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Abstract. Let R be a ring and M be a monoid with a twisting map f : M x M — U(R) and
an action map w : M — Aut(R). The objective of our work is to extend the reflexive properties
of rings by focusing on the crossed product R *x M over R. In order to achieve this, we introduce
and examine the concept of strongly CM-reflexive. Although a monoid M and any ring R with
an idempotent are not strongly C'M-reflexive in general, we prove that R is strongly C'M-reflexive
under some additional conditions. Moreover, we prove that if R is a left p.q.-Baer (semiprime,
left APP-ring, respectively), then R is strongly C'M-reflexive. Additionally, for a right Ore ring
R with a classical right quotient ring @, we prove R is strongly C'M-reflexive if and only if @Q is
strongly C'M-reflexive. Finally, we discuss some relevant results on crossed products.
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1. Introduction

Unless otherwise stated, we assume that R is an associative ring with identity and M
is a monoid. The concept of reflexive properties of rings was first studied by Mason [1].
In particular, a right ideal I of R is said to be reflexive if xRy C I implies yRx C I for
any x,y € R. This concept is also specialized to the zero ideal of a ring, where a ring R
is said to be reflexive if its zero ideal is reflexive. Moreover, a ring R is called completely
reflexive if xy = 0 implies yx = 0 for any z,y € R. It is worth noting that reduced rings
are completely reflexive, and every completely reflexive ring is semicommutative, as shown
in the literature [1].

Several authors have discussed extensions of reflexive rings, including strongly reflexive
rings, strongly M-reflexive rings, Armendariz rings, reversible rings, and reflexive on skew
monoid rings, in numerous publications (see, for example, [2], [3], [4] and [5]). According to
[6], a ring R is said to be an M-Armendariz ring of crossed product type relative to the given
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twisting f and action w, or an M-quasi Armendariz ring (or simply a C'M-Armendariz ring
or CM-quasi Armendariz ring, respectively), if for any ¢ = > 1" | a;gi, ¥ = ZT:l bjh; €
R« M such that ¢¢p = 0 (resp., (R * M)y = 0), it follows that awy,(b;) = 0 (resp.,
a;Rwg,1(bj) = 0) for all 4,5 and all g;, h;,l € M.

The focus of this paper is on investigating strongly CM-reflexive rings, which are a
reflexive-like property defined for the monoid crossed product R * M with respect to the
given twisting map f and action map w. This concept is a generalization of several other
reflexive properties, including reflexive rings, strongly reflexive rings, strongly M-reflexive
rings, and skew monoid rings.

The paper is devoted to presents several results, including, if R is a semiprime, then
R is strongly C'M-reflexive for a u.p.-monoid M. Also, if R is a left p.q.-Baer (semiprime,
left AP P-ring, respectively), then R is strongly C' M -reflexive for a strictly totally ordered
monoid. Additionally, if R is an M-compatible ring and M is a monoid with twisting f
and action w as above, then for any reduced ideal I of R such that R/I is strongly C M-
reflexive, then R is strongly C M-reflexive. Moreover, for a right Ore ring R with classical
right quotient ring @), we show that R is strongly C M-reflexive if and only if @) is strongly
C M-reflexive. Finally, we discuss example and some results in the subject.

To begin with, we introduce some notions and notations relevant to this paper. Let w :
M — Aut(R) be a monoid homomorphism. For h € M, we denote by wy, the automorphism
w(h). The crossed product R * M over R is defined as the set of all finite sums R x M =
{zph|z), € R,h € M}, where addition is defined component-wise and multiplication is
defined using the distributive law and two rules known as action and twisting. Specifically,
for I,h € M and = € R, we have hx = wp(x)h and L h = f(l,h)l h, where f : M x M —
U(R) is a twisted function and U(R) denotes the set of units of R. Here, the twisted
function f and the action w of M on R satisfy the following conditions: wj(wp(x)) =
f(l7 h)wl(wh(m)f(la h)_1)7 wl(f(ha k))f(la hk) = f(l7 h)f(l h, k)v f(17 l) = f(l7 1) =1 for
all [,h,k € M. It is worth noting that the monoid crossed product is a general ring
construction.

Given a monoid crossed product R * M with twisting f and action w, if the twisting f
is trivial, (i.e., f(a,b) = 1) for all a,b € M, then R M is the skew monoid ring R M. If
both the twisting f and the action w are trivial, then R * M is a monoid ring denoted by
R[M] (see [7] and [8]). A monoid M is said to be a u.p.-monoid (unique product monoid)
if, for any two nonempty finite subsets X and Y of M, there exists a unique element h € M
that can be written in the form A = wv with u € X and v € Y. An ordered monoid (M, <)
is said to be strictly ordered if the following condition holds: whenever g,k , h € M with
g < k, it follows that gh < kh and hg < hk.

2. Generalized Reflexive rings of crossed product type

In this section, we will discuss the concept of strongly reflexive properties in the context
of a monoid of crossed product R M, where R is a ring and M is a monoid with a twisting
map f: M x M — U(R) and an action map w : M — Aut(R).
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Definition 1. A ring R is said to be strongly M -reflexive of crossed product type with
respect to the given twisting map f and action map w (or simply, strongly C M -reflexive)
if for any ¢ = cili +calo+ - -+ cply and Y = arhy +ashs+- - -+ amhm € R+ M satisfying
that (R * M)y = 0 implies that c;w, (wg(Ra;)) = 0, then Y(R* M)y =0 for each i,j and
for all g,1;,h; € M.

Remark 1. (1) If a ring R is strongly C M -reflexive with a trivial twisting map f, then
we refer to the monoid M as a skew strongly M -reflexive ring. If R is strongly C'M -
reflexive with a trivial action map w, then we call R a strongly T M -reflezive (i.e., twisted
strongly M -reflexive) ring. Note that when both f and w are trivial, R is simply strongly
M -reflexive. In particular, if M = (NU{0},+) and both f and w are trivial, then R is
strongly C' M -reflexive if and only if R is strongly reflexive.

(2) If R is a strongly C M -reflexive ring with a trivial twisting map f, then any M -
invariant subring S (i.e., wy(S) C S for all g € M) of R is strongly C M -reflexive.

An ideal I of a ring R is considered to be right s-unital if there exists an element
e € I for every t € I such that te = t. A ring is referred to as a left AP P-ring if the left
annihilator [r(Rt) is right s-unital as an ideal of R for any element ¢ € R.

In their work [9], Nasr-Isfahani and Moussavi introduced a ring R with an endomor-
phism w and defined it as w-weakly rigid if the condition c¢Rt = 0 holds if and only if
cw(Rt) = 0 for any ¢,t € R. It is worth noting that the category of w-rigid rings and
w-compatible rings is a limited one, and it is evident that every w-compatible ring falls un-
der the category of w-weakly rigid rings. However, there exist several classes of w-weakly
rigid rings that do not belong to the category of w-compatible rings. By [10], R is a-
rigid if and only if R is a-compatible and reduced. According to [9], any prime ring that
has an automorphism w is considered to be w-weakly rigid. If a monoid homomorphism
w: M — Aut(R) is weakly-rigid (compatible), it means that the ring R is also weakly
rigid (compatible) with respect to each g € M under the automorphism wy.

Lemma 1. [11, Lemma 1.1]. If M is a u.p.-monoid, then M is cancellative (i.e., for
0o\ € M, if Ox = h or A = Mh, then £ = h).

Lemma 2. Suppose R is a ring and M is a u.p.-monoid with a twisting map f: M x M —
U(R) and an action map w : M — Aut(R). If R is an M -rigid ring, then the monoid ring
R x M is reduced.

Proof. Assume that ¢ = cihy + -+ + ¢cyhp € R x M satisfies ¢ = 0. According to
Proposition 2.2 [6], R is CM-Armendariz, this implies c;wp, (b5) f(li, hj))(lih;) = 0 for all
i and j, by Lemma 1, M is a cancellative so c;wp,(b;) =0 . As R is an M-rigid, then R is
a reduced, we can conclude that ¢; = 0 for all 1 <7 < n. Consequently, ¢ = 0, and hence
R M is a reduced. O

Theorem 1. Let R be a semiprime ring and M be a u.p.-monoid with a twisting map
f:Mx M — U(R) and an action map w : M — Aut(R). If R is an M-compatible ring,
then R is strongly C M -reflexive.
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Proof. The evidence has been modified from the Theorem 1.1 of [12]. Let ¢ = e1l; +
colo + -+ -+ cplp, v = arhy + aghy + - - - + aphy, € R+ M satisfy ¢(R* M)y = 0. Then for
any r € R and g € M, we have

(Clll + colo + -+ - + cnln)gr(alhl + agho + -+ + amhm) =0. (2.1)

We will employ mathematical induction on n to demonstrate that ¢; Rwy, (wq(a;)) = 0 for all
1<i<n,1<j<m,andforany g € M. This can be achieved by utilizing the fact that M
is a compatible monoid. If we take n = 1, then we have (¢1l1)gr(ai1hi+agsho+- - -+amhm,) =
0. Therefore, for each 1 < j < m, we have ¢ Rwy, (wq(a;))f(li, hj))(l;hj) = 0. By Lemma
1, M is a cancellative, this means l1h; # l1h; for any 7 and j with 1 < i # 7 < m.
Thus, ¢1Rwy, (wg(a;)) = 0. For the case where n > 2, we can use the assumption that
M is a uniquely presented monoid to find s and ¢ with 1 < s < n and 1 <t < m such
that lsgh; is uniquely represented by considering two subsets K = {l1g,l2g,...,l,g} and
H = {hy,ha,...,hpy} of the monoid M. Without loss of generality, we may assume that
s=1and t = 1. From Eq. (2.1), we can deduce that ciwj, (wg(Ra1))f(l1, h1)(lih1) = 0,
which implies that ¢ Rwy, (wg(a1)) = 0. Since wy and wy, are automorphisms of R, we have
c1Rwy, (wg(a1)) = 0. As a result, for every z € R, we have ¢ Rwy, (wg(ai1za1))f(li,h1) =0,
which implies that 0 = (¢1l; + calo + - - - + epln)grai z(grai z(a1hy + agha + - - - + amhy,) =
(cola + -+ + epln)gr(arzathy + a1zagha + - - - + a1zamhy,).

By applying the induction hypothesis, it follows that c;wy, (wq(raiza;)) = 0 for all
2 <i<nand1l < j < m. Thus, we have ¢;Ruwy,(wg(a1))Rwy,(wg(ar)) = 0, which
implies that ¢; Rwy, (wg(a1)) = 0 for all 2 < i < n, as R is a semiprime ring. Therefore,
we have ¢;Rwi, (wg(a1)) = 0 for all 1 < 4 < n. As a result, the Eq. (2.1) becomes
(c1ly + coly + -+ + cpln)gr(aghy + - - - + apmhy,) = 0. We can repeat this process to show
that ciwy, (wg(ra;)) = 0 for all g € M and all 4,5. This shows that ¢; Rwy, (wg(a;)) = 0.
Consequently, we can see that a; Rwp,; (wy(c;)) = 0forallg € M, 1 <j <m,and1<i<n.
Therefore, R is strongly C' M-reflexive. O

The following example demonstrates the existence of a ring R over a field F' that is not
strongly C'M-reflexive.

Example 1. Let M be a monoid with at least two elements, and let S = Ma(F') be the
matriz ring over a field F with a twisting map f : M x M — U(R), then S is not strongly
CM -reflezive.

Solution. Take e # h € M, we define w : M — Aut(S) by

" a d [ a —d
h 0 c N0 ¢ )
If the twisting map f is trivial (i.e., f(z,y) = 1 for all z,y € M), then the ring S is not
strongly C'M-reflexive. To see this, consider ¢ = Ej9e+Ej1h and ¢ = (Ej1+F12)h € SxM.

For ¢ = (E11 + E22)h € S % M, we can easily verify that ¢py = 0. However, we have
Yo # 0, which implies that S is not strongly C'M-reflexive. O
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A ring R is categorized as a right PP-ring or left P P-ring if the right or left annihilator
of an element in R, respectively, is generated by an idempotent. A (quasi-) Baer ring is one
where the right annihilator of every nonempty subset or every right ideal of R is generated
by an idempotent. Principally quasi-Baer rings, introduced by Birkenmeier et al. [13],
extend the concept of quasi-Baer rings. A ring R is referred to as left principally quasi-
Baer or simply left p.q.-Baer if the left annihilator of a principal left ideal in R is generated
by an idempotent. It is important to note that biregular rings and quasi-Baer rings are
examples of left p.q.-Baer rings. For more information and examples of left p.q.-Baer rings,
see Birkenmeier et al. ([13], [14]) and Liu [15]. Since right PP-rings and left p.q.-Baer
rings both fall under the category of left APP [16], the following results can be deduced.

Theorem 2. Suppose R is a reduced ring, M is a strictly totally ordered monoid with a
twisting map f: M x M — U(R) and an action map w : M — Aut(R) that is compatible
with the multiplication in M. If R is a left p.q.-Baer ring, then R is strongly C M -reflexive.

Proof. The proof is a variant of the proof given in Proposition 2.9 [17]. Let ¢ =
cili+eala+- -+ epln, v = arhy +asha+- - -+ amhy, € Rx M satisty ¢(R+ M)y = 0. Since
M is a strictly totally ordered monoid, we can assume that I; < [; and h; < h; whenever
i < j. Now, we claim c;wy, (wg(Raj)) = 0 for all ¢,j. Let 7 be an element of R. Then, we
have ¢(re)y) = 0 since ¢p(R x M)y = 0. Thus, we have

0= o(re)yy =cirf(l,e)ar f(li, h1)lih + -+ [cor f(lns €)am—2 f (ln, hin—2)lnhm—2
+ cn—lrf(ln—la e)am—lf(ln—ly hm—l)ln—lhm—l + Cn—ZTf(ln—Qa e)lmf(ln—27 hm)ln—th]
+ [Cnrf(lrw e)amflf(lna hmfl)lnhmfl + anflrf(lnfla e)amf(lnfla hm)lnflhm]
+  cnrf(ln, €)amf(lny hin)lnhm. (2.2)

It follows that c,rf(l,€)amf(ln, hm) = 0 since l,hy, is of highest order in the lih;-s.
Hence ¢,rf(ln,e)am = 0. This shows that ¢, € lr(Rf(ln,€)anm) = {r(Ray). Hence,
¢r(Ray,) = Re,, for some idempotent e, by hypothesis. Replacing r by re,, in Eq. (2.2)
we obtain 0 = ciren, f(l1,e)ar f(l1, h1)lihs + -+ + [enrem f(ln, €)am—af (Ln, Am—2)lnhm—2
+Cn717ﬂemf(lnfla e)amflf(lnfla hmfl)lnflhmfl]‘i'cnremf(ln, e)amflf(lna hmfl)lnhmfl(2-3)
So cprem f(ln, €)am—1f(ln, hm—1) = 0, because l,,hy,—1 is of highest order in {l;h;|1 <
i <mn,1<j<m} {lp—1hm,lnhn}. Hence cyre, f(ln, e)am—1 = 0. Since Re,, is an ideal
of R and e,, € Re,,, we have e,,r € Re,, and thus e,,r = ey, re,, for all » € R. On the
other hand, we also have ¢, = ¢, ey, since ¢, € {g(Ray,) = Rey,. Hence ¢,rf(ly,, €)am—1 =
cnem? f(ln,€)am—1 = cpemremf(ln, €)am—1 = cpremf(ly, e)am—1 = 0. This implies that
¢n € lr(Ray, + Rap—1), and hence ¢g(Ray, + Rapym—1) = Rep—1 for some idempotent
ém—1 € R since R is a left p.¢.-Baer ring. Replacing r by re,—1 in equation (2.3) we
obtain cprem—1f(ln, €)am—2f(ln, hmm—2) = 0 in the same way as above. This shows that
¢n € Lg(Ray, + Rap,—1 + Ray,—2). Continuing this process we obtain ¢, Ra; = 0 for all t =
1,2,...,m. So, we have (c1l1 +calo+- - -+ cp_1lp—1)(R*xM)(a1h1 +agho+ - - -+ amhy) = 0.
Using induction on m +n, we obtain ¢;w;, (wg(Raj)) = 0 for all 7, j. So it is easy to see that
ajwn; (wg(Re;)) = 0 by a reduced ness. Therefore, R is strongly C M-reflexive. O

If N is an ideal of the monoid M with twisting f : M x M — U(R) and action
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w: M — Aut(R), then the restrictions f|yxny : N x N — U(R) and w|y : N — Aut(R)
are induced twisting and action.

Proposition 1. Let R be an M-compatible ring and M be a commutative, cancellative
monotd and N be an ideal of M with a center element \. If R is strongly C'N -reflexive,
then R is strongly C M -reflexive.

Proof. Let ¢ = 71, cili,yp = 3771 ajh; € R+ M satisfying ¢pip = 0 for any ¢ =
Sor_1lrgr € R* M. Since A € N is a center element, this implies that

A1, Moy oo Mo AGi A, AgaX, o Agod, i\, ha, .. hih € N,

such that Al; # Alj, AgiA # Ag; A and hy A # hjA for all i # j. Then, we have

Sro1n =Y > Y (ciwn (Grwa(@))) FLid, hy) (NligrhjA®) = 0.

i=1 j=1r=1

Since ¢, ¢ and 1 are nonzero in R+ M, so ¢1 and v, are nonzero elements in (R*M)[N].
Moreover, from ¢y = 0 and w compatible automorphism, A a center element of N one
can easily obtain that ¢1p191 = 0 for any ¢; € (R x M)[N]. Since R is strongly CN-
reflexive. Then, ¢;wy, (wa(ra;))f(li, hj)(lihj) = 0. So ¢;wy, (wa(Ra;)) = 0. By a compatible
automorphism, we have ajwy, (wx(Rc;)) = 0. Therefore, R is strongly C'M-reflexive. [

Corollary 1. [/, Proposition 3.1] Let M be a cancellative monoid and N an ideal of M.
If R is strongly N -reflexive, then R is strongly M -reflexive.

Suppose [ is an ideal of R and w : M — Aut(R) is a monoid homomorphism. We define
w: M — Aut(R/I) as wg(d+ I) = wy(d) + I, where d € R and g € M. It can be shown
that @ is a monoid homomorphism. Additionally, the twisting map f: M x M — U(R)
induces a twisting map f : M x M — U(R/I) given by f(z,y) = f(x,y)+I. Furthermore,
for every ¢ = > | ¢;l; € R M, we denote ¢ = > i, &l; € (R/I) * M, where & = ¢; + I
for 1 <14 <mn. It can be easily verified that the mapping 6 : R x M — (R/I) x M defined
as 0(¢) = ¢ is a ring homomorphism. In a proof presented [4], it was shown that when I
is a reduced ideal of R and R/I is strongly M-reflexive, then R is strongly M-reflexive.

Similarly, we can establish the following result.

Theorem 3. Let M be a u.p.-monoid and I an ideal of R with twisting f : M x M — U(R)
and action w : M — Aut(R). If I is a reduced and R/I is strongly C M -reflexive, then R
is strongly C' M -reflexive.

Proof. Let ¢ = X cili, i) = X7 1a;h; € R« M satisfying ¢(R « M)y = 0. We will
show that ¢;w;, (wg(Ra;)) = 0 for any ¢ and j.
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Note that in (R/I) * M, ¢ = X7, ¢il;, ) = ¥ ajh; € (R/I)* M, we have

0= o((R/I) M)y
= (aili + &l + -+ + Cpln)Tgwy, (wg(arha + agho + -+ + amhan)) f (L, hy)lih;
= (er + I)rgioy, (wg(ar + 1)) f(Iy, ha)lihy + (2 + I)Tgl, (wg(az + 1)) f(l2, ha)l2ho
+ o (en + I)Fgan, (wolam + 1)) f(ln, hm)ln b,

Thus we have cjwy, (wg(Raj)) f(li, hj)(lih;) C I foralliand jwithl <i<mnand1<j<m
since R/I is strongly C'M-reflexive.

By induction on both n and m, considering every g in M, and for 1 < ¢ < n and
1 <j < m.If we take n = 1. Then (c1l1)(R * M)(a1hy + azhs + -+ - + amhm) = 0. Thus,
(c1ly)(rg)(arha) + (erl)rg(aghe) + - - - + (crly)rg(amhm) = crwy, (wg(ra1)) f (i1, ha)(liha) +
crwy, (wg(ra2)) f(li, ha)(liho) + - - - + crwy, (wy(ram)) f(l1, hm)(lihey,) = 0 for any 7 € R, g €
M. By Lemma 1, M is cancellative we have l1h; # l1h; for any 7 and j with 1 <1 # j < m.
Then ciwy, (wg(ra;)) f(li, hi)(lih;) = 0,5 = 1,2,...,m. Thus, ciw, (wy(Ra;)) = 0 for any
j. If m = 1, then proof is similar.

Now suppose that n > 2 and m > 2. Since M is a wu.p.-monoid, there exist i, j
with 1 < 4 < n and 1 < j < m such that [;gh; is uniquely presented by consider-
ing two subsets K = {l1g,l2g,...,lng} and H = {hy,ha,...,hp} of the monoid M.
Without loss of generality, we may assume that ¢ = 1 and j = 1. We can deduce
that ciwy, (wg(Ra1))f(lig, hi)li(ghi) = 0, which implies that ciw;, (wg(Ra1)) = 0. Since
wy and wy, are automorphisms of R, we have ciwj, (Rai) = 0. Let b = c¢yraq, where
r€ R,1<k<n1<qg<m. Thenb € I. Since (a1bc;)? = 0 and I is reduced, we have
a1bc; = 0. Thus,

(CleCQlQ + aibegls + - - + albcnln)(R * M)(a1h1 + ashg + -+ + amhm)

= (a1b\)(e1ly + ealo + - - -+ cply) (Rx M) (a1hy + agha + - - - + apmhy,) = 0. By induction, we
have a1bcwy, (wg(Raj)) =0 for 2 <i <nand 1 < j < m. Thus, (a1be;R)? = 0. Since I is
reduced and w is automorphism, it follows that a;bc;w;, (R) = 0. Note that bc;w;, (Rai) C I.
Thus be;wy, (Rai) = 0 for any i. Now we have

(berly +begla + - - -+ beyly) (R+ M) (arhy + agha + - - - + amhy) = (DA) (e1ly +c2lo+ -+ -+
cnln) (R * M)(a1hy + agho + - - - + amhm) = 0.

By applying the induction hypothesis, it follows that bc;wy, (wg(Raj)) = 0 for all 1 <
i <nand2 < j < m. Thus, we have cwy, (wqy(ra;)) = 0 for all i,5 and all 7 € R.
Particularly, we have begwy, (wg(raq)) = 0 and so b = 0. Thus b = 0. This shows that
cpwi, (wg(Rag)) = 0 for any 1 < k < n and 1 < ¢ < m. Consequently, we can see that
ajwn;(wg(Re;)) = 0 forall g € M, 1 < j < m, and 1 <4 < n. Therefore, R is strongly
C M -reflexive. O

The notion of complete M-compatibility is important in the following result [18].

Corollary 2. Assuming R is a ring that is completely M -compatible, where M is a monoid
with twisting f : M x M — U(R) and action w : M — Aut(R), and I is an ideal of R such
that I is reduced and R/I is C M -quasi-Armendariz, then R is strongly C' M -reflexive.

Proof. As CM-quasi-Armendariz rings are strongly C'M-reflexive, the result can be
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obtained from Theorem 3. O

Corollary 3. Suppose that R is a completely M-compatible ring, where M s a monoid
with twisting f : M x M — U(R) and action w : M — Aut(R). Let I be an ideal of R
such that I is reduced and R/I is CM-Armendariz. Then, R is strongly C M -reflexive.

Proof. Since CM-Armendariz is a C M-quasi-Armendariz, the result can be derived
from Corollary 2. O

Proposition 2. Assuming R is a ring that is both M -compatible and C M -quasi- Armendariz,
where M is a monoid with twisting f : M x M — U(R) and action w : M — Aut(R), then
R is strongly C M -reflexive if and only if R M 1is strongly C M -reflezive.

Proof. To prove a necessary condition is sufficient. Let ¢ = X7 ¢;l;, ¢ = Y azhy €
R« M satisfying ¢(R x M )1 = 0. Since R is C'M-quasi-Armendariz, we have
ciwy; (wg(Ray)) f(li, hj)(lih;) = 0 for all 4, j. This implies that cjw, (wg(Ra;)) = 0 for all 4, j
since R is M-compatible. Because R is a reflexive ring, a; Rc; = 0. Then, ajwp; (wy(Rc;)) =
0 for all 4, j, and hence for any r € R, g € M, we have

Y(R* M) = X7, 57 ajwp, (we(rci)) f(Rj, 1) (hjli) = 0.

Thus, ajwp; (wy(rc;)) = 0 since R is M-compatible and C'M-quasi-Armendariz. Therefore,
R is strongly C M-reflexive. O

Every left AP P-ring is quasi-Armendariz, but not conversely [19, 20].

Proposition 3. Let M be a strictly totally ordered monoid with twisting f : M x M —
U(R) and action w : M — Aut(R). Let R be an M -compatible left APP-ring. Then R is
strongly C M -reflexive if and only if R* M is strongly C M -reflexive.

Proof. If R is a left APP-ring, then it is M-quasi-Armendariz [21]. Therefore, the
result follows from Proposition 2. O

Corollary 4. Let R be a ring, M be a monoid with twisting f : M x M — U(R) and
action w : M — Aut(R). If R is a reduced, then R is strongly C M -reflexive.

Proof. Since R is reduced, it is quasi-Armendariz. Therefore, the result can be derived
from Proposition 2. O

3. Some results on ring extensions of Crossed product type

Let A be a multiplicative monoid consisting of central regular elements of R. Then,
the set A™'R := {u"lcJu € A,c € R} forms a ring. Suppose w : M — Aut(R) is a
monoid homomorphism such that wp(A) C A for every h € M. Then, w can be extended
tow: M — Aut(A~'R) defined by wp,(u"tc) = wp(u)twi(c). If f: M x M — U(R) is
a twisted function, then it can be viewed as a twisted function from M x M to U(A™'R)
by noting that U(R) C U(A™'R).



E. Ali / Eur. J. Pure Appl. Math, 16 (4) (2023), 2156-2168 2164

Theorem 4. Assuming R is an M -compatible ring, where M is a cancellative monoid with
twisting f : M x M — U(R) and action w : M — Aut(R), then R is strongly C M -reflexive
if and only if A™'R is strongly CM-reflexive, where A is the multiplicative subset of R
consisting of all elements that are not zero divisors modulo M .

Proof. It is enough showing necessary. Assume that R is strongly C'M-reflexive. Let
¢ =X u" Legliop = Y uT a]h be elements in A~ RxM satisfying ¢t = 0, where ¢ =
Z,‘izl)\ b0 is any nonzero element in A~ R+ M. Then, we have o = (uptp_1...u1)p,0 =
(AgAg=1---A1)@, B = (UmUm—1...v1)¢ are in R+ M. Since R is strongly CM-reﬂexive and
afp = 0 we have

(UpUp—1 - . .ului_lci)wli (wg(b(VmVm—1 ... vlvj_l)aj))f(li, hj)(lihj)(vjui)fl =0

for all 4,7 and b € R. It follows that cw;, (wg(Raj))f(li, hj)(lih;) = 0 for any g € M,
because A is a multiplicative monoid consisting of central regular elements of R and all
u;,vj, A\ € A. Hence, (u; 'e;)wy, (wg(val)aj)) = ciwy, (wg(Ra;))(wy, (vj)u;) =t = 0 for all
i,j and w is automorphism. Therefore, A~ R is strongly CM-reflexive. O

The following statement describes how the strongly C M-reflexive property of a ring R
is related to the property of its subrings, which are created by a central idempotent.

Proposition 4. The following conditions are equivalent for a ring R, a monoid M with
twisting f : M x M — U(R), an action w : M — Aut(R), and a central idempotent e of
R such that wy(e) = e :

(1) R is strongly C M -reflexive.

(2) eR and (1 — e)R are strongly C M -reflezive.

Proof. (1) = (2). It is easy.
(2) = (1). Assume that both eR and (1 — e)R are strongly C'M-reflexive. Let ¢ =
Yicili,h =X a5h; € R+ M satistying d(R+ M)y =0. Let

¢1 =N jecili, 1 = B eajhy, ¢o = X (1 — e)eili, o = X514 (1 — e)azhy.

clear that ¢1,1¢1 € (eR) *x M and ¢9,1%2 € ((1 — e)R) * M. Since e is a central idempotent
of R such that wy(e) = e for each g € M and for any r € R we have

Br((eR) * M)y

ec(er)wy, (wg(ear)) f(li, h1)lihi + - - - + ecp(er)wy, (wg(€am)) f (ln, hm)lnhm

eci(er)wy, (wg(e)wy, (wy(a1)) f (I, ha)lihy + - -

ecp(er)wr, (wg(e))wy (wg(am))f(l s hon) P

ecle(er)wll(al) (ll,hl)llhl + -+ ecpe(er)wy, (am) f(ln, hm)lnhm

ecre®(r)wy, (a1) f(li, ha)lihy + -+ - + €2cn(r)wr, (am) f (Ln, on ) lnhin

ecle( Y, (a1) f(ly, ha)lahy + - —i—ecn(r)wln(am)f(ln h m)lnPm

e2errwy, (a1) f(ln, ha)lihy + - - + e2eprwr, (am) f Loy Bon)lnhun
ec1rwy, (al)f(ll, hl)llhl + -+ ecprwy, (am)f(ln, hm)lnhm
= 6[017’("-}11 (al)f(lla hl)llhl + -+ eprwy, (am)f(ln7 hm)lnhm]
= (R M)y =0,

I+ 1
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$2((1 — e)R* M)ips

e)
= (I=e)a((l = e)r)wy (we((1 = €)ar)) f(lr, h)lihy + - -
+ (I —e)en((1 = e)r)wr, (wg((1 =€) (L = €)am)) f(ln, hm)lnhim
= (1 — 6)61 (1 — 6)7")(,011((1 — 6)(11)f(l1, hl)llhl
+ “+ (1 —e)en(l —e)rw, (1 —e)am) f(ln, hm)lnhm

(1 —e)[errwy, (a1) f(li, hi)lihy + -+ - + eprwy, (am) f (L, Bl

(1—e)p(R+ M) =0.

Because eR and (1 — e)R are strongly CM-reflexive subrings of R, we conclude that
P1((eR) * M)p1 = 0,¢2(((1 — e)R) * M)po = 0. Therefore, we have

Y(R*M)p= v1((eR)* M)p1 + 2(((1 — e)R) * M)
= ep(Rx M)+ (1—e)p(R+M)p=0.

Therefore, R is strongly C'M-reflexive, which concludes the proof. ]

Proposition 5. Let R be a ring and M is a strictly ordered monoid with a twisting f :
MxM — U(R) and an actionw : M — Aut(R). Assume that R is C M -quasi-Armendariz.
Let e be a nonzero idempotent in R such that wy(e) = e for all g € M. Then, the subring
eRe is strongly C' M -reflexive.

Proof. The proof is a variant of the proof given in Proposition 2.9 [17]. Let ¢ =
cily + coly + - -+ eply, and Y = a1hy + aghe + -+ - + amhy, € (eRe) x M satisfy ¢((eRe)
M)y = 0. Since M is a strictly totally ordered monoid, we can assume that l; < I; and
h; = hj whenever ¢ < j. Since R is C'M-quasi-Armendariz, then so is eRe. Thus, we have
ciwy, (wqg((eRe)aj)) f(li, hj)(lihj) = 0 for all ¢, 5. This implies that c;w;, (wy((eRe)a;)) =0
for all 4, j since R is M-compatible and w is an automorphism. Therefore, by Proposition
2, eRe is strongly C'M-reflexive. O

Corollary 5. [20, Proposition 3.7| Let e € R be an idempotent. If R is a left APP, then
eRe is a left APP-ring.

Corollary 6. [22, Corollary 3.19] Let M be a strictly totally ordered monoid and w : M —
End(R) a monoid homomorphism. Assume that e be an idempotent. If R is left APP,
then eRe is (M,w)-quasi-Armendariz.

Proposition 6. Let M be a strictly totally ordered monoid with twisting f : M x M —
U(R) and action w : M — Aut(R). Assume that e be an idempotent. If R is a left APP,
then eRe is strongly C' M -reflexive.

Proof. By Corollary 5, eRe is a left APP. So, eRe is (M,w)-quasi-Armendariz by
Corollary 6. Thus, the result follows from Proposition 5. O

Let I be an index set and R; be a ring for each ¢ € I. Let M be a strictly ordered
monoid and w’ : M — End(R;) a monoid homomorphism. Then the mapping w : M —
End(I1;c; Ri) is a monoid homomorphism given by wy({ri}icr) = {(w')y(ri)}ier} for all
g e M.

el
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Proposition 7. Let R; be a ring for each i in a finite index set I, and let M be a monoid
with a twisting f : M x M — J;c; U(R;) and an action w' : M — Aut(R;) on each R;.
Suppose that each R; is strongly CM-reflexive. Then, the direct product R = [[,c; R,
equipped with the product action w = [[;c;w’, is strongly C M -reflexive.

Proof. Let R = [];c; Ri be the direct product of rings (R;);cr and R; is is strongly C' M-
reflexive for each ¢ € I. Denote the projection R — R; as II;. Suppose that ¢, € R+ M are
such that ¢(R+ M)y = 0. Set ¢; = [[,; ¢, ¥i = [[; % and ¢; = [, ¢. Then ¢;,¢; € R;* M.
For any u,v € M, assume ¢(u) = (c}')icr, ¥(v) = (a})icr. Now, for any r € R and any
geM,

(R * M) = > P(u)wu(we(rp(v))) f (Um, vn)tmvy
(u,0)eXs(@ycrh) ) ) ) o
= > ¢i)ier (1T W )ulwg(riad)) f (up,, vp)up 07 ier
(u,v)eXs(p,crth) el

(
(& )ier(TT wi) (wg (riad) f (uh,, v )us,vp)ier
(u,0)eXs(P,crth) ' el o
= > (citwy (wy(riaf)) f( @iy Yi)umvy ier
(u,0) X5 (hrcr)) ‘ o
(i (w)wr, (1390 (v))) f (Pis Vi) vy, )ier
(u,v)eXs(9,cr1p)
= (5 il (0)) £ (5 )b er
(u,v)EXs (¢ crtp)
= (2 el ) £ (G vi)ubier
(u7U)EXs(¢i,Cri'l/Ji)
= (pi(Ri = M);)ier-

Since ¢(R x M )1p = 0, we have ¢;(R; x M )1p; = 0.
Now it follows ¢;(u)w! (wy(riti(v))) = 0 for any r € R, any u,v,g € M and any i € I,
since R; is strongly CM-reflexive. Hence, for any u,v € M,

Y (v)wo(wg(ré(u)) = ($i(v)w) Wy (rigi(u))))ier =0

since I is finite. Thus, ¥(v)wy(we(ré(u))) = 0 by the compatibility of w. Therefore,
Y(R * M)¢ = 0. This means that R is strongly C'M-reflexive. O

Theorem 5. Assuming that R is an M-compatible ring and M is a cancellative monoid
with a twisting map f : M x M — U(R) and an action map w : M — Aut(R), and
considering R as a right Ore ring with the classical right quotient ring Q, the R is strongly
CM -reflexive if and only if Q is strongly C M -reflexive.

Proof. It is enough showing necessary. Assume that R is strongly C'M-reflexive. Let
¢ =X" a5l = Eizlvkhk be elements in Q* M satisfying ¢ = 0, where ¢ = E;‘:lﬁjgj
is any nonzero element in @ x M. By Proposition 2.1.16 [23], we may assume that o; =
aiu_l,ﬁj = ij_l and v = cpw™! with regular u,v,w € R. Also, Proposition 2.1.16 [23],
for each j and k, there exist d;,e; € R and regular s,t € R such that uflbj = aljs*1
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and (vs)_lck = eit~ . Suppose ¢ = Xaili, o1 = E}"”:lbjgj, Py = E’J?:ldjgj,d}l =
S _ckhi, Yo = XV _ ephi, € R+ M. Since M is a cancellative monoid by Lemma 1. Thus,
gish1 # gjshy for g; # g;. Then, we have 0 = ppy) = Elf’llEizl(aiu_l)wli (wg(R ckw_l))
Sy hye)(Lihy) = S 50 agwr, (wg(Reg)) f (L, hae) (L) (wr, () w) ™ = 0 = ¢rpatpp(wt) 1.
Therefore, ¢1p21p2 = 0. Since R is strongly C'M-reflexive, then 1opa¢p1 = 0. This implies
that ¢rups1pe = ¢1p15179 = 0 since uflbj = djsfl, then syop1¢1 = 0 and (vs)api1d1 = 0,
so Y111 = 0 since (vs)_lck = e,t~!. Using Proposition 2.1.16 [23| again, for each i,
there exist ¢;,¢; € R * M and regular element ¢q,p € R such that wilbj = ¢jq*1 and
(vg)~ta; = ip~". Let ¢2 = X% ¢;l;, 03 = B b;g;. Then,

qrp161 = B30 g(cpw™wny, (wo(Raju™")) f(hie, 1) (hils) = B4 57 q(cr)wn, (wg(Rag)) %
(wh, (Ww)™ = 0 since 1161 = 0. Thus, for all k,i we have cywy, (wy(Ra;)) = 0, and
it follows that ¢rwepsqys = X, X0 _ wa;wy, (we(Rey)) = 0 since w™'b; = ¢;q~". Then,
P1p3p1w = 0 since R is strongly C M-reflexive, and so 1131 = 0. Therefore, 11p3¢1p =
SE_ ST cion, (wy(Rae)) (b 1) (hidi)p = trpsba(va) = S S ey (wy (Rlj))(pv) =
0, and thus ¥1p3¢2 = 0. Therefore,

Yo = T S (pw ™ wny (Wg(Ragu™)) = i B cpwny (Wg(Rai)) (wpy, (w)w) ™! = 0.

Thus, cxwh, (we(Ra;))(up)~t = 0.There fore,QisstronglyCM—re flexive. [
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