L \subset Y, h:\left(X, \mu_{X}^{1}, \mu_{X}^{2}\right) \rightarrow\left(Y, \mu_{Y}^{1}, \mu_{Y}^{2}\right)$ be a μ_{s}-open, one-one function for $s=1,2$. Then the followings are true.
(a) If $K \in \mathcal{D}\left(\mu_{v}\right)$ in Y, then $h^{-1}(K) \in(s, v)-\mathcal{D}(X)$ where $s, v=1,2$ and $s \neq v$.
(b) If L is μ_{v}-codense in Y, then $h^{-1}(L)$ is (s, v)-codense where $s, v=1,2$ and $s \neq v$.

Proof. The trivial proof is omitted.

6. (s, v)-dense sets applications

In 1999, Molodstov introduced a new mathematical tool namely, soft set theory [11]. It has been used for dealing with uncertainty. Most of the researchers presented an application of soft sets in decision-making problems.

Motivated, by this we try to give an example of the soft set using (s, v)-dense and (s, v)-nowhere dense sets in a bigeneralized topological space.

Example 39. Consider the $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{a, b, c, d\}$;

$$
\mu_{1}=\{\emptyset,\{a, b\},\{a, c\},\{a, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\}, X\} ;
$$

and

$$
\mu_{2}=\{\emptyset,\{b, c\},\{b, d\},\{b, c, d\}\} .
$$

Here,

- $(1,2)-\mathcal{D}(X)=\exp (X)$ where $\exp (X)$ is the power set of X.
- $(2,1)-\mathcal{D}(X)=\{\{a\},\{b\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b$, $c, d\}, X\}$.

Let $U=\{a, c\}$ be a subset of X and $E=\{(1,2)$-dense set, (2,1)-dense set, both $\}=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the set of parameters. Define a map F from E to $\exp (U)$ by, $F\left(e_{1}\right)=$ $\{c\} ; F\left(e_{2}\right)=\{a\} ; F\left(e_{3}\right)=\{a, c\}$. Then the pair (F, E) is a soft set over U.

Example 40. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{a, b, c, d\}$;

$$
\mu_{1}=\{\emptyset,\{b\},\{a, b\},\{a, c\},\{a, b, c\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{a\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Here,

- $(1,2)-\mathcal{N}(X)=\{\emptyset,\{a\},\{d\},\{a, d\}\} ;$
- $(2,1)-\mathcal{N}(X)=\{\emptyset,\{b\},\{c\},\{d\},\{b, d\},\{c, d\}\}$.

Let $U=\{a, c, d\}$ be a subset of X and $E=\{(1,2)$-nowhere dense set, (2,1)-nowhere dense set, both $\}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is the set of parameters. Consider the map F from E into the power set of U. Defined by $F\left(e_{1}\right)=\{a\} ; F\left(e_{2}\right)=\{c\} ; F\left(e_{3}\right)=\{d\}$. Then (F, E) is a soft set over U.

Example 41. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{a, b, c, d\}$;

$$
\mu_{1}=\{\emptyset,\{a\},\{a, d\},\{c, d\},\{a, c, d\}\}
$$

and

$$
\mu_{2}=\{\emptyset,\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Here,

- (1,2)-codense sets $=\{\emptyset,\{a\},\{b\},\{c\},\{d\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{b, c, d\}\}$.
- $(2,1)$-codense sets $=\{\emptyset,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{a, b, c\},\{a$, $b, d\}\}$.

Let $U=\{a, c, d\}$ be a subset of X and $E=\{(1,2)$-codense set, (2,1)-codense set, (1,2)codense but not $(2,1)$-codense, $(2,1)$-codense but not (1,2)-codense, (1,2)-codense and $(2,1)$-codense $\}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is the set of parameters. Consider the map F from E into the power set of U. Defined by $F\left(e_{1}\right)=\{a\} ; F\left(e_{2}\right)=\{c\} ; F\left(e_{3}\right)=\{c, d\} ; F\left(e_{4}\right)=$ $\{a, c\} ; F\left(e_{5}\right)=\{d\}$. Then we get the pair (F, E) is a soft set over U.
Example 42. Consider the generalized topological space (X, η_{1}, η_{2}) where $X=\{a, b, c, d\}$; η_{1} and η_{2} are defined in above Example 40, that is; we take $\eta_{1}=\mu_{2}$ and $\eta_{2}=\mu_{1}$. Then we get;

- η_{1}-nowhere dense sets $=\{\emptyset,\{b\},\{d\},\{b, d\}\} ;$
- η_{2}-nowhere dense sets $=\{\emptyset,\{c\},\{d\},\{c, d\}\} ;$
- η_{1}-dense sets $=\{\{a, b\},\{a, c\},\{a, b, c\},\{a, b, d\},\{a, c, d\}, X\} ;$
- η_{2}-dense sets $=\{\{a, b\},\{b, c\},\{a, b, c\},\{a, b, d\},\{b, c, d\}, X\} ;$
- $(1,2)-\mathcal{N}(X)=\{\emptyset,\{b\},\{c\},\{d\},\{b, d\},\{c, d\}\} ;$
- $(2,1)-\mathcal{N}(X)=\{\emptyset,\{a\},\{d\},\{a, d\}\}$.

Let $U=\{a, b, c\}$ be a non-null subset of X and $E=\left\{\eta_{1}\right.$-nowhere dense set, η_{2}-nowhere dense set, η_{1}-dense set, η_{2}-dense set, $(1,2)$-nowhere dense set, $(2,1)$-nowhere dense set $\}=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ is the set of parameters. Take F be a function defined from E to the subsets of U by; $F\left(e_{1}\right)=\{b\} ; F\left(e_{2}\right)=\{c\} ; F\left(e_{3}\right)=\{a, c\} ; F\left(e_{4}\right)=\{b, c\} ; F\left(e_{5}\right)=$ $\{d\} ; F\left(e_{6}\right)=\{a\}$. Thus, (F, E) is a soft set over U.

7. Conclusion

In this article, various properties for (s, v)-dense and (s, v)-nowhere dense sets are proved, which are useful to easily check the characterization of a given set in a bigeneralized topological space.

References

[1] Chawalit Boonpok. Weakly open functions on bigeneralized topological spaces. Int. Journal of Math. Analysis, 4(18):891-897, 2010.
[2] Akos Császár. Generalized open sets. Acta mathematica hungarica, 75, 1997.
[3] Akos Császár. Generalized open sets in generalized topologies. Acta mathematica hungarica, 106, 2005.
[4] Wichai Dungthaisong, Chawalit Boonpok, and Chokchai Viriyapong. Generalized closed sets in bigeneralized topological spaces. International Journal of Mathematical Analysis, 5(24):1175-1184, 2011.
[5] E. Ekici. Generalized submaximal spaces. Acta Math. Hungar., 134:132-138, 2012.
[6] Erdal Ekici. Generalized hyperconnectedness. Acta Mathematica Hungarica, 133, 2011.
[7] J.C. Kelly. Bitopological spaces. Pro. London Math. Soc., 3(13):71-79, 1969.
[8] Ewa Korczak-Kubiak, Anna Loranty, and Ryszard J Pawlak. Baire generalized topological spaces, generalized metric spaces and infinite games. Acta Mathematica Hungarica, 140(3):203-231, 2013.
[9] Zhaowen Li and Funing Lin. Baireness on generalized topological spaces. Acta Mathematica Hungarica, 139(4), 2013.
[10] W. K. Min. Almost continuity on generalized topological spaces. Acta Math. Hungar., 125:121-125, 2009.
[11] D. Molodtsov. Soft set theory-first results. Comput. Math. Appl., 37:19-31, 1999.
[12] V Renukadevi and S Vadakasi. Modifications of strongly nodec spaces. Communications in Advanced Mathematical Sciences, 2:99-112, 2018.
[13] Binod Chandra Tripathy S. Acharjee and Kyriakos Papadopoulos. Two forms of pairwise lindelöfness and some results related to hereditary class in a bigeneralized topological space. New Mathematics and Natural Computation, 13(2):181-193, 2017.
[14] Preecha Yupapin Vadakasi Subramanian, Yasser Farhat. On nowhere dense sets. European Journal of Pure and Applied Mathematics, 15(2):403-414, 2022.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4911

