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Abstract. Given a simple graph G = (V(G), E(G)), a function f : V(G) — {0,1,2} is a hop
Italian dominating function if for every vertex v with f(v) = 0 there exists a vertex u with
f(u) = 2 for which v and v are of distance 2 from each other or there exist two vertices w and
z for which f(w) = 1 = f(z) and each of w and z is of distance 2 from v. The minimum weight
> ev(G) f(v) of a hop Italian dominating function is the hop Italian domination number of G, and
is denoted by vx7(G). In this paper, we initiate the study of the hop Italian domination. First,
we establish some properties of the the hop Italian dominating function and characterize graphs G
with smaller values for v,7(G). Next, we explore the relationships of the hop Italian domination
number with closely related concepts, particularly the hop Roman domination number and the 2-
hop domination number. Finally, we investigate the hop Italian domination in the complementary
prism, join, corona and lexicographic product of graphs.
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1. Introduction

The history of the Roman domination in graphs can be traced back to the military
strategy adapted by Constantine the Great (Emperor of Rome) during the fourth century
AD (see [23, 26]). In order to defend his cities Constantine issued a decree that any city
without a legion stationed to secure it must neighbor another city having two stationed
legions. If the first were attacked, then the second could deploy a legion to protect it
without becoming vulnerable itself. It is called defense-in-depth strategy, which used only
four Field Armies (FA) available for deployment to defend a total of eight regions.

Roman domination as a mathematical concept was introduced by Cockayne, Dreyer,
S.M. Hedetniemi and S.T. Hedetniemi [9] in 2004. Thereafter, it has become an active
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research area (see [1, 6, 12, 18, 19, 21, 22, 25, 27]). It models many facility location
problems (see [7]), where f(v) is viewed as cost function. Units with cost 2 may be able to
serve neighboring locations, while units with costs 1 can serve only their own location. In
a communication network, f(v) = 2 is assigned to locations where we install wireless hubs
which are more expensive but can serve neighboring locations, while f(v) = 1 is assigned
to locations where we install wired hubs which function at low-range but are cheaper.

In 2016, the Roman 2-domination was introduced by Chellali, Haynes, Hedetniemi
and McRae [8]. It is also called Italian domination. A function f : V(G) — {0,1,2}
is an Italian dominating function provided for every vertex v with f(v) = 0 we have
> zeNg(w) f(®) = 2, where N(v) is the set of all vertices adjacent to v. Apparently, a
Roman dominating function is an Italian dominating function. The Italian domination
number is the minimum weight of an Italian dominating function. Excellent references for
Italian domination include [8, 20].

In 2017, Shabani [24] introduced the hop Roman domination. A hop Roman domi-
nating function on G is a function f : V(G) — {0, 1,2} satisfying the property that for
every vertex v of G with f(v) = 0 there is a vertex u with f(u) = 2 for which the distance
dc(u,v) between u and v is 2. It was largely motivated by the concept of hop domination
which is relatively well-known to have a wide range of applications in social network. Hop
Roman domination in graphs was further studied in [21, 22].

This present paper intends to introduce and initiate the study of the hop Italian
domination. We will establish some of its properties and make characterizations for some
special graphs. We will explore its relationships with the hop Roman domination and other
related hop domination concepts. Finally, we will investigate the hop Italian domination
in graphs under some binary operations.

All throughout this paper, we consider only graphs which are simple, finite and undi-
rected.

Given a graph G = (V(G), E(G)), we call V(G) the verter set of G and E(G) its edge
set. The cardinality |V (G)| of V(G) is the order of G. All terminologies used here which
are not being defined are adapted from [3].

Let G and H be disjoint graphs. The complementary prism GG is formed from G and
its complement G by adding a perfect matching between corresponding vertices of G and
G. If for each v € V(G), 7 is the vertex in G corresponding to v, then GG is formed
by adding the edge vv for every v € V(G). The corona of G and H is the graph G o H
obtained by taking one copy of G and |V (G)| copies of H, and then joining the i** vertex
of G to every vertex in the i** copy of H. In particular, we call G o K; the corona of G,
and write cor(G) = G o K;. The composition (or lexicographic product) of G and H is
the graph G[H] with V(G[H]) = V(G) x V(H) and (u,v)(u’,v") € E(G[H]) if and only
if either uv’ € E(G) or u = «' and vv' € E(H). In any of these graphs, G and H are
referred to as their basic component graphs.

For vertices u and v of a graph G, a u-v geodesic is any shortest path in G joining u and
v. The length of a u-v geodesic is the distance between u and v, and is denoted by dg(u, v).
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The eccentricity of v refers to the quantity e(v) = max{dg(u,v) : v € V(G)}. Customarily,
diam(G) = max{e(v) : v € V(G)}. In this paper, we write e(G) = min{e(v) : v € V(G)}.

Vertices u and v of a graph G are neighbors if wv € E(G). The open neighborhood of
v refers to the set Ng(v) consisting of all neighbors of v. The degree of v refers to the
cardinality |Ng(v)| of the open neighborhood of v, and 6(G) is the minimum degree of a
vertex of G. The closed neighborhood of v is the set Ng[v] = Ng(v) U {v}. Customarily,
for S C V(G), Ng(S) = UyesNg(v) and Ng[S] = UyesNg[v]. A subset S C V(G) is a
dominating set of G if Ng[S] = V(G). The minimum cardinality v(G) of a dominating set
of G is the domination number of G. A dominating set of cardinality +(G) is called a y-set
of G. The reader is referred to [2, 10, 11, 13, 16, 17] for the history, fundamental concepts
and recent developments of domination in graphs as well as its various applications.

A set S C V(G) is a pointwise nondominating set of G (or PN D-set of G) if for each
v e V(G)\ S, there exists u € S such that uv ¢ E(G). The smallest cardinality of a point-
wise nondominating set of G, denoted by pnd(G), is called the pointwise nondomination
number of G. Any point-wise nondominating (resp. dominating pointwise nondominat-
ing) set S of G of cardinality |S| = pnd(G) (resp. |S| = Ypnd(G)), is called a pnd-set (resp.
Ypnd-set) of G. PN D-sets are introduced and discussed in [5].

A subset S of V(G) is a hop dominating set of G if for each v € V(G) \ S, there
exists u € S for which dg(u,v) = 2. The minimum cardinality of a hop dominating set is
called the hop domination number of G, and is denoted by ~v,(G). Any hop dominating
set of cardinality v, (G) is called ~,-set of G. Good references on hop domination include
[4, 5, 15]. At times we write S € HD(G) to mean that S is a hop dominating set of G.

For a vertex v of a connected graph G, Ng(v,2) = {u € V(G) : dg(u,v) = 2}. Each
element of N¢(v,2) is called a hop-neighbor of v. For S C V(G), Ng(S,2) = UyesNg(v,2)
and Ng|[S,2] = Ng(S,2)US. Precisely, S is a hop dominating set if and only if Ng[S, 2] =
V(G).

A subset S of V(G) is a 2-hop dominating set of G if for each v € V(G)\ S, there exist
distinct vertices u,w € S for which dg(u,v) = 2 = dg(w,v). The minimum cardinality
of a 2-hop dominating set of G is the 2-hop domination number of G, denoted by o1, (G).
A comprehensive study on 2-hop domination is given in [14], where 2-hop domination is
referred to as double hop domination. Here we also write S € 2-HD(G) to mean that S
is a 2-hop dominating set of GG

A set S C V(G) is a (1,2)*-dominating set of G (resp. (1,2)*-total dominating set)
if it is both a dominating (resp. a total dominating) set and a hop dominating set of G.
The smallest cardinality of a (1,2)* -dominating (resp. (1,2)*-total dominating) set of G,
denoted by i 5(G) (respni(G)) is called the (1,2)* -domination number (resp. (1,2)*
total domination number) of G. A (1,2)* -dominating (resp. (1,2)* -total dominating) set
S with [S] = 7] 5(G) (resp. |S| = 7{%(G)) is called a 77 y-set (resp. 7i%y-set) of G. The
concept of (1,2)*-domination (a variation of (1,2)-domination) is introduced in [4].

A function f: V(G) — {0,1,2} is a hop Roman dominating function of G if for each
v € V(G) with f(v) = 0 there exists u € V(G) for which dg(u,v) =2 and f(u) = 2. The
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sum wg(f) = ZUGV(G) f(v) is the weight of f in G. The minimum weight of a hop Roman
dominating function of G is the hop Roman domination number of G, and is denoted by

Yhr(G).

1.1. Some known results
Theorem 1.1. [24] For any graph G, yhr(G) < 27,(G).

dk+r, fn=6k+7r0<r<3;k>0

an
4k +4, ifn=6k+r4<r <5k>0,

Observation 1.2. (i) yar(Py) = {
3, if n = 3;
4, if n=4,5;

dk+7r, fn=6k+7r0<r<3;k>1
4k +4, ifn=6k+r4<r<5b5k>1.

(12) r(Cp) =

2. Hop Italian domination

A function f : V(G) — {0, 1,2} is a hop Italian dominating function (or hlD-function)
of G if for each v € V(G) with f(v) = 0, >, cn(u2) [ () = 2. More precisely, f is an
hID-function of G if and only if at least one of the following holds for each v € V(G) with
F(v) =0

(i) There exists u € V(G) for which f(u) =2 and dg(u,v) = 2;

(73) There exist distinct w,w € V(G) for which f(u) = 1 = f(w) and dg(u,v) = 2 =
dg(w,v).

The minimum weight >,y () f(v) of an hI D-function of G is the hop Italian domination
number of G, and is denoted by v,;(G). If hID(G) denotes the collection of all hID-
functions of GG, then
Y1 (G) = min{we(f) : f € RID(G)}.

A hop Italian dominating function f of G with wg(f) = v (G) is called ~p,r-function of
G.

As usual, for f: V(G) — {0, 1,2} we write f = (Vp, V1, Va), where V, = {v € V(Q) :
f(v) = k} for each k € {0,1,2}. Thus, f = (Vo,V1,Va) € hID(G) if and only if for each
v e Vo, VaN Ng(v,2) # @ or |[Vi N Ng(v)| > 2.

If f = (Vh, V1, Va) is a ypy-function of G, then V3 U V4 is a hop dominating set of G so
that v,(G) < [Vi UVa| < wa(f) = i (G).

Now observe that if S C V(G) is a yap-set of G, then f = (V(G)\ S, S,2) € hID(G).
Thus, y,7(G) < |S| = v21(G). Moreover, since a hop Roman dominating function is a hop
Italian dominating function,

Y1 (G) < min{yar(G),Y2n(G)}- (1)
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Let G be the graph in Figure 1 obtained by joining two copies of Ps, say [x1, x2, T3, T4, T5)
and [y1, Y2, Y3, Y4, Ys], using the edges z1y1, r3ys and z5,y5. Then v,1(G) = mr(G) =

X i) I3 Xq Is5

YiooY2 Y3 Ys  Us
Figure 1: A graph G with v, (G) = ,r(G)

4 < 6 = y,(G). In this case, Yhr(G) = Y1(G) is determined by the function f =
(V(G) \ {x3,y3}, 9, {x3,y3}). On the other hand, if G = C5, then v,1(G) = y2n(G) =
3 <4 =v,r(G). However, if G = K, (the complete graph on p vertices), then v,;(G) =
Mr(G) =721 (G) = p.

Observation 2.1. Let G be any graph. Then

(1) Y1(G) = Yur(G) if and only if G has a ypr-function that is a hop Roman dominating
function of G;

(17) Yh1(G) = y2r(Q) if and only if G has a yp1-function (Vo, Vi, Vi) for which Vo = .

Observation 2.2. On paths, cycles and complete bipartite graphs:

/

2, if n=2;

3, if n=3;

2k +2, ifn=4k+rwith0<r<2;k>1;
2k +3, ifn=4k+3;k>1.

(1) Vi (Pp) =

3, if n=3,5;

4, if n = 4;

2k+2, ifn=4k+2+rwith0<r <2;k > 1;
2k+3, ifn=4k+5;k> 1.

2, iftm=n=1;
(130) Y (Kmpn) =19 3, ifm=1 (resp. n=1) and n > 2 (resp m > 2);
4, ifm>2andn>2

2.1. Some properties and graphs with small values of ~;;

Let f = (Vo,V1,V2) be a vpr-function of G. A vertex w € Vj is an [talian private
hop-neighbor of v € V4 U V3 under f provided }_,cn,(w2)\ (o} f(4) < 2. If no confusion
arises, instead of saying [taian private hop-neighbor of v under f, we simply say Italian
private hop-neighbor of v.
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Observe that the function given by f(z) = 1 for all x € V(G) is a vp-function of
G = K. In this case, V5 = &, and such is a particular case of the following proposition.

Proposition 2.3. For every graph G, there exists a ypr-function f = (Vo, Vi, Va) such
that either Vo = @ or Vo # & and v has at least three Italian private hop-neighbors for
each v € Vs.

Proof: Let f = (Vy,V1,V2) be a ypr-function of G with a minimum [Va|. If Vo = &,
then the proposition holds. Suppose that Vo # &, and let v € V5. We claim that v has
at least three Italian private hop-neighbors. First, note that if v has no Italian private
hop-neighbor in Vj, then g = (Vo, Vi U {v}, Vo \ {v}) € hID(G) with wa(g) < wa(f), a
contradiction. Next, suppose that v has exactly one Italian private hop-neighbor w € Vj.
I > engwan oy f(w) =0, then g = (V7 V", V') € hID(G) with wa(g) = we(f), where
Ve = W \{w}, Vi = Vi U{w,v} and V5 = V5 \ {v}. Since |V5| < |V3|, this is a
contradiction to the choice of f. On the .other hand, if 32, c N (w,2)\ {0} f(u) = 1,. then
g = Vo,Vi U{v},Va\ {v}) € RID(G) with wg(g) < wa(f), a contradiction. Finally,
suppose that v has exactly two neighbors w and z in Vj. Exactly one of the following
holds:

(a ZueNG (w,2)\{v} f(u) =0 and ZUGNG (z,2)\{v} f(u

(
(C ZUENG (w,2)\{v} f u 0 and EUGNG (z,2)\{v} f u ; and

(d ZueNG (w,2)\{v} f( ) =1and ZueNG (z,2)\{v} f )

Suppose that (a) holds for f. Put V' = {v} U (W \{w,z2}), Vi = V1 U{w,z} and
V= Vo \ {v}. Then g = (V§, V{*, V5") € hID(G) with wg(g) = we(f). Since |V5| < [Val,
this is a contradiction to the assumption of f. Next, suppose that (b) holds for f. In
this case, define Vi = Vp, Vi* = Vi U {v} and V' = Vo \ {v}. Then g = (V,V{*, V") €
hID(G) with wg(g) < wa(f), a contradiction. Next, suppose that (¢) holds for f. Define
Vo = Vo \ {w}, Vi = Vi U{w,v} and V5 = V5 \ {v}. Then g = (Vy, V}", V5) € hID(G)
with wg(g) = wa(f). Since |V5| < |Va|, this is a contradiction. Similar contradiction is
attained if (d) holds for f.
The above contradictions imply that v has at least three Italian private hop-neighbors
|

) (u) = (u) =

b) Puengwange f(w) =1and 30 oy ooy f(0) =
) (u) = (u) =
) (u

Proposition 2.4. Let G be a connected graph of order n. Then
(1) v1(G) =1 if and only if G = Ky;
(13) v (G) =2 if and only if G = Ka;

(7i1) vp1(G) = 3 if and only if yop(G) = 3 or G = Ky + (K1 U H) for some graph H of
order > 3.
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Proof: For (i): If G = K1, then 7,;(G) = 1. Conversely, if v,7(G) = 1, then 7,(G) = 1
and so G = Kj.

For (ii): If G = Ko, then 7,;(G) = 2. Assume that v,7(G) = 2. By Proposition 2.3, G
has a ypr-function f = (Vp, V1, V) for which either Vo, = & or V3 # @& and each v € V5 has
at least 3 private hop-neighbors in V;;. Suppose that V5 #£ @. Let v € V5 and let u € Vj be
a private hop-neighbor of v. Then there exists a u-v geodesic [u, w,v] in G. If w € V3 U Vs,
then wa(f) > f(v) + f(w) > 3. If w € V and a € Vo \ {v} for which dg(a,w) = 2, then
wa(f) > f(v) + f(a) = 3. Either case is a contradiction. Thus, Vo = @ and [Vi| = 2. It
follows that Vo = @ and |V (G)| = |V1| = 2. Therefore, G = Kj.

For (iii): If G = K1 + (K1 U H) for some graph H of order > 3, then clearly v,7(G) = 3.
Suppose that v9,(G) = 3. Then G ¢ {Ki, Ka2}. By (ii) and Equation 1, v,;(G) = 3.
Conversely, suppose that v,7(G) = 3, and let f = (Vp, V1, V) be a y,7-function of G such
that either Vo = @ or Vo # @ and each v € V5 has at least 3 private hop-neighbors in ;.
If Vo = @, then by v2,(G) = Y,1(G) = 3 by Observation 2.1(i¢). Suppose that Vo # .
Then |Va| = 1 = |V1]|, say Vo = {v} and V; = {u}. By Proposition 2.3, v has at least 3
Italian private hop-neighbors in Vj. Thus, G = ({u}) + (({v}) UH) = K; + (K1 U H),
where H = (V) of order > 3. [

It is worth noting that the family of graphs G for which 9, (G) = Y47 (G) = 3 includes
P, K3, C5, Ki-gluing of Cs and K», Ko-gluing of C5 and K»; graph G containing H = K3
such that each v € V(G)\V (H) is adjacent to (exactly) one vertex of H (may be viewed as
one generate by a triangle K3; the graph G in Figure 2 (may be viewed as one generated
by mutually nonadjacent x, y and z); and the graph G in Figure 2 (may be viewed as
one generated by path [z,y, 2]).

0
' 0 1 2
z
D
0
z
Gy Go G

Figure 2: Examples of graphs G described in Proposition 2.4(iii) with v47(G) = 3

Graph G3 in Figure 2 shows an example of a graph G with v95(G) # 3 = Y1(G).

Proposition 2.5. (i) For every nonnegative integer k, there exists a connected graph

G for which yhr(G) = v1(G) + k.

(13) For every pair of positive integers a and b with 4 < a < b, there exists a connected
graph G for which v (G) = a and vop(G) = b. Consequently, for each nonnegative
integer k, there exists a connected graph G with von(G) = Y1 (G) + k.
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Proof: For (i): If k = 0, then we take a complete graph G. Suppose that k& > 1.
First, suppose that k is even, say k& = 2j for some integer ;7 > 1. Choose G to be the
path P,, where n = 12j + 3. Writing n = 6(2j) + 3, Observation 1.2 yields v,r(G) =
Yhr(Pr) = 4(25) + 3 = 85 + 3. Similarly, by Observation 2.2, y,7(G) = 2(35) + 3. Thus,
Yhr(G) = (6§ +3) +2j = 1 (G) + k.

Next, suppose that k = 25 + 1 for some integer j > 0. If j = 0, then we take G = C7.
Assume that j > 1. Consider the graph G = C,,, a cycle on n vertices, where n = 125 + 3.
By Observation 1.2 and Observation 2.2, v,r(G) = 4(2j) +3 = (65 +2)+ (25 + 1) =
[(2(37) + 2] + (27 + 1) = 1 (G) + k.

For (ii): If a = b, then we take G = K, the complete graph on a vertices. Suppose that
b=a+ k with k£ > 1. We consider the following cases:

Case 1: Suppose that a = 2n+2 for some n > 1. Let t = 4n, and put P, = [z1, 22, ..., 3],
a path on t vertices. If n = 1, then we take G = G, where G is the graph in Figure
3 obtained from P by adding k + 1 distinct paths [x3,y;,2;], j = 1,2,...,k + 1. Define

Zk4+1

I T2 T3 Tq

Go

e e )

x1 X2 X3 X4 x5 Te Tt—3 Tt—2 Tt-1 Tt

Figure 3: Examples of graphs G with 7,7 (G) = a and 2, (G) = b

Vo = {x3, 24}, Vi = @ and Vo = V(G) \ {z3,24}. Then f = (Vp, V1, V) is a yp7-function of
G. Thus, y41(G) = 4 = a. On the other hand, the set {z1, 22, z4}U{2; : j =1,2,...,k+1}
is a yop-set of G, implying that 9, (G) = 3+k+1 = 4+k = b. Suppose that n > 2. Obtain
G as the graph G5 in Figure 3 from P, by adding k distinct paths [23,y;, 25], 7 = 1,2,... k.
Define Vo = {z3, 24}, V1 = {x7, 28,211, 212, .. . ,xt—1, 2+ and Vp = V(G) \ (V1 U Va). Then
=y, V1, V3) is a yp-function of G, implying that v, (G) = Y (P) =2n+2 =a. On
the other hand, necessarily, S = {z; : j = 1,2,..., k} is contained in any 2-hop dominating
set of G. Observe that S U {x1,x2, x4, x5, T8, Tg, ..., Tt—a, Tt—3,Tt—1, Tt} 1 & Yop-set of G.
Thus, yo,(G) = 2n+2)+k=a+k=b.
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Case 2: Suppose that a = 2n+ 3 for some n > 1. Put ¢ = 4n and let P, = [z1, 22, ..., 2.
If n =1, then obtain G as the graph G; in Figure 4by adding to Ps k geodesics, namely

—, g

T Z2 xs3 T4 Ts Ti—3 Tt—2 Tt-1 Tt

Figure 4: Examples of graphs G with v, (G) = a and v2,(G) = b

[®2,v5,%], 7 =1,2,...,k. Then v4;(G) = 5 = a, which is determined by the 7 -function
= Vo,V1,Va) with Vi = {w6}, Va = {x9,23} and Vo = V(G) \ {x2,23,26}. On the
other hand, S = {z; : j = 1,2,...,k} is always contained in a 2-hop dominating set of G
so that S U (V(Fs) \ {z2}) is a yap-set of G. Thus, y9,(G) = 5+ k = b. Now, suppose
that n > 2. Obtain G as the graph G5 in Figure 4 from P, by adding k distinct paths
[®3,v5,25], § = 1,2,...,k + 2. Define Vo = {x2}, Vi = {1, 23,24, 27,28,...,T1—1,2¢}
and Vo = V(G) \ (Vi1 UVa). Then f = (W, V1, Va) is a yp-function of G, implying that
Y1 (G) = y1(P;) = 2n+ 3 = a. On the other hand, if S = {z; : j = 1,2,...,k}, then
S U {xl, T3, X4, L7, TRy X115 L12y - - - ,.T)t_l,.il:‘t} is a "th—Set of G. ThUS, "}/Qh(G) = (2n + 1) +
(k+2)=a+k=0. [ |

2.2. PN D;-functions

A function f = (Vp, V4, V2) on V(G) is a PN Dj-function of G if for each v € V) one
of the following holds:

() there exists u € Va for which v ¢ Ng(u);
(1) there exist vertices u and w in V; for which v ¢ Ng(u) U Ng(w).

The minimum weight of an PN D-function of G is the PN D; number of G, denoted by
pndr(G). Any PN Dy-function of G with weight equal to pnd;(G) is a pndy-function.
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1, ifn=1:
Example 2.6. (1) pnd;(P,) =1 2, ifn=2;
3, ifn>3.

4, if n=4;

3, otherwise

(2) pndr(Cn) = {
(3) pnd;(Kp) =p for p>1 and pndi(Kp ) =4 for m,n > 2.

If f= (W, Vi, Va) is a PNDr-function of G, then V; U V3 is a PN D-set of G. Thus,
pnd(G) < [Vi] + [Va| < wg(f) for all PN Dj-functions f = (Vp, V1, Va) of G. On the
other hand, if S C V(G) is a PND-set of G, then f = (V(G)\ S,9,S) is a PND;-
function of G. Also, every hop Italian dominating function is a PN Dy-function. Thus,
pnd(G) < pndr(G) < min{2 pnd(G), y41(G)}.

Observation 2.7. Let G be any graph. Then
(i) pnd;(G) =1 if and only if G = Ki;

(1) pnd;(G) = 2 if and only if either G = Ko or G is a nontrivial graph with an isolated
vertex;

(7i7) pnd;(G) = 3 if and only if one of the following holds:

(a) G has an endvertex;

(b) G has a set of vertices S = {x,y,z} for which every v € V(G)\ S is adjacent
to at most one vertex in S.

Lemma 2.8. Let G be a noncomplete graph. Then G admits a pndr-function f =
(Vo, Vi, Vo) for which Vo # @.

Proof: Let f = (Vo,V1,V2) be a pnd;-function of G with Vo = @. Then V(G) = V;.
Since G is noncomplete, there exist u,v € V(G) such thatdg(u,v) = 2. Observe that
g = ({u}, Vi \ {u,v},{v}) is a PN D-function of G with wg(g) = wa(f). |

3. Graphs under binary operations

In view of Proposition 2.4, v,;(GG) > 2 for any graph G.
Proposition 3.1. (complementary prism of graphs) Let G be any graph. Then
(i) Y1 (GG) =2 if and only if G = K;.

(i1) o1 (GG) = 4 for all nontrivial graphs G.
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Proof: If G = Kj, then v,;(GG) = vn1(P2) = 2. Conversely, if v,;(GG) = 2, then
GG = K3 by Proposition 2.4(ii). This means that G = Kj.

Suppose that G # Kj. First, we claim that v,7(GG) > 4. By (i), v (GG) > 3.
Suppose that v,;(GG) = 3. In view of Proposition 2.4(iii), v(GG) = 1. This is possible
only when GG = K» so that 7,;(GG) = 2, a contradiction. Thus, v,;(GG) > 4. Let
v € V(GQ) and define Vo = {v,70}, V) = @ and Vp = V(GG) \ {v,v}. Let z € Vj. Assume
that z € V(G) (the case where z € V(G) is done similarly). If zv € E(G), then [z,v,7] is a
geodesic in GG so that 7 € VoM Nya(z,2). On the other hand, if zv ¢ E(G), then [z, %, 7]
is a geodesic in GG so that ¥ € VaN N5 (z,2). This shows that f = (Vp, V1, V2) € hI(GG),
and consequently, v,/ (GG) < woa(f) = 4. [ |

From Proposition 3.1(ii), for n > 5, v (K, Ky) = 4 while max{y,;(K,), var (Kn)} =
n. Thus, contrary to the case of Italian domination in complementary prisms, it is not
always true that v,7(GG) > max{yn1(G), vn1(G)}.

Corollary 3.2. For all graphs G,

Wm1(GG) < Yi(G) + i (G),
and this bound is sharp.

Proof: If G = Kj, then by Proposition 3.1(i) and Proposition 2.4(i), v4/(GG) = 2

Y1 (G) + vr1(G). Suppose that G # K. Since 2 < v,7(G) and 2 < y,1(G), 4 < 1 (G) +

Y1 (G). The conclusion follows immediately from Proposition 3.1.

To show sharpness of the bound, consider G = P,. By Observation 2.1(i7), y4;(GG) =

Y1 (Ps) = 4 = a1 (G) + yn1(G). u

Strict inequality can be obtained in Theorem 3.2. Consider G = K; U K3. The graph
GG is as shown in Figure 5. For this graph, 747(GG) = 4, v,7(G) = 4 and v47(G) = 3.

Figure 5: The graph of GG where G = K; U K3

Theorem 3.3. (join of graphs) Let G and H be any graphs, and f = (Vp, V1, Vp) be
a function on V(G + H). Then f € hID(G + H) if and only if fl¢ € PND;(G) and
flg € PND;(H), where f|g and f|g are the restrictions of f to G and H, respectively.
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Proof: Let f = (Vy,V1,Va) € hID(G+ H). Let v € VoNV(G). Then |VaNNgim(v,2)| > 1
or [ViNNg+mu(v,2)| > 2. Suppose that [VaNNgym(v,2)| > 1, and let w € VaNNgyu(v,2).
Since dgypg(u,v) = 2, u € Vo NV(G) and u ¢ Ng(v). Suppose, on the other hand,
that |Vi N Ngyu(v,2)| > 2, say u,w € V1 N Ngyu(v,2). Then u,w € V3 N V(G) and
v ¢ Ng(u)UNg(w). This shows that f|g = (VoNV(G), ViNV(G),VaNV(G)) € PND;(G).
Similarly, f|g € PND(H).

Conversely, let v € Vy. Suppose that v € V(G). If fl¢ € PND;(G), then there
exists u € Vo N V(G) for which v ¢ Ng(u) or there exist w,z € V43 N V(G) for which
v ¢ Ng(w) U Ng(z). The former implies that u € Vo N Ngipg(v,2), while the latter
implies that w,z € V1 N Ngym(v,2). Similarly, if v € V(H) and f|g € PND;(H), then
[VanN Ngym(v,2)] > 1 or |Vi N Ngyu(v,2)| > 2. Therefore, f € hID(G + H). [

Corollary 3.4. Let G and H be any graphs of orders m and n, respectively. Then
Y1 (G + H) = pnd;(G) + pnd;(H).
In particular,
(0) Yy (G+ H) =m+n if G and H are complete graphs;
(13) v (G + H) =4 if both G and H have isolated vertices;
(731) v (G+ H)=1+pnd;(H) if G = Ky;
Proposition 3.5. Let G be a graph with no isolated vertices. Then vu1(Go H) < 7% (G).

Proof: Let S C V(G) be a ’yfo-set of G, and define f = (Vy, V1, Va), where Vy = V(G o
H)\ S, Vi =0 and Vo = S. Let v € Vy N V(G). Since V3 is a hop dominating set of G,
there exists u € V3 for which dg(u,v) = 2. Let v € VyNV(H"Y), where u € V(G). Since Vs
is a total dominating set of G, there exists w € Vo N Ng(u). Then dgon (u, w) = 2. Thus,
f € hID(G o H). Consequently, v,1(G o H) < wagon (f) = 2|S| = 2775(G). |

Theorem 3.6. (corona of graphs) Let G be a nontrivial connected graph and H any
graph, and let f = (Vo,V1,Va2) be a function on V(G o H). Then f € hID(G o H) if and
only if each of the following holds:

(i) One of the following holds for each v € Vo NV (G):

(a) [VaN Ng(v,2)| > 1 or |ViN Ng(v,2)| > 2;

(b) There exists w € Ng(v) for which [Van'V(HY)| > 1;

¢) There exists w € Ng(v) for which Vi NV (HY)| > 2;

(d) There exist u,w € Ng(v) for which [ViNV(HY)|=1=|ViNV(H")|;

(e) Vi N Ng(v,2)| =1 and there exists w € Ng(v) for which |V NV (H")| = 1.

(1) Fach of the following holds for every v € V(G) with Vo N Ng(v) = &:
(a) flgv is a PN D-function of HV if Ng(v) C Vi,
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(b) V(H)\ Vo is a PN D-set of H" if |[V1 N Ng(v)| = 1.

Proof: Suppose that f € hID(G o H). Then (i) is clear. Let v € V(G) with Vo Ng(v) =
@. Suppose that Ng(v) € Vp, and let w € Vo NV (HY). Then |Vo N Ngom(u,2)| >
1 of |Vi N Ngom(u,2)] > 2. Since Ng(v) C Vp, the preceding statement implies that
[VanN Ngo(u,2)| > 1 or [ViNNgv(u,2)| > 2. It means that there exists w € VoNV (HY) for
which w ¢ Ngv(w) or there exist w and z in Vi NV (H") for which u ¢ Nyv(w) U Ngo(2).
Thus, flg» = VNV (HY),ViNV(H"),VaNV(H")) is a PN Dj-function of HY and (ii)(a)
holds. Suppose that [Vi N Ng(v)| = 1. Let u € Vo NV (H?). Following similar argument,
since |[V3 N Ng(v)| =1, we have |Vo N Nyv(u,2)| > 1 or |[V4 N Nyv(u,2)| > 1. In any case,
there exists w € V(H")\ Vy such that u ¢ Ngv(w), showing that V(H")\ V; is a PN D-set
of HV. This proves (i7)(b).

Conversely, suppose that (i) and (i7) hold for f. Let v € Vy. If v € V(QG), then (i)
implies the existence of u € V4, such that dgop(u,v) = 2 or of vertices v and w in V; such
that dgom (u,v) = 2 = dgom(w,v). Now, suppose that v € V(H") for some u € V(G). If
Vo N Ng(u) # &, and w € Vo N Ng(u), then w is the desired vertex for which w € V5 and
dgom(v,w) = 2. Suppose that Vo N Ng(u) = &. We consider two cases:

Case 1: If Ng(u) C Vj, then by condition (i7)(a), there exists there exists w € VoNV (HY)
for which v ¢ Npgu(w) or there exist vertices z and w in Vi N V(H") for which v ¢
Npu(w) U Npv(z). The former implies that dgop(w,v) = 2, while latter implies that
daor(w,v) =2 = dgom(z,v).

Case 2: Suppose that Ng(u) N V) # @. If |[Ng(u) N Vi| > 2, say w,z € Ng(u) NV, then
daor(w,v) = 2 = dgon(2,v). Suppose that |[Ng(u) NVi| = 1, say © € Ng(u) NV;i. By
(#)(b), V(H™) \ Vo is a PND-set of H" so that there exists w € V(H") \ Vj such that
v ¢ Nyu(w). We either have w € V3 and dgop(w,v) =2 or w € V} and dgog(w,v) =2 =
daom(z,v).

Accordingly, f € hID(G o H). |
Corollary 3.7. Let G be a connected graph of order n and H be any graph.
(0) If v(G) =1, then 4 < yp;(Go H) < 6. More precisely,
(a) yii(Go H) =4 if yp(G) =2 or H = Ky or H has an isolated vertex;

() Ymr(GoH) =5 if pnd;(H) = 3; and
(¢) vhi(Go H) =6 if pnd;(H) > 4.

(73) In general,
4 <i(GoH) < pu(G),

where pg(G) = min{2|S|+ (n — |[Ng(S)|) pndr(H) : S € HD(G)}, and this bound is
tight.
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Proof: In any case v,;(G o H) > 4 by Proposition 2.4. Suppose that v(G) = 1, and
let w € V(G) for which Ng[u] = V(G). Pick v* € V(H") and w € V(G) \ {u}. Put
S = {u,v*,w}, and define Vo = S, V; = @ and Vp = V(G o H) \ S. By Theorem 3.6,
f=Wo,V1,Va) € hID(G o H). Thus, vp1(G o H) < wgon(f) = 6.

Suppose that 74 (G) = 2, and let S be a yp-set of G. Necessarily, u € S. Put S = {u, v},
where dg(xz,v) =2 for all z € V(G) \ {u}. Define Vo =S, Vi =@ and Vp = (V(G) \ S)U
(Urev(e)V(HT)). Since V(H") U (V(G)\'S) € Naon(v,2) and Uzey (g fuyV(H®) C
NGoH(’Un 2), f S hID(G o H) Thus, ”yh[(G o H) < wGoH(f) = 4.

Suppose that H has an isolated vertex v. Put S = {u,v"}, where v" is the copy of
vertex v in H". Define Vo = S, Vi = @ and Vo = (V(G) \ {u})U((Upev )V (H?")) \ {v"}).
Then (V(G) \ {ub)U(V(H") \ {v"}) € Neop (0",2) and Uey(ay gV (H*) € Naor (u,2).
Thus, f € hID(G o H) so that v,;(G o H) < wgon(f) = 4.

Suppose that v,(G) # 2 and pnd;(H) > 2. Let f, = (V§*, Vi*, V3*) be a pnd;-function
of H". Define Vo = {u}UV4", Vi = Vi* and Vo = (V(G) \ {u}) U (Upev (@) fu3 V (H®)) UV
Then f = (Vo,V1,V2) € hID(G) with wgon (f) = 2 + (V| +2|V5|) = 2+ pnd;(H). If
pndr(H) = 2 (i.e., H = K»), then v,;(G o H) = 4. If pnd;(H) = 3, then the preceding
result implies that v,7(G o H) = 5; and by a similar reason, if pnd;(H) > 4, then (G o
H) =6.

To prove (ii), let S C V(G) be a hop dominating set of G. For each v € V(G)\ Ng(5),
let f, = (Vy, Vi, V) be a pnd;-function of H = H". Define the following

« Vo= [V(G\SIU [Unevioyvas)VIH")] U [Dev@nnas Vo
* Vi =Ueven\nNe)V1'’s
o b, =SU [UUGV(G)\NG(S)V?U]'

Put f = (Vo,V1,Va). Let v € Vh N V(G). Since S is a hop dominating set of G and
v € V(G)\ S, there exists u € S C Vo N V(G) for which dg(u,v) = 2, showing that
condition (¢)(b) of Theorem 3.6 is satisfied. Let v € V(G) for which Vo N Ng(v) = @.
Since V1 NV (G) = @, v € V(G) \ Ng(S). Then f|gv = f,, and therefore f|gv is a
PN Dy-function of H”. By Theorem 3.6, f € hID(G o H). Moreover,

Yi(GoH) < wgon(f)
= Wi+ 2|V,
= Z V| + 28] + Z Vy|
veV(G)\Ng(S) veV(G)\Ng(S)
= 2[5+ Z (V] +2Vy))
veV(G)\Ng(S)
= 2|S|+[n — |Ng(S)|]pnd;(H).

Since S is arbitrary, v, (G o H) < py(G).
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Consider G = P,. For any graph H, v,;(Go H) = 4 = py(G). This proves the
tightness of the bound. |

It is also worth noting that for graphs G with no isolated vertices, Corollary 3.7 is an
improvement, of Proposition 3.5 as py(G) < 297%(G).

Theorem 3.8. (lexicographic product of graphs) Let G and H be connected graphs
and f = (Vo,V1,Va) a function on V(G[H]). Let A, B and C be subsets of V(G) and let
Ay, By and Cy, be subsets of V(H) such that Vo = Ugea {2} X Az), Vi = Ugep ({z} x By)
and Va = Uzec ({2} x Cy). Then f € hID(G[H]) if and only if each of the following holds:

(1) BUC is a hop dominating set of G;
(13) For each x € A for which C N Ng(z,2) = &, one of the following holds:

(a) [BNNg(z,2)| = 2;

(b) BN Ng(z,2) = {w} such that |By| > 2;

(¢) z € BUC, BN Ng(z,2) = {w} with |By| =1 and By UC, is a PN D-set of
H;

(d) € BUC, BN Ng(w,2) = & and the restriction f|ayxvm)y of f on ({z} x
V(H)) is a PN Dr-function of ({x} x V(H)).

Proof: Assume that f € hID(G[H]). Then Vi U V3 is a hop dominating set of G[H]. This
implies that B U C is a hop dominating set of G, and (i) holds. Next, to prove (ii), let
x € A for which C' N Ng(x,2) = &. We consider the following cases:

Case 1: Suppose that BN Ng(z,2) = @. Since BU C hop-dominates A, x € BUC. Put
T, = ({z}xV(H)). Let y € Az. Then [VaNNgm((7,y),2)| = 1or [ViNNgg((z,v),2)] >
2. If (u,v) € V2N Nggj((2,9),2), then = u so that (u,v) € V¥ = Vo N V(T;) and
(z,y)(u,v) ¢ E(T:). On the other hand, if (u,v),(w,z) € Vi N Ng((z,y),2), then
u=w = zx so that (u,v), (w,2) € V¥ = Vi NV (T;) and (z,y)(u,v), (z,y)(w,z) ¢ E(Ty).
Since y is arbitrary, f|n, = (V§*, Vi*, V5°) is a PN D-function of T, where Vi = VoNV (T3).
This proves (i7)(d).

Case 2: Suppose that BN Ng(x,2) # @. If |BN Ng(x,2)| > 2, then (ii)(a) is done.
Note that such holds particularly when x ¢ BUC, y € A, and we have (u,v), (w,z) €
V10 Ngia((2,9),2) with u # w.

Assume that |B N Ng(x,2)| = 1, say BN Ng(z,2) = {w}. If |By| > 2, then (i7)(b)
holds. Note that this readily follows if x ¢ B U C. Now suppose that |B,| = 1. Since
C N Ng(x,2) = @, necessarily x € BU C. We claim that B, UC, is a PN D-set of H.
Let y € V(H) \ (B UCy) = A, \ (By UC,). Then (x,y) € Vo \ (V1 UVa). There exists
(a,b) € Van Nga((w, ), 2) or there exist distinct (a,b), (s,t) € Vi N Ny ((z,y),2). The
former implies that b € C; and by ¢ E(H). Since |B,,| = 1, the latter implies that a € B,
and by ¢ E(H) or s € B, and ty ¢ E(H). Accordingly, B, UC, is a PN D-set of H. This
proves (ii)(d).
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Conversely, suppose that conditions (i) and (i¢) all hold for f. Let (z,y) € Vh. Then
v € A. Ifu € CNNg(x,2), then for any v € Cy, (u,v) € VaNNga((7,9),2). Now assume
that C' N Ng(x,2) = @. It is straightforward to show that if (ii)(a) or (i7)(b) holds for z,
then |V1 N Ngmy((2,y),2)| > 2. Suppose that (i7)(c) holds for z. Let BN Ng(w,2) = {w}
and let z € By,. If t € C, for which ty ¢ E(H), then (z,t) € VaN Ngg)((7,y),2). On the
other hand, if t € B, for which ty ¢ E(H), then (z,t) and (w, z) are distinct vertices in
ViNNga)((z,y),2). Finally, suppose that (ii)(d) holds for z. Put T, = ({z} x V(H)) and
define V¥ =V, NV (Ty) for i = 0,1,2. Then f|p, = (V§, V{*, V5F). Since (z,y) € V§ and
flr, is a PN Dy-function of T, there exists (z,v) € V¥ with (z,y)(x,v) ¢ E(Ty) or there
exist distinct (x,v), (z,2) € V¥ such that (x,y)(x,v), (z,y)(z,2) ¢ E(T;). The former
implies that (x,v) € Vo N Ngg)((z,y),2), while the latter implies that (x,v),(z,2) €
V10 Ngia)((2,9),2). Therefore, f € hID(G[H]). |

Corollary 3.9. Let G and H be nontrivial connected graphs where H is noncomplete.
Then

1 (G[H]) < min{2|S N Ng(S,2)[ + pnd; (H)|S \ Na(5,2)| : S € HD(G)},
and this bound is sharp.
Proof: Put ag(G) = min{2|S N Ng(S,2)| + pnd;(H)|S \ Ng(S,2)| : S € HD(G)}. Let
S C V(G) be a hop dominating set of G. For each z € S\ N¢(S,2), let f = (ViF, Vi, V)
be a pndr-function of ({x} x V(H)). By Lemma 2.8, since ({z} x V(H)) is noncomplete,

we assume that V5" # @ for each z € S\ Ng(S,2). Pick y € V(H). Define the following
sets:

o Vo = [Usesnng(s2){(@,9)}] U [Ures\ne(s.2) V5
o Vi =Uzes\ng(s,2) V1" and
e Vo= V(GH) \ (Vi UTh).

Let f = (Vp, Vi, V2). Asin Theorem 3.8, write Vo = Uzea ({x} X Az), Vi = Uzep ({2} X By)
and Vo = Ugec ({2} x Cy). Since V§¥ # @ for each x € S\ Ng(S5,2), C = S and
B = S\ Ng(S,2). Thus BUC is a hop dominating set of G. Let z € A with
C N Ng(z,2) = @. Since C is a hop dominating set of G, z € C'\ Ng(C,2) = B.
Note that if BN Ng(z,2) # @ and v € BN Ng(x,2), then u € C N Ng(z,2), a contra-
diction. Thus, B N Ng(x,2) = @. Since f|z}xvm)) = fz for each 2 € C'\ Ng(C,2),
f € hID(G[H]) by Theorem 3.8. Therefore,

wi(GH]) <2Ve|+ Vi| = 2[SNONa(S,2)|+ D> 201+
u€S\Ng(S,2)
= 2|SNNg(S,2)| +pndr(H)|S \ Na(S,2)].
Since S is arbitrary, v, (G[H]) < ag(G).
To show the sharpness of the upperbound, consider the graph G in Figure 6. Verify
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G
Figure 6: Graph G showing sharpness of the bound in Corollary 3.9

that for n > 3, v,;(G[P,]) = 7. Note that pnd;(P,) = 3 while the set S = {z,y,2} is
a hop dominating set of G with |[S N N¢(S,2)| = 2 and |S \ Ng(S,2)| = 1. In this case,
ap(G) =2(2) +pndr(P,)(1) = 7. |

Strict inequality in Corollary 3.9 can also be attained. Note that for n > 3, v,7(C5[P,]) =
5 while ap, (C5) = 6. The same example also shows that a7 (G) need not be determined by
ayp-set S of G. If C5 = [x1, x2, 23,4, x5, 21], then S = {x1, x2, 24} is a hop dominating set
but not a y,-set of Cs5. However, ap, (C5) = 2|SNN¢, (S, 2)|+pndr(FP,)|S\ Ncs (S, 2)| = 6.

4. Conclusion

It turned out that the hop Italian domination is directly related to both the hop Roman
domination and the 2-hop domination. More precisely, 1,7 (G) < min{vy,r(G), v21(G)} for
all graphs G. More interestingly, it is shown that, in fact, the difference v, (G) — V11 (G)
can be made arbitrary large, and that any pair of positive integers a and b with 4 < a <b
are realizable as the hop Italian domination number and the 2-hop domination number,
respectively, of some connected graph. Finally, for graphs under the complementary prism,
join, corona and lexicographic product of graphs, the hop Italian domination number is
expressible in terms of the hop Italian domination numbers or of the pnd; numbers of its
factors.
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