Hop Italian Domination in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4914Keywords:
Hop Italian dominating function, Hop Italian domination numberAbstract
Given a simple graph $G=(V(G),E(G))$, a function $f:V(G)\to \{0,1,2\}$ is a hop Italian dominating function if for every vertex $v$ with $f(v)=0$ there exists a vertex $u$ with $f(u)=2$ for which $u$ and $v$ are of distance $2$ from each other or there exist two vertices $w$ and $z$ for which $f(w)=1=f(z)$ and each of $w$ and $z$ is of distance $2$ from $v$. The minimum weight $\sum_{v\in V(G)}f(v)$ of a hop Italian dominating function is the hop Italian domination number of $G$, and is denoted by $\gamma_{hI}(G)$. In this paper, we initiate the study of the hop Italian domination. In particular, we establish some properties of the the hop Italian dominating function and explore the relationships of the hop Italian domination number with the hop Roman domination number \cite{Rad2,Natarajan} and with the $2$-hop domination number \cite{Canoy}. We study the concept under some binary graph operations. We establish tight bounds and determine exact values for their respective hop Italian domination numbers.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.