Generalized Reflexive Structures Properties of Crossed Products Type
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4918Keywords:
Cross Product., $CM$-quasi Armendariz ring, strongly $CM$-reflexive ringAbstract
Let $R$ be a ring and $M$ be a monoid with a twisting map $f : M \times M \rightarrow U(R)$ and an action map $\omega : M \rightarrow Aut(R)$. The objective of our work is to extend the reflexive properties of rings by focusing on the crossed product $R \ast M$ over $R$. In order to achieve this, we introduce and examine the concept of strongly $CM$-reflexive rings. Although a monoid $M$ and any ring $R$ with an idempotent are not strongly $CM$-reflexive in general, we prove that $R$ is strongly $CM$-reflexive under some additional conditions. Moreover, we prove that if $R$ is a left $p.q.$-Baer (semiprime, left $APP$-ring, respectively), then $R$ is strongly $CM$-reflexive. Additionally, for a right Ore ring $R$ with a classical right quotient ring $Q$, we prove $R$ is strongly $CM$-reflexive if and only if $Q$ is strongly $CM$-reflexive. Finally, we discuss some relevant results on crossed products.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.