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Abstract. Let R be a ring and M be a monoid with a twisting map f : M ×M → U(R) and
an action map ω : M → Aut(R). The objective of our work is to extend the reflexive properties
of rings by focusing on the crossed product R ∗M over R. In order to achieve this, we introduce
and examine the concept of strongly CM -reflexive. Although a monoid M and any ring R with
an idempotent are not strongly CM -reflexive in general, we prove that R is strongly CM -reflexive
under some additional conditions. Moreover, we prove that if R is a left p.q.-Baer (semiprime,
left APP -ring, respectively), then R is strongly CM -reflexive. Additionally, for a right Ore ring
R with a classical right quotient ring Q, we prove R is strongly CM -reflexive if and only if Q is
strongly CM -reflexive. Finally, we discuss some relevant results on crossed products.
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1. Introduction

Unless otherwise stated, we assume that R is an associative ring with identity and M
is a monoid. The concept of reflexive properties of rings was first studied by Mason [1].
In particular, a right ideal I of R is said to be reflexive if xRy ⊆ I implies yRx ⊆ I for
any x, y ∈ R. This concept is also specialized to the zero ideal of a ring, where a ring R
is said to be reflexive if its zero ideal is reflexive. Moreover, a ring R is called completely
reflexive if xy = 0 implies yx = 0 for any x, y ∈ R. It is worth noting that reduced rings
are completely reflexive, and every completely reflexive ring is semicommutative, as shown
in the literature [1].

Several authors have discussed extensions of reflexive rings, including strongly reflexive
rings, strongly M -reflexive rings, Armendariz rings, reversible rings, and reflexive on skew
monoid rings, in numerous publications (see, for example, [2], [3], [4] and [5]). According to
[6], a ring R is said to be anM -Armendariz ring of crossed product type relative to the given
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twisting f and action ω, or an M -quasi Armendariz ring (or simply a CM -Armendariz ring
or CM -quasi Armendariz ring, respectively), if for any ϕ =

∑n
i=1 aigi, ψ =

∑m
j=1 bjhj ∈

R ∗M such that ϕψ = 0 (resp., ϕ(R ∗M)ψ = 0), it follows that aiωgi(bj) = 0 (resp.,
aiRωgil(bj) = 0) for all i, j and all gi, hj , l ∈M .

The focus of this paper is on investigating strongly CM -reflexive rings, which are a
reflexive-like property defined for the monoid crossed product R ∗M with respect to the
given twisting map f and action map ω. This concept is a generalization of several other
reflexive properties, including reflexive rings, strongly reflexive rings, strongly M -reflexive
rings, and skew monoid rings.

The paper is devoted to presents several results, including, if R is a semiprime, then
R is strongly CM -reflexive for a u.p.-monoid M . Also, if R is a left p.q.-Baer (semiprime,
left APP -ring, respectively), then R is strongly CM -reflexive for a strictly totally ordered
monoid. Additionally, if R is an M -compatible ring and M is a monoid with twisting f
and action ω as above, then for any reduced ideal I of R such that R/I is strongly CM -
reflexive, then R is strongly CM -reflexive. Moreover, for a right Ore ring R with classical
right quotient ring Q, we show that R is strongly CM -reflexive if and only if Q is strongly
CM -reflexive. Finally, we discuss example and some results in the subject.

To begin with, we introduce some notions and notations relevant to this paper. Let ω :
M → Aut(R) be a monoid homomorphism. For h ∈M , we denote by ωh the automorphism
ω(h). The crossed product R ∗M over R is defined as the set of all finite sums R ∗M =
{xhh|xh ∈ R, h ∈ M}, where addition is defined component-wise and multiplication is
defined using the distributive law and two rules known as action and twisting. Specifically,
for l, h ∈ M and x ∈ R, we have hx = ωh(x)h and l h = f(l, h)l h, where f : M ×M →
U(R) is a twisted function and U(R) denotes the set of units of R. Here, the twisted
function f and the action ω of M on R satisfy the following conditions: ωl(ωh(x)) =
f(l, h)ωl(ωh(x)f(l, h)

−1), ωl(f(h, k))f(l, hk) = f(l, h)f(l h, k), f(1, l) = f(l, 1) = 1 for
all l, h, k ∈ M . It is worth noting that the monoid crossed product is a general ring
construction.

Given a monoid crossed product R ∗M with twisting f and action ω, if the twisting f
is trivial, (i.e., f(a, b) = 1) for all a, b ∈M , then R ∗M is the skew monoid ring R ∗M . If
both the twisting f and the action ω are trivial, then R ∗M is a monoid ring denoted by
R[M ] (see [7] and [8]). A monoid M is said to be a u.p.-monoid (unique product monoid)
if, for any two nonempty finite subsets X and Y of M , there exists a unique element h ∈M
that can be written in the form h = uv with u ∈ X and v ∈ Y . An ordered monoid (M,⪯)
is said to be strictly ordered if the following condition holds: whenever g, k, h ∈ M with
g ≺ k, it follows that gh ≺ kh and hg ≺ hk.

2. Generalized Reflexive rings of crossed product type

In this section, we will discuss the concept of strongly reflexive properties in the context
of a monoid of crossed product R∗M , where R is a ring and M is a monoid with a twisting
map f :M ×M → U(R) and an action map ω :M → Aut(R).
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Definition 1. A ring R is said to be strongly M -reflexive of crossed product type with
respect to the given twisting map f and action map ω (or simply, strongly CM -reflexive)
if for any ϕ = c1l1+ c2l2+ · · ·+ cnln and ψ = a1h1+a2h2+ · · ·+amhm ∈ R ∗M satisfying
that ϕ(R ∗M)ψ = 0 implies that ciωli(ωg(Raj)) = 0, then ψ(R ∗M)ϕ = 0 for each i, j and
for all g, li, hj ∈M.

Remark 1. (1) If a ring R is strongly CM -reflexive with a trivial twisting map f , then
we refer to the monoid M as a skew strongly M -reflexive ring. If R is strongly CM -
reflexive with a trivial action map ω, then we call R a strongly TM -reflexive (i.e., twisted
strongly M -reflexive) ring. Note that when both f and ω are trivial, R is simply strongly
M -reflexive. In particular, if M = (N ∪ {0},+) and both f and ω are trivial, then R is
strongly CM -reflexive if and only if R is strongly reflexive.

(2) If R is a strongly CM -reflexive ring with a trivial twisting map f , then any M -
invariant subring S (i.e., ωg(S) ⊆ S for all g ∈M) of R is strongly CM -reflexive.

An ideal I of a ring R is considered to be right s-unital if there exists an element
e ∈ I for every t ∈ I such that te = t. A ring is referred to as a left APP -ring if the left
annihilator lR(Rt) is right s-unital as an ideal of R for any element t ∈ R.

In their work [9], Nasr-Isfahani and Moussavi introduced a ring R with an endomor-
phism ω and defined it as ω-weakly rigid if the condition cRt = 0 holds if and only if
c ω(Rt) = 0 for any c, t ∈ R. It is worth noting that the category of ω-rigid rings and
ω-compatible rings is a limited one, and it is evident that every ω-compatible ring falls un-
der the category of ω-weakly rigid rings. However, there exist several classes of ω-weakly
rigid rings that do not belong to the category of ω-compatible rings. By [10], R is α-
rigid if and only if R is α-compatible and reduced. According to [9], any prime ring that
has an automorphism ω is considered to be ω-weakly rigid. If a monoid homomorphism
ω : M → Aut(R) is weakly-rigid (compatible), it means that the ring R is also weakly
rigid (compatible) with respect to each g ∈M under the automorphism ωg.

Lemma 1. [11, Lemma 1.1]. If M is a u.p.-monoid, then M is cancellative (i.e., for
ℓ, h, λ ∈M, if ℓλ = hλ or λℓ = λh, then ℓ = h).

Lemma 2. Suppose R is a ring and M is a u.p.-monoid with a twisting map f :M×M →
U(R) and an action map ω :M → Aut(R). If R is an M -rigid ring, then the monoid ring
R ∗M is reduced.

Proof. Assume that ϕ = c1h1 + · · · + cnhn ∈ R ∗M satisfies ϕ2 = 0. According to
Proposition 2.2 [6], R is CM -Armendariz, this implies ciωhi(bj)f(li, hj))(lihj) = 0 for all
i and j, by Lemma 1, M is a cancellative so ciωhi(bj) = 0 . As R is an M -rigid, then R is
a reduced, we can conclude that ci = 0 for all 1 ≤ i ≤ n. Consequently, ϕ = 0, and hence
R ∗M is a reduced.

Theorem 1. Let R be a semiprime ring and M be a u.p.-monoid with a twisting map
f : M ×M → U(R) and an action map ω : M → Aut(R). If R is an M -compatible ring,
then R is strongly CM -reflexive.
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Proof. The evidence has been modified from the Theorem 1.1 of [12]. Let ϕ = c1l1 +
c2l2 + · · ·+ cnln, ψ = a1h1 + a2h2 + · · ·+ amhm ∈ R ∗M satisfy ϕ(R ∗M)ψ = 0. Then for
any r ∈ R and g ∈M, we have

(c1l1 + c2l2 + · · ·+ cnln)gr(a1h1 + a2h2 + · · ·+ amhm) = 0. (2.1)

We will employ mathematical induction on n to demonstrate that ciRωli(ωg(aj)) = 0 for all
1 ≤ i ≤ n, 1 ≤ j ≤ m, and for any g ∈M . This can be achieved by utilizing the fact thatM
is a compatible monoid. If we take n = 1, then we have (c1l1)gr(a1h1+a2h2+· · ·+amhm) =
0. Therefore, for each 1 ≤ j ≤ m, we have c1Rωl1(ωg(aj))f(li, hj))(lihj) = 0. By Lemma
1, M is a cancellative, this means l1hi ̸= l1hj for any i and j with 1 ≤ i ̸= j ≤ m.
Thus, c1Rωl1(ωg(aj)) = 0. For the case where n ≥ 2, we can use the assumption that
M is a uniquely presented monoid to find s and t with 1 ≤ s ≤ n and 1 ≤ t ≤ m such
that lsght is uniquely represented by considering two subsets K = {l1g, l2g, . . . , lng} and
H = {h1, h2, . . . , hm} of the monoid M . Without loss of generality, we may assume that
s = 1 and t = 1. From Eq. (2.1), we can deduce that c1ωl1(ωg(Ra1))f(l1, h1)(l1h1) = 0,
which implies that c1Rωl1(ωg(a1)) = 0. Since ωg and ωl1 are automorphisms of R, we have
c1Rωl1(ωg(a1)) = 0. As a result, for every z ∈ R, we have c1Rωl1(ωg(a1za1))f(l1, h1) = 0,
which implies that 0 = (c1l1 + c2l2 + · · ·+ cnln)gra1z(gra1z(a1h1 + a2h2 + · · ·+ amhm) =
(c2l2 + · · ·+ cnln)gr(a1za1h1 + a1za2h2 + · · ·+ a1zamhm).

By applying the induction hypothesis, it follows that ciωli(ωg(ra1zaj)) = 0 for all
2 ≤ i ≤ n and 1 ≤ j ≤ m. Thus, we have ciRωli(ωg(a1))Rωli(ωg(a1)) = 0, which
implies that ciRωli(ωg(a1)) = 0 for all 2 ≤ i ≤ n, as R is a semiprime ring. Therefore,
we have ciRωli(ωg(a1)) = 0 for all 1 ≤ i ≤ n. As a result, the Eq. (2.1) becomes
(c1l1 + c2l2 + · · · + cnln)gr(a2h2 + · · · + amhm) = 0. We can repeat this process to show
that ciωli(ωg(raj)) = 0 for all g ∈ M and all i, j. This shows that ciRωli(ωg(aj)) = 0.
Consequently, we can see that ajRωhj (ωg(ci)) = 0 for all g ∈M , 1 ≤ j ≤ m, and 1 ≤ i ≤ n.
Therefore, R is strongly CM -reflexive.

The following example demonstrates the existence of a ring R over a field F that is not
strongly CM -reflexive.

Example 1. Let M be a monoid with at least two elements, and let S = M2(F ) be the
matrix ring over a field F with a twisting map f :M ×M → U(R), then S is not strongly
CM -reflexive.

Solution. Take e ̸= h ∈M, we define ω :M → Aut(S) by

ωh

((
a d
0 c

))
=

(
a −d
0 c

)
.

If the twisting map f is trivial (i.e., f(x, y) = 1 for all x, y ∈ M), then the ring S is not
strongly CM -reflexive. To see this, consider ϕ = E12e+E11h and ψ = (E11+E12)h ∈ S∗M .
For φ = (E11 + E22)h ∈ S ∗M , we can easily verify that ϕφψ = 0. However, we have
ψφϕ ̸= 0, which implies that S is not strongly CM -reflexive.
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A ring R is categorized as a right PP -ring or left PP -ring if the right or left annihilator
of an element in R, respectively, is generated by an idempotent. A (quasi-) Baer ring is one
where the right annihilator of every nonempty subset or every right ideal of R is generated
by an idempotent. Principally quasi-Baer rings, introduced by Birkenmeier et al. [13],
extend the concept of quasi-Baer rings. A ring R is referred to as left principally quasi-
Baer or simply left p.q.-Baer if the left annihilator of a principal left ideal in R is generated
by an idempotent. It is important to note that biregular rings and quasi-Baer rings are
examples of left p.q.-Baer rings. For more information and examples of left p.q.-Baer rings,
see Birkenmeier et al. ([13], [14]) and Liu [15]. Since right PP -rings and left p.q.-Baer
rings both fall under the category of left APP [16], the following results can be deduced.

Theorem 2. Suppose R is a reduced ring, M is a strictly totally ordered monoid with a
twisting map f : M ×M → U(R) and an action map ω : M → Aut(R) that is compatible
with the multiplication in M . If R is a left p.q.-Baer ring, then R is strongly CM -reflexive.

Proof. The proof is a variant of the proof given in Proposition 2.9 [17]. Let ϕ =
c1l1+c2l2+ · · ·+cnln, ψ = a1h1+a2h2+ · · ·+amhm ∈ R∗M satisfy ϕ(R∗M)ψ = 0. Since
M is a strictly totally ordered monoid, we can assume that li ⪯ lj and hi ⪯ hj whenever
i < j. Now, we claim ciωli(ωg(Raj)) = 0 for all i, j. Let r be an element of R. Then, we
have ϕ(re)ψ = 0 since ϕ(R ∗M)ψ = 0. Thus, we have

0 = ϕ(re)ψ = c1rf(l1, e)a1f(l1, h1)l1h1 + · · ·+ [cnrf(ln, e)am−2f(ln, hm−2)lnhm−2

+ cn−1rf(ln−1, e)am−1f(ln−1, hm−1)ln−1hm−1 + cn−2rf(ln−2, e)lmf(ln−2, hm)ln−2hm]
+ [cnrf(ln, e)am−1f(ln, hm−1)lnhm−1 + an−1rf(ln−1, e)amf(ln−1, hm)ln−1hm]
+ cnrf(ln, e)amf(ln, hm)lnhm. (2.2)

It follows that cnrf(ln, e)amf(ln, hm) = 0 since lnhm is of highest order in the lih
′
js.

Hence cnrf(ln, e)am = 0. This shows that cn ∈ ℓR(Rf(ln, e)am) = ℓR(Ram). Hence,
ℓR(Ram) = Rem for some idempotent em by hypothesis. Replacing r by rem in Eq. (2.2)
we obtain 0 = c1remf(l1, e)a1f(l1, h1)l1h1 + · · ·+ [cnremf(ln, e)am−2f(ln, hm−2)lnhm−2

+cn−1remf(ln−1, e)am−1f(ln−1, hm−1)ln−1hm−1]+cnremf(ln, e)am−1f(ln, hm−1)lnhm−1(2.3)
So cnremf(ln, e)am−1f(ln, hm−1) = 0, because lnhm−1 is of highest order in {lihj |1 ≤

i ≤ n, 1 ≤ j ≤ m} {ln−1hm, lnhm}. Hence cnremf(ln, e)am−1 = 0. Since Rem is an ideal
of R and em ∈ Rem, we have emr ∈ Rem and thus emr = emrem for all r ∈ R. On the
other hand, we also have cn = cnem since cn ∈ ℓR(Ram) = Rem. Hence cnrf(ln, e)am−1 =
cnemrf(ln, e)am−1 = cnemremf(ln, e)am−1 = cnremf(ln, e)am−1 = 0. This implies that
cn ∈ ℓR(Ram + Ram−1), and hence ℓR(Ram + Ram−1) = Rem−1 for some idempotent
em−1 ∈ R since R is a left p.q.-Baer ring. Replacing r by rem−1 in equation (2.3) we
obtain cnrem−1f(ln, e)am−2f(ln, hm−2) = 0 in the same way as above. This shows that
cn ∈ ℓR(Ram+Ram−1 +Ram−2). Continuing this process we obtain cnRat = 0 for all t =
1, 2, . . . ,m. So, we have (c1l1+c2l2+ · · ·+cn−1ln−1)(R∗M)(a1h1+a2h2+ · · ·+amhm) = 0.
Using induction on m+n, we obtain ciωli(ωg(Raj)) = 0 for all i, j. So it is easy to see that
ajωhj (ωg(Rci)) = 0 by a reduced ness. Therefore, R is strongly CM -reflexive.

If N is an ideal of the monoid M with twisting f : M × M → U(R) and action
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ω : M → Aut(R), then the restrictions f |N×N : N ×N → U(R) and ω|N : N → Aut(R)
are induced twisting and action.

Proposition 1. Let R be an M -compatible ring and M be a commutative, cancellative
monoid and N be an ideal of M with a center element λ. If R is strongly CN -reflexive,
then R is strongly CM -reflexive.

Proof. Let ϕ =
∑n

i=1 cili, ψ =
∑m

j=1 ajhj ∈ R ∗M satisfying ϕφψ = 0 for any φ =∑v
r=1 ℓrgr ∈ R ∗M. Since λ ∈ N is a center element, this implies that

λl1, λl2, . . . , λln, λg1λ, λg2λ, . . . , λgvλ, h1λ, h2λ, . . . , hmλ ∈ N,

such that λli ̸= λlj , λgiλ ̸= λgjλ and hiλ ̸= hjλ for all i ̸= j. Then, we have

ϕ1φ1ψ1 =

n∑
i=1

m∑
j=1

v∑
r=1

(ciωli(ℓrωλ(aj)))f(liλ, hj)(λ
2ligrhjλ

2) = 0.

Since φ, ϕ and ψ are nonzero in R∗M, so ϕ1 and ψ1 are nonzero elements in (R∗M)[N ].
Moreover, from ϕφψ = 0 and ω compatible automorphism, λ a center element of N one
can easily obtain that ϕ1φ1ψ1 = 0 for any φ1 ∈ (R ∗M)[N ]. Since R is strongly CN -
reflexive. Then, ciωli(ωλ(r aj))f(li, hj)(lihj) = 0. So ciωli(ωλ(Raj)) = 0. By a compatible
automorphism, we have ajωhj (ωλ(Rci)) = 0. Therefore, R is strongly CM -reflexive.

Corollary 1. [4, Proposition 3.1] Let M be a cancellative monoid and N an ideal of M.
If R is strongly N -reflexive, then R is strongly M -reflexive.

Suppose I is an ideal of R and ω :M → Aut(R) is a monoid homomorphism. We define
ω̄ : M → Aut(R/I) as ω̄g(d + I) = ωg(d) + I, where d ∈ R and g ∈ M . It can be shown
that ω̄ is a monoid homomorphism. Additionally, the twisting map f : M ×M → U(R)
induces a twisting map f̄ :M×M → U(R/I) given by f̄(x, y) = f(x, y)+I. Furthermore,
for every ϕ =

∑n
i=1 cili ∈ R ∗M , we denote ϕ̄ =

∑n
i=1 c̄ili ∈ (R/I) ∗M , where c̄i = ci + I

for 1 ≤ i ≤ n. It can be easily verified that the mapping θ : R×M → (R/I)×M defined
as θ(ϕ) = ϕ̄ is a ring homomorphism. In a proof presented [4], it was shown that when I
is a reduced ideal of R and R/I is strongly M -reflexive, then R is strongly M -reflexive.
Similarly, we can establish the following result.

Theorem 3. Let M be a u.p.-monoid and I an ideal of R with twisting f :M×M → U(R)
and action ω : M → Aut(R). If I is a reduced and R/I is strongly CM -reflexive, then R
is strongly CM -reflexive.

Proof. Let ϕ = Σni=1cili, ψ = Σmj=1ajhj ∈ R ∗M satisfying ϕ(R ∗M)ψ = 0. We will
show that ciωli(ωg(Raj)) = 0 for any i and j.
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Note that in (R/I) ∗M, ϕ̄ = Σni=1c̄ili, ψ̄ = Σmj=1ājhj ∈ (R/I) ∗M, we have

0̄ = ϕ̄((R/I) ∗M)ψ̄
= (c̄1l1 + c̄2l2 + · · ·+ c̄nln)r̄gωli(ωg(ā1h1 + ā2h2 + · · ·+ āmhm))f(li, hj)lihj
= (c1 + I)r̄gω̄l1(ωg(a1 + I))f(l1, h1)l1h1 + (c2 + I)r̄gω̄l2(ωg(a2 + I))f(l2, h2)l2h2
+ · · ·+ (cn + I)r̄gω̄ln(ωg(am + I))f(ln, hm)lnhm.

Thus we have ciωli(ωg(Raj))f(li, hj)(lihj) ⊆ I for all i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ m
since R/I is strongly CM -reflexive.

By induction on both n and m, considering every g in M , and for 1 ≤ i ≤ n and
1 ≤ j ≤ m. If we take n = 1. Then (c1l1)(R ∗M)(a1h1 + a2h2 + · · · + amhm) = 0. Thus,
(c1l1)(rg)(a1h1) + (c1l1)rg(a2h2) + · · ·+ (c1l1)rg(amhm) = c1ωl1(ωg(ra1))f(l1, h1)(l1h1) +
c1ωl1(ωg(ra2))f(l1, h2)(l1h2) + · · ·+ c1ωl1(ωg(ram))f(l1, hm)(l1hm) = 0 for any r ∈ R, g ∈
M. By Lemma 1, M is cancellative we have l1hi ̸= l1hj for any i and j with 1 ≤ i ̸= j ≤ m.
Then c1ωl1(ωg(raj))f(l1, hj)(l1hj) = 0, j = 1, 2, . . . ,m. Thus, c1ωl1(ωg(Raj)) = 0 for any
j. If m = 1, then proof is similar.

Now suppose that n ≥ 2 and m ≥ 2. Since M is a u.p.-monoid, there exist i, j
with 1 ≤ i ≤ n and 1 ≤ j ≤ m such that lighj is uniquely presented by consider-
ing two subsets K = {l1g, l2g, . . . , lng} and H = {h1, h2, . . . , hm} of the monoid M .
Without loss of generality, we may assume that i = 1 and j = 1. We can deduce
that c1ωl1(ωg(Ra1))f(l1g, h1)l1(gh1) = 0, which implies that c1ωl1(ωg(Ra1)) = 0. Since
ωg and ωl1 are automorphisms of R, we have c1ωl1(Ra1) = 0. Let b = ckraq, where
r ∈ R, 1 ≤ k ≤ n, 1 ≤ q ≤ m. Then b ∈ I. Since (a1bc1)

2 = 0 and I is reduced, we have
a1bc1 = 0. Thus,
(a1bc2l2 + a1bc3l3 + · · ·+ a1bcnln)(R ∗M)(a1h1 + a2h2 + · · ·+ amhm)
= (a1bλ)(c1l1+ c2l2+ · · ·+ cnln)(R ∗M)(a1h1+ a2h2+ · · ·+ amhm) = 0. By induction, we
have a1bciωl1(ωg(Raj)) = 0 for 2 ≤ i ≤ n and 1 ≤ j ≤ m. Thus, (a1bciR)2 = 0. Since I is
reduced and ω is automorphism, it follows that a1bciωli(R) = 0. Note that bciωli(Ra1) ⊆ I.
Thus bciωli(Ra1) = 0 for any i. Now we have

(bc1l1+ bc2l2+ · · ·+ bcnln)(R ∗M)(a1h1+a2h2+ · · ·+amhm) = (bλ)(c1l1+ c2l2+ · · ·+
cnln)(R ∗M)(a1h1 + a2h2 + · · ·+ amhm) = 0.

By applying the induction hypothesis, it follows that bciωli(ωg(Raj)) = 0 for all 1 ≤
i ≤ n and 2 ≤ j ≤ m. Thus, we have ciωli(ωg(raj)) = 0 for all i, j and all r ∈ R.
Particularly, we have bckωlk(ωg(raq)) = 0 and so b2 = 0. Thus b = 0. This shows that
ckωlk(ωg(Raq)) = 0 for any 1 ≤ k ≤ n and 1 ≤ q ≤ m. Consequently, we can see that
ajωhj (ωg(Rci)) = 0 for all g ∈ M , 1 ≤ j ≤ m, and 1 ≤ i ≤ n. Therefore, R is strongly
CM -reflexive.

The notion of complete M -compatibility is important in the following result [18].

Corollary 2. Assuming R is a ring that is completely M -compatible, where M is a monoid
with twisting f :M ×M → U(R) and action ω :M → Aut(R), and I is an ideal of R such
that I is reduced and R/I is CM -quasi-Armendariz, then R is strongly CM -reflexive.

Proof. As CM -quasi-Armendariz rings are strongly CM -reflexive, the result can be
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obtained from Theorem 3.

Corollary 3. Suppose that R is a completely M -compatible ring, where M is a monoid
with twisting f : M ×M → U(R) and action ω : M → Aut(R). Let I be an ideal of R
such that I is reduced and R/I is CM -Armendariz. Then, R is strongly CM -reflexive.

Proof. Since CM -Armendariz is a CM -quasi-Armendariz, the result can be derived
from Corollary 2.

Proposition 2. Assuming R is a ring that is both M -compatible and CM -quasi-Armendariz,
where M is a monoid with twisting f :M ×M → U(R) and action ω :M → Aut(R), then
R is strongly CM -reflexive if and only if R ∗M is strongly CM -reflexive.

Proof. To prove a necessary condition is sufficient. Let ϕ = Σni=1cili, ψ = Σmj=1ajhj ∈
R ∗M satisfying ϕ(R ∗M)ψ = 0. Since R is CM -quasi-Armendariz, we have
ciωli(ωg(Raj))f(li, hj)(lihj) = 0 for all i, j. This implies that ciωli(ωg(Raj)) = 0 for all i, j
since R is M -compatible. Because R is a reflexive ring, ajRci = 0. Then, ajωhj (ωg(Rci)) =
0 for all i, j, and hence for any r ∈ R, g ∈M, we have

ψ(R ∗M)ϕ = Σmj=1Σ
n
i=1ajωhj (ωg(r ci))f(hj , li)(hjli) = 0.

Thus, ajωhj (ωg(r ci)) = 0 since R is M -compatible and CM -quasi-Armendariz. Therefore,
R is strongly CM -reflexive.

Every left APP -ring is quasi-Armendariz, but not conversely [19, 20].

Proposition 3. Let M be a strictly totally ordered monoid with twisting f : M ×M →
U(R) and action ω : M → Aut(R). Let R be an M -compatible left APP -ring. Then R is
strongly CM -reflexive if and only if R ∗M is strongly CM -reflexive.

Proof. If R is a left APP -ring, then it is M -quasi-Armendariz [21]. Therefore, the
result follows from Proposition 2.

Corollary 4. Let R be a ring, M be a monoid with twisting f : M ×M → U(R) and
action ω :M → Aut(R). If R is a reduced, then R is strongly CM -reflexive.

Proof. Since R is reduced, it is quasi-Armendariz. Therefore, the result can be derived
from Proposition 2.

3. Some results on ring extensions of Crossed product type

Let ∆ be a multiplicative monoid consisting of central regular elements of R. Then,
the set ∆−1R := {u−1c|u ∈ ∆, c ∈ R} forms a ring. Suppose ω : M → Aut(R) is a
monoid homomorphism such that ωh(∆) ⊆ ∆ for every h ∈M . Then, ω can be extended
to ω̄ : M → Aut(∆−1R) defined by ω̄h(u−1c) = ωh(u)

−1ωh(c). If f : M ×M → U(R) is
a twisted function, then it can be viewed as a twisted function from M ×M to U(∆−1R)
by noting that U(R) ⊆ U(∆−1R).
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Theorem 4. Assuming R is an M -compatible ring, where M is a cancellative monoid with
twisting f :M×M → U(R) and action ω :M → Aut(R), then R is strongly CM -reflexive
if and only if ∆−1R is strongly CM -reflexive, where ∆ is the multiplicative subset of R
consisting of all elements that are not zero divisors modulo M .

Proof. It is enough showing necessary. Assume that R is strongly CM -reflexive. Let
ϕ = Σni=1u

−1cili, ψ = Σmj=1v
−1ajhj be elements in ∆−1R∗M satisfying ϕφψ = 0, where φ =

Σqk=1λ
−1bkℓk is any nonzero element in ∆−1R∗M. Then, we have α = (unun−1 . . . u1)ϕ, θ =

(λqλq−1 . . . λ1)φ, β = (vmvm−1 . . . v1)ψ are in R ∗M. Since R is strongly CM -reflexive and
αθβ = 0 we have

(unun−1 . . . u1u
−1
i ci)ωli(ωg(b(vmvm−1 . . . v1v

−1
j )aj))f(li, hj)(lihj)(vjui)

−1 = 0

for all i, j and b ∈ R. It follows that ciωli(ωg(Raj))f(li, hj)(lihj) = 0 for any g ∈ M,
because ∆ is a multiplicative monoid consisting of central regular elements of R and all
ui, vj , λk ∈ ∆. Hence, (u−1

i ci)ωli(ωg(Rv
−1
j )aj)) = ciωli(ωg(Raj))(ωli(vj)ui)

−1 = 0 for all
i, j and ω is automorphism. Therefore, ∆−1R is strongly CM -reflexive.

The following statement describes how the strongly CM -reflexive property of a ring R
is related to the property of its subrings, which are created by a central idempotent.

Proposition 4. The following conditions are equivalent for a ring R, a monoid M with
twisting f : M ×M → U(R), an action ω : M → Aut(R), and a central idempotent e of
R such that ωg(e) = e :
(1) R is strongly CM -reflexive.
(2) eR and (1− e)R are strongly CM -reflexive.

Proof. (1) ⇒ (2). It is easy.
(2) ⇒ (1). Assume that both eR and (1 − e)R are strongly CM -reflexive. Let ϕ =
Σni=1cili, ψ = Σmj=1ajhj ∈ R ∗M satisfying ϕ(R ∗M)ψ = 0. Let

ϕ1 = Σni=1e cili, ψ1 = Σmj=1e ajhj , ϕ2 = Σni=1(1− e)cili, ψ2 = Σmj=1(1− e)ajhj .

clear that ϕ1, ψ1 ∈ (eR) ∗M and ϕ2, ψ2 ∈ ((1− e)R) ∗M. Since e is a central idempotent
of R such that ωg(e) = e for each g ∈M and for any r ∈ R we have

ϕ1((eR) ∗M)ψ1

= ec1(er)ωl1(ωg(ea1))f(l1, h1)l1h1 + · · ·+ ecn(er)ωln(ωg(eam))f(ln, hm)lnhm
= ec1(er)ωl1(ωg(e)ωl1(ωg(a1))f(l1, h1)l1h1 + · · ·
+ ecn(er)ωln(ωg(e))ωln(ωg(am))f(ln, hm)lnhm
= ec1e(er)ωl1(a1)f(l1, h1)l1h1 + · · ·+ ecne(er)ωln(am)f(ln, hm)lnhm
= ec1e

2(r)ωl1(a1)f(l1, h1)l1h1 + · · ·+ e2cn(r)ωln(am)f(ln, hm)lnhm
= ec1e(r)ωl1(a1)f(l1, h1)l1h1 + · · ·+ ecn(r)ωln(am)f(ln, hm)lnhm
= e2c1rωl1(a1)f(l1, h1)l1h1 + · · ·+ e2cnrωln(am)f(ln, hm)lnhm
= ec1rωl1(a1)f(l1, h1)l1h1 + · · ·+ ecnrωln(am)f(ln, hm)lnhm
= e[c1rωl1(a1)f(l1, h1)l1h1 + · · ·+ cnrωln(am)f(ln, hm)lnhm]
= eϕ(R ∗M)ψ = 0,
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ϕ2((1− e)R ∗M)ψ2

= (1− e)c1((1− e)r)ωl1(ωg((1− e)a1))f(l1, h1)l1h1 + · · ·
+ (1− e)cn((1− e)r)ωln(ωg((1− e)(1− e)am))f(ln, hm)lnhm
= (1− e)c1((1− e)r)ωl1((1− e)a1)f(l1, h1)l1h1
+ · · ·+ (1− e)cn(1− e)rωln((1− e)am)f(ln, hm)lnhm
= (1− e)[c1rωl1(a1)f(l1, h1)l1h1 + · · ·+ cnrωln(am)f(ln, hm)lnhm]
= (1− e)ϕ(R ∗M)ψ = 0.

Because eR and (1 − e)R are strongly CM -reflexive subrings of R, we conclude that
ψ1((eR) ∗M)ϕ1 = 0, ψ2(((1− e)R) ∗M)ϕ2 = 0. Therefore, we have

ψ(R ∗M)ϕ = ψ1((eR) ∗M)ϕ1 + ψ2(((1− e)R) ∗M)ϕ2
= eψ(R ∗M)ϕ+ (1− e)ψ(R ∗M)ϕ = 0.

Therefore, R is strongly CM -reflexive, which concludes the proof.

Proposition 5. Let R be a ring and M is a strictly ordered monoid with a twisting f :
M×M → U(R) and an action ω :M → Aut(R). Assume that R is CM -quasi-Armendariz.
Let e be a nonzero idempotent in R such that ωg(e) = e for all g ∈ M . Then, the subring
eRe is strongly CM -reflexive.

Proof. The proof is a variant of the proof given in Proposition 2.9 [17]. Let ϕ =
c1l1 + c2l2 + · · ·+ cnln and ψ = a1h1 + a2h2 + · · ·+ amhm ∈ (eRe) ∗M satisfy ϕ((eRe) ∗
M)ψ = 0. Since M is a strictly totally ordered monoid, we can assume that li ⪯ lj and
hi ⪯ hj whenever i < j. Since R is CM -quasi-Armendariz, then so is eRe. Thus, we have
ciωli(ωg((eRe)aj))f(li, hj)(lihj) = 0 for all i, j. This implies that ciωli(ωg((eRe)aj)) = 0
for all i, j since R is M -compatible and ω is an automorphism. Therefore, by Proposition
2, eRe is strongly CM -reflexive.

Corollary 5. [20, Proposition 3.7] Let e ∈ R be an idempotent. If R is a left APP , then
eRe is a left APP -ring.

Corollary 6. [22, Corollary 3.19] Let M be a strictly totally ordered monoid and ω :M →
End(R) a monoid homomorphism. Assume that e be an idempotent. If R is left APP ,
then eRe is (M,ω)-quasi-Armendariz.

Proposition 6. Let M be a strictly totally ordered monoid with twisting f : M ×M →
U(R) and action ω : M → Aut(R). Assume that e be an idempotent. If R is a left APP ,
then eRe is strongly CM -reflexive.

Proof. By Corollary 5, eRe is a left APP . So, eRe is (M,ω)-quasi-Armendariz by
Corollary 6. Thus, the result follows from Proposition 5.

Let I be an index set and Ri be a ring for each i ∈ I. Let M be a strictly ordered
monoid and ωi : M → End(Ri) a monoid homomorphism. Then the mapping ω : M →
End(

∏
i∈I Ri) is a monoid homomorphism given by ωg({ri}i∈I) = {(ωi)g(ri)}i∈I} for all

g ∈M.
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Proposition 7. Let Ri be a ring for each i in a finite index set I, and let M be a monoid
with a twisting f : M ×M →

⋃
i∈I U(Ri) and an action ωi : M → Aut(Ri) on each Ri.

Suppose that each Ri is strongly CM -reflexive. Then, the direct product R =
∏
i∈I Ri,

equipped with the product action ω =
∏
i∈I ω

i, is strongly CM -reflexive.

Proof. Let R =
∏
i∈I Ri be the direct product of rings (Ri)i∈I and Ri is is strongly CM -

reflexive for each i ∈ I. Denote the projection R→ Ri as Πi. Suppose that ϕ, ψ ∈ R∗M are
such that ϕ(R ∗M)ψ = 0. Set ϕi =

∏
i ϕ, ψi =

∏
i ψ and φi =

∏
i φ. Then ϕi, ψi ∈ Ri ∗M.

For any u, v ∈ M, assume ϕ(u) = (cui )i∈I , ψ(v) = (avi )i∈I . Now, for any r ∈ R and any
g ∈M,

ϕ(R ∗M)ψ =
∑

(u,v)∈Xs(ϕ,crψ)

ϕ(u)ωu(ωg(rψ(v)))f(um, vn)umvn

=
∑

(u,v)∈Xs(ϕ,crψ)

(cui )i∈I((
∏
i∈I

ωi)u(ωg(ria
v
i ))f(u

i
m, v

i
n)u

i
mv

i
n)i∈I

=
∑

(u,v)∈Xs(ϕ,crψ)

(cui )i∈I(
∏
i∈I

ωiu)(ωg(ria
v
i )f(u

i
m, v

i
n)u

i
mv

i
n)i∈I

=
∑

(u,v)∈Xs(ϕ,crψ)

(cui ω
i
u(ωg(ria

v
i ))f(ϕi, ψi)u

i
mv

i
n)i∈I

=
∑

(u,v)∈Xs(ϕ,crψ)

(ϕi(u)ω
i
u(riψi(v)))f(ϕi, ψi)u

i
mv

i
n)i∈I

=
( ∑

(u,v)∈Xs(ϕ,crψ)

ϕi(u)ω
i
u(ωg(riψi(v))

)
f(ϕi, ψi)u

i
mv

i
n)i∈I

=
( ∑

(u,v)∈Xs(ϕi,criψi)

ϕi(u)ω
i
u(ωg(riψi(v)))

)
f(ϕi, ψi)u

i
mv

i
n)i∈I

= (ϕi(Ri ∗M)ψi)i∈I .

Since ϕ(R ∗M)ψ = 0, we have ϕi(Ri ∗M)ψi = 0.
Now it follows ϕi(u)ωiu(ωg(riψi(v))) = 0 for any r ∈ R, any u, v, g ∈M and any i ∈ I,

since Ri is strongly CM -reflexive. Hence, for any u, v ∈M,

ψ(v)ωv(ωg(rϕ(u))) = (ψi(v)ω
i
v(ωg(riϕi(u))))i∈I = 0

since I is finite. Thus, ψ(v)ωv(ωg(rϕ(u))) = 0 by the compatibility of ω. Therefore,
ψ(R ∗M)ϕ = 0. This means that R is strongly CM -reflexive.

Theorem 5. Assuming that R is an M -compatible ring and M is a cancellative monoid
with a twisting map f : M × M → U(R) and an action map ω : M → Aut(R), and
considering R as a right Ore ring with the classical right quotient ring Q, the R is strongly
CM -reflexive if and only if Q is strongly CM -reflexive.

Proof. It is enough showing necessary. Assume that R is strongly CM -reflexive. Let
ϕ = Σmi=1αili, ψ = Σpk=1γkhk be elements in Q∗M satisfying ϕφψ = 0, where φ = Σnj=1βjgj
is any nonzero element in Q ∗M. By Proposition 2.1.16 [23], we may assume that αi =
aiu

−1, βj = bjv
−1 and γk = ckw

−1 with regular u, v, w ∈ R. Also, Proposition 2.1.16 [23],
for each j and k, there exist dj , ek ∈ R and regular s, t ∈ R such that u−1bj = djs

−1
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and (vs)−1ck = ekt
−1. Suppose ϕ1 = Σmi=1aili, φ1 = Σnj=1bjgj , φ2 = Σnj=1djgj , ψ1 =

Σpk=1ckhk, ψ2 = Σpk=1ekhk ∈ R ∗M. Since M is a cancellative monoid by Lemma 1. Thus,
gish1 ̸= gjsh1 for gi ̸= gj . Then, we have 0 = ϕφψ = Σmi=1Σ

p
k=1(aiu

−1)ωli(ωg(Rckw
−1))

f(li, hk)(lihk) = Σmi=1Σ
p
k=1aiωli(ωg(Rek))f(li, hk)(lihk)(ωli(t)w)

−1 = 0 = ϕ1φ2ψ2(wt)
−1.

Therefore, ϕ1φ2ψ2 = 0. Since R is strongly CM -reflexive, then ψ2φ2ϕ1 = 0. This implies
that ϕ1uφ2ψ2 = ϕ1φ1sψ2 = 0 since u−1bj = djs

−1, then sψ2φ1ϕ1 = 0 and (vs)ψ2φ1ϕ1 = 0,
so ψ1φ1ϕ1 = 0 since (vs)−1ck = ekt

−1. Using Proposition 2.1.16 [23] again, for each i, j
there exist φi, ϕj ∈ R ∗M and regular element q, p ∈ R such that w−1bj = ϕjq

−1 and
(vq)−1ai = φip

−1. Let ϕ2 = Σmi=1φili, φ3 = Σnj=1ϕjgj . Then,
qψ1φ1ϕ1 = Σmi=1Σ

p
k=1q(ckw

−1)ωhk(ωg(Raiu
−1))f(hk, li)(hkli) = Σmi=1Σ

p
k=1q(ck)ωhk(ωg(Rai))×

(ωhk(u)w)
−1 = 0 since ψ1φ1ϕ1 = 0. Thus, for all k, i we have ckωhk(ωg(Rai)) = 0, and

it follows that ϕ1wφ3qψ2 = Σmi=1Σ
p
k=1waiωli(ωg(Rek)) = 0 since w−1bj = ϕjq

−1. Then,
ψ1φ3ϕ1w = 0 since R is strongly CM -reflexive, and so ψ1φ3ϕ1 = 0. Therefore, ψ1φ3ϕ1p =
Σpk=1Σ

m
i=1ckωhk(ωg(Rai))f(hk, li)(hkli)p = ψ1φ3ϕ2(vq) = Σpk=1Σ

n
j=1ckωhk(ωg(Rdj))(pv) =

0, and thus ψ1φ3ϕ2 = 0. Therefore,

ψφϕ = Σpk=1Σ
m
i=1(ckw

−1)ωhk(ωg(Raiu
−1)) = Σpk=1Σ

m
i=1ckωhk(ωg(Rai))(ωhk(u)w)

−1 = 0.

Thus, ckωhk(ωg(Rai))(up)
−1 = 0.Therefore,QisstronglyCM−reflexive.
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