
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 4, 2023, 2132-2144
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Numerical Solutions of Some Classes of Partial
Differential Equations of Fractional Order

Iman Aldarawi1,∗, Banan Maayah1, Eman Aldabbas1, Eman Abuteen2

1 Department of Mathematics, The University of Jordan, Amman 11942, Jordan
2 Department of Basic Scientific Sciences, Faculty of Engineering Technology, Al-Balqa
Applied University, Al-Salt 19117, Jordan

Abstract. This paper explores the solutions of certain fractional partial differential equations
using two methods; the first method involves separation of variables, which is a common technique
for solving partial differential equations. However, since many equations cannot be separated in
this way, the tensor product of Banach spaces method is applied to find the atomic solutions. To
solve the resulting ordinary differential equations, the reproducing Kernel Hilbert space method is
used to find numerical solutions, which are then used to find the numerical solution of the partial
differential equation. The residual errors indicate that this method is effective and powerful. In
summary, this paper presents a study on the solutions of certain fractional partial differential
equations using two methods and demonstrates the effectiveness of these methods in finding
numerical solutions.
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1. Introduction

The concept of fractional calculus, which extends on classical calculus by including
derivatives and integrals of non-integer order, are developed by several researchers such
as; Riemann-Liouville derivative [15], Caputo derivative [13], Caputo Fabrizo derivative
[14], Atangana-Baleanu derivative [6] and recently conformable fractional derivative by
[22]. The conformable fractional derivative has been shown to have some advantages
over these other types of fractional derivatives, including better preservation of certain
mathematical properties such as the chain rule and the product rule [19].
Partial differential equations with fractional order have a wide range of applications in
various fields such as; fluid dynamics in porous media [10], electromagnetic theory [8],
quantum mechanics [24], finance [17], heat transfer [26], biology and medicine [25] and
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others. Some studies obtained solutions to several fractional partial differential equa-
tions, for instance, the fractional wave-type equations are solved by Fourier Series by
[9], [7] used the Sumudu decomposition method (SDM) to find approximate solutions
of two-dimensional fractional partial differential equations, [18] used a relatively new
method for resolving partial differential equations (PDEs) with fractional derivatives is
the Tensor Product of Banach Spaces (TPBS), which is used in this research.
Tensor products of Banach spaces, which are mathematical structures that generalize
vector spaces and include norms and metrics, form the foundation of this approach.
One of the main challenges of the TPBS method is the construction of a suitable tensor
product basis, which requires a careful choice of Banach spaces and fractional derivative
operators, another challenge is the accurate approximation of the fractional derivative
operator, which can be numerically unstable and require specialized numerical tech-
niques. Moreover, the reproducing Kernel Hilbert space method is used [11] to find the
numerical solution for a certain equation to get a complete atomic solution of a fractional
equation.
This paper is organized as follows: Section 2 provides some basic definitions of con-
formable derivative, while the Fractional Fourier series solution for the fractional heat
type equation is discussed in Section 3. In Section 4 the Atomic Banach Space Method
is used to solve two examples of linear fractional PDEs. Finally, a conclusion is given.

2. Preliminaries

In [22], a definition of the so-called α-conformable fractional derivative was intro-
duced as follows:
Let α ∈ (0, 1), and f : E ⊂ (0,∞) → R.For x ∈ E, then:

Dα(f)(x) = lim
ϵ→0

x+ ϵx1−α − f(x)

ϵ
(1)

If the limit exists, then it is called α-conformable fractional derivatives of f at x. If f is
α-differentiable on (0, r) for some r > 0, and lim

x→0+
Dα(f)(x) exists, then Dα(f)(0) =

lim
x→0+

Dα(f)(x).

For α ∈ (0, 1], and f, g are differentiable are α-differentiable at some point t, one can
easily see that the conformable derivative satisfies:

1. Dα(af + bg) = aDα(f) + bDα(g), for all a, b ∈ R.

2. Dα(λ) = 0, for all constant functions f(t) = λ.

3. Dα(fg) = fDα(g) + gDα(f).

4. Dα(fg ) =
gDα(f)− fDα(g)

g2
, g(t) ̸= 0 .

We list here the fractional derivatives of certain functions,
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1. Dα(tp) = ptp−α.

2. Dα
(
sin( 1α t

α)
)
= cos( 1α t

α).

3. Dα
(
cos( 1α t

α)
)
= − sin( 1α t

α).

4. Dα
(
e

1
α
tα
)
= e

1
α
tα .

For the geometric meaning of α-conformable fractional derivative we refer the reader to
[21]. On putting α = 1 in these derivatives, we get the corresponding classical rules for
ordinary derivatives. For more on fractional calculus and its applications, we refer to
([1], [2], [3], [5], [4], and [23]).

3. Separation of Variables

Consider the following Heat fractional differential equation:

Dα
t u− kD2β

x u = Dβ
xu, (0 < α, β < 1) (2)

which gives the temperature u(x, t) in a body of homogeneous material, k is the thermal
diffusivity. As an important application, let us first consider the temperature in a long
thin bar or wire of constant cross-section and homogeneous material, which is oriented
along the x-axis (Figure 1) and is perfectly insulated laterally, so that the heat flows in
the x-direction only. Then u depends only on x and time t.
We shall solve equation (2) for some important types of boundaries and initial conditions.
We begin with the case in which the ends x = 0 and x = L of the bar are kept at
temperature zero, so that we have the boundary conditions: u(0, t) = 0 and u(L, t) = 0
for all t, and the initial temperature in the bar at time t = 0 is f(x), so that we have
the initial condition u(x, 0) = f(x), where f(x) is given.

Figure 1: Bar under consideration.

3.1. Solution of the Heat Equation (2)

Let
u(x, t) = X(x)T (t)

Substitute in equation (2) to get

X(x)Tα(t)− kX2β(x)T (t) = Xβ(x)T (t)
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Simplify, then we have

X(x)Tα(t) =
(
kX2β(x) +Xβ(x)

)
T (t)

From which we obtain
kX2β(x) +Xβ(x)

X(x)
=

Tα(t)

T (t)
= λ

Since x and t are independent variables, then

kX2β(x) +Xβ(x)

X(x)
= λ

and
Tα(t)

T (t)
= λ

Now, we have the following fractional ordinary differential equations

kX2β(x) +Xβ(x)− λX(x) = 0 (3)

Tα(t)− λT (t) = 0 (4)

First, we deal with equation (3). Let the characteristic equation ρ =
−1±

√
1 + 4kλ

2k
,

then, using the results in [1] there are three cases:

Case(i): 1 + 4kλ = 0.

So ρ =
−1

2k
, then X(x) = c1e

−xβ

2kβ + c2
xbeta

β
e

−xβ

2kβ .

the conditions u(0, t) = u(L, t) = 0 imply that c1 = c2 = 0. Thus, X(x) = 0, the trivial
solution.

Case(ii): 1 + 4kλ = µ2 > 0.

Then ρ =
−1± µ

2k
, and hence X(x) = c1e

−1+µ
2k

−xβ

2kβ + c2e
−1−µ
2k

−xβ

2kβ .

Using the condition u(0, t) = 0, we getc2 = −c1. So,

X(x) = c1

(
e

−1+µ
2k

−xβ

2kβ − e
−1−µ
2k

−xβ

2kβ

)
And using the condition u(L, t) = 0, we get c1 = 0, thus X(x) = 0, therefore 1 + 4kλ =
µ2 > 0 also gives the trivial solution.

Case(iii): 1 + 4kλ = −µ2 < 0.

Then ρ =
−1± µ i

2k
, and henceX(x) = c1e

−xβ

2kβ cos
(
cos

(
µxβ

2k β

))
+c2e

−xβ

2kβ sin
(
sin

(
µxβ

2k β

))
.

By using the condition u(0, t) = 0, we get c1 = 0. So, X(x) = c2e
−xβ

2kβ sin
(
µxβ

2k β

)
. But
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the condition u(L, t) = 0 implies that X(x) = c2e
−xβ

2kβ sin
(
µxβ

2k β

)
= 0. Since c2 ̸= 0, then

sin
(
µxβ

2k β

)
= 0, and then we have

µ = 2knπ
β

Lβ
(5)

and

X(x) = c2e
−xβ

2kβ sin
(
sin

(nπxβ
Lβ

))
(6)

Now,to solve equation (4), we will rewrite as follows:

t1−αT (t)− λT (t) = 0,

which is a separable differential equation, so

T (t) = Ane

(−(2knπ β
Lβ )− 1

4k

tα

α

)
(7)

Combining equations (6) and (7), we get

u(x, t) =
∞∑
n=1

bn e

(−(2knπ β
Lβ )− 1

4k

tα

α

)
e

−xβ

2kβ sin
(
sin

(nπxβ
Lβ

))
(8)

By using u(x, 0) = f(x), we get

f(x) =
∞∑
n=1

bn e
−xβ

2kβ sin
(
sin

(nπxβ
Lβ

))
.

So,

e
−xβ

2kβ f(x) =
∞∑
n=1

bn sin
(
sin

(nπxβ
Lβ

))
(9)

Hence, (9) is the β-Fourier series [12] and then, we can get the sine β-Fourier coefficients
as

bn =
2β

Lβ

∫ L

0
f(x) e

1
2k

xβ

2kβ
1

x1−β
sin

(
sin

(nπxβ
Lβ

))
(10)

which completes the solution of the differential equation (2).

3.2. Applications

Example 1. Find the temperature u(x, t) in a laterally insulated copper bar 80 cm long
if the initial temperature is 100 sin(sin(πx80 ) )

◦C and the ends are kept at 0 ◦C.
Consider k = 1.158 cm

m2 , α = 0.5 and β = 0.2.
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Solution. The partial differential equation is given by

D0.5
t u− 1.158 d2(0.2)x u = D0.2

x u (11)

with the boundary conditions u(0, t) = u(80, t) = 0 and initial condition u(x, 0) =
100 sin(sin(πx80 ).
Therefore, from equation (8) the solution is given by

u(x, t) =
∞∑
n=1

bn e
−

(
0.4632nπ

5√80

)2
− 1

2.316t0.5
t0.5

e
−x0.2

0.4632 sin(sin
(nπx0.2

80

)
) sin(sin

(nπx0.2
80

)
) ,

where, bn =
0.4
5
√
80

∫ 80

0
100 sin(sin

(πx
80

)
) e

−x0.2

0.4632
dx

x0.8
.

To verify our method, we take finite sum of u(x, t), and then the approximate solution
is given by

uk(x, t) =

k∑
n=1

bn e
−

(
0.4632nπ

5√80

)2
− 1

2.316t0.5
t0.5

e
−x0.2

0.4632 sin(sin
(nπx0.2

80

)
) sin(sin

(nπx0.2
80

)
) .

Figure 2a plot the temperature u100(x, t) in a laterally insulated copper equation (11). In
Figure 2b we plot u100(x, t) versus x at different values of t, t ∈ {0.1, 0.3, 0.7, 1, 1.5, 2},
where each curve represents a constant time distance function. In Figure 2c we plot
u100(x, t) versus t at different values of x, x ∈ {0.1, 0.3, 0.7, 1, 1.5, 2} where each curve
represents a constant time function of time.

In Figure 2d the Residual Error Rese(x, t) =
∣∣∣D0.5

t u− 1.158 d
2(0.2)
x u−D0.2

x u
∣∣∣ are plotted

to improve the solution of the PDE (11).
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(a) (b)

(c) (d)

Figure 2: Graphs for equation (11). (a) The temperature function u(x, t). (b) The
temperature function u(x, t) with fixed t ∈ {0.1, 0.3, 0.7, 1, 1.5, 2}. (c) he temperature
function u(x, t) with fixed x ∈ {0.1, 0.3, 0.7, 1, 1.5, 2}. (d) The Residual Error.

4. Atomic Solution

Since not every linear partial differential (fractional or not) can be solved using the
separation of variables, the concept of the atomic solution is established.
Let X and Y be two Banach spaces and X∗ be the dual of X. Assume x ∈ X and
y ∈ Y . The operator T : X∗ → Y which is defined by T (x∗) = x∗(x)y is a bounded
one-rank linear operator. We write x⊗y for T . Such operators are called atoms. Atoms
are among the main ingredient in the theory of tensor products. Atoms are used in the
theory of best approximation in Banach spaces [16]. One of the known results [20] that
we need in our paper is that: if the sum of two atoms is an atom, then either the first
components are dependent, or the second ones are dependent. For more tensor products
of Banach spaces, we refer to [20].
Let us write Dα

xu to mean the partial α-derivative of u with respect to x. Further, we
write D2α

x u to mean Dα
xuD

α
xu . Similarly for derivatives with respect to y.
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4.1. Application 1

In equation (12), the method of separation of variables is not possible though the
equation is linear. Hence, we try to find an atomic solution to this equation

Dα
t u+Dβ

x D
β
xu = D2α

t Dβ
xu, 0 < α, β < 1 (12)

u(0, 0 = 0) and Dα
t Dβ

x(0, 0) = 1, where by an atomic solution we mean a solution of
the form u(x, t) = X(x)T (t).
Procedure
Let u(x, t) = X(x)T (t). Substitute in equation (12) to get

X(x)Tα(t) +X2β(x)T (t) = X(x)T 2α(t).

This can be written in tensor product form as:

X ⊗ Tα +X2β ⊗ T = Xβ ⊗ T 2α (13)

Let us consider the following conditions: T (0) = 1, Tα(0) = 1, X(0) = 0 and Xβ(0) = 1.
In equation (12), we have the situation: the sum of two atoms is an atom. Hence, we
have two cases:

Case (i): T (t) = Tα(t) = T 2α(t). Using the result in [1], we get

T (t) = e
tα

α (14)

Now we substitute in (13) to get

e
tα

α ⊗
(
X +X2β

)
= e

tα

α ⊗Xβ.

Hence, X2β −Xβ +X = 0. Again, using the result in (Al Horani et al., 2020), we get

X(x) = c1e
1
2

xβ

β

√
3

2

xβ

β
+ c2e

1
2

xβ

β sin(sin(

√
3

2

xβ

β
)).

Using the conditions X(0) = 0 and Xβ(0) = 1, we get

X(x) =
2√
3
e

1
2

xβ

β sin(sin(

√
3

2

xβ

β
)). (15)

From (14) and (15), we obtain the atomic solution of (12) as:

u(x, t) =
( 2√

3
e

1
2

xβ

β sin(sin(

√
3

2

xβ

β
))
)
e

tα

α . (16)

In Figure 3, we plot u(x, t) the solution of equation (12) at different values of α and β
where the yellow surface at α = 1, β = 1, the blue surface at α = 0.9, β = 0.9, the green
surface at α = 1, β = 0.5, the red surface at α = 0.5, β = 1 and the purple surface at
α = 0.6, β = 0.6. (0 ≤ t ≤ 1), (0 ≤ x ≤ 1).

Case(ii): X(x) = Xβ(x) = X2β(x). In this case, equation (13) has no solution. So,
there is no atomic solution.
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Figure 3: The solution u(x, t) of equation (12).

4.2. Application 2

The solution of

D
3
2
x u+

√
xD

3
2
y u = D

1
2
x uD

1
2
y u (17)

u(0, 0) = 1,
∂u

∂x
(0, 0) = 1 and

∂u

∂y
(0, 0) = 1, where by an atomic solution we mean a

solution of the form u(x, y) = P (x)Q(y).
Procedure
Let u(x, t) = X(x)T (t). Substitute in equation (17) to get

P
3
2 (x)Q(y) +

√
xP (x)Q

3
2 (y) = P

1
2 (x)Q

1
2 (y).

This can be written in tensor product form as:

P
3
2 ⊗Q+

√
xP ⊗Q

3
2 = P

1
2 ⊗Q

1
2 (18)

Let us use the following conditions: P (0) = 1, P ′(0) = 1, Q(0) = 0 and Q′(0) = 1.
Hence, we have two cases from equation (18):

Case (i): P
3
2 (x) =

√
xP (x) = P

1
2 (x). Then we get

√
xP ′′ =

√
xP (x) = P

1
2 (x).

Using the result in [1], we get
P (x) = ex. (19)

Now we substitute in (18) to get:
√
xex ⊗

(
Q+Q

3
2

)
= P

1
2 ⊗Q

1
2 . Hence,

Q+Q
3
2 −Q

1
2 = 0.

Again, using the result in [1] we have

√
yQ′′(y)−√

yQ′(y) +Q(y) = 0 (20)
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This equation can be solved numerically by using the reproducing Kernel Hilbert space
method [11], where the conditions Q0=1 and Q’(0)=1, are used. From (19) and the
numerical solution of (20), we obtain the atomic solution of (17).
In Figure 4(a) we plot the solution u(x, y) of equation (17) where 0 ≤ x ≤ 1 and 0 ≤
y ≤ 1. In Figure 4(b) we plot u(x, y) versus x at different values of y, y ∈ {0, 0.1, 0.7, 1},
where each curve represents a constant time exponential function. In Figure 4(c) we plot
u(x, y) versus y at different values of x, x ∈ {0, 0.3, 0.5, 1}, where each curve represents
a constant time Q(y). In Figure 4(d) we plot the Residual Error for equation (17).

Rese(x, y) =
∣∣∣D 3

2
x u+

√
xD

3
2
y u+−D

1
2
x uD

1
2
y u

∣∣∣ which proves that the obtained result is very

efficient.

(a) (b)

(c) (d)

Figure 4: Graphs for equation (17). (a) The solution u(x, y). (b) The solution u(x, y)
when y ∈ {0, 0.1, 0.7, 1}. (c) The solution u(x, y) when x ∈ {0, 0.3, 0.5, 1}. (d) The
Residual Error.

Case(ii): Q(y) = Q
3
2 (y) = Q

1
2 (Y ). Has no solution. So, there is no atomic solution.
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5. Conclusion

The main goal of this study is to find solutions for linear partial differential equa-
tions that involve fractional conformable derivatives. To achieve this, we have used two
methods: separation of variables and tensor product method. These methods allow us to
obtain both exact and numerical solutions. Our results show that these procedures are
efficient, reliable and sufficient. In other words, we have found that the solutions we ob-
tained using these methods are accurate and can be trusted. This is important because
it means that these methods can be used to solve similar problems in the future. Overall,
our study provides a valuable contribution to the field of partial differential equations,
demonstrating the effectiveness of the separation of variables and tensor product method
for solving these types of equations.
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