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Abstract. In this paper, we focus on the control, energy transfer, and vibration performance
under multi mixed excitations for the offshore wind turbine tower (OWTT) system. For reducing
the controlled system oscillations, the positive position feedback (PPF) controller is applied. The
energy transfers occur in the system of wind turbine by adding the PPF controller to the system
equations. With the help of the phase plane approach, frequency response equations, and Poincare
maps, the bifurcation and stability at worst resonance cases are sought and investigated. The
vibration behaviors are studied numerically at different parameters values for the wind turbine
system. Additionally, the response and numerical outcomes are examined, also, the approach of
multiple scales is used to establish the approximate solutions of the wind turbine-controlled system.
Besides that, MAPLE and MATLAB algorithms are used to implement the numerical results and
compare analytical solutions with numerical behavior. The results also be compared to previous
research that has been published.
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1. Introduction

Renewable energy has grown in importance as a topic of these investigations over the
past few decades. On a worldwide scale, the demand for energy has been steadily rising.
This increase motivates us to start looking at alternative energy production strategies.
One of the most difficult issues our society is currently experiencing is the creation of a
sustainable and renewable energy economy. The cost of wind energy has been the main
motivator for the shift. Wind energy is projected to contribute significantly in terms of
renewable energy in the coming decades to reach such an energy source. By about a third
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since 2009, wind turbine prices have fallen. Production of wind energy is one of the most
effective conservation projects [1, 2]. The Rayleigh’s energy approach and ANSYS FSI
analysis are used to determine the dynamic effects of the blades on the tower as well as
the effects of the earthquake forces, wave, and wind on wind turbine dynamic behavior
[3]. Several parameters’ effects on the behavior of the (OWTT) system and the responses
of the soil monopile tower system are the subject of this investigation [4]. The standard
model of large rotating wind turbines active observer with effective control approach is
studied [5]. A tuned mass damper and passive control approach are used to study the
vibrations of the nacelle of offshore wind turbines and spar oscillations [6]. The effects of
an active control method are investigated for a hybrid mass damper and a barge float-
ing wind turbine type [7]. Mathematical analysis study for the wind turbines dynamics
with time scale simulations and control was performed [8]. The wind turbines structural
vibrations and its high oscitations was suppressed through active controller and has been
proposed in [9]. With two different approaches, the environmental forces and seismic loads
effect on the offshore wind tower behavior is performed [10]. The transfer the energy and
reducing the high oscillations amplitudes of the wind turbine system using both PD and
NPD controller are well studied. Furthermore, the Poincaré maps and averaging method
were used to study the bifurcation analysis and stability at the worst resonance cases.
Additionally, the wind turbine system’s frequency and force response curves were drawn
before and after the addition of the control unit. In addition, the Numerical simulations
were carried out and control parameters performances on the vibration magnitudes was
performed applying with Maple and MATLAB algorithms. Obtained results demonstrate
the efficiency of the NPD controller in reducing the nonlinear wind oscillations [11-12]. To
eliminate the oscillator’s van der pol duffing with mixed excitations, the nonlinear integral
positive position feedback (NIPPF), and integral resonant (IRC) controllers are applied.
The multiple time scales approach and frequency response equations are used to perform
the approximate solutions and stability analysis at the worst resonance cases [13]. The de-
tailed of analysis is founded for some dynamical systems with different forces in the books
[14-17]. The model of atomic force microscopy (AFM) was controlled utilizing the PD
controller with time delayed and the PD control efficiency for putting down the nonlinear
oscillations are performed to the obtained results [18]. The controlling of a rotating blade’s
oscillation via nonlinear saturation control, the energy transfer and stability using tech-
nique of Lyapunov’s linearization are investigated [19]. The PPF and PD signals control
are merged to minimize the levels of AMBs system vibration involving constant stiffness
and 16 poles. Also, Approximate solutions are extracted, and response curves are plotted
before and after using PPF [20]. 2D and 3D Visualizations of the mass-damper-spring
model was controlled with a servo controlled linear actuator (SCLA) with using signal
generating (PPF) controller. In addition, they derived the system equations, phases and
amplitudes using Krylov-Bogoliubov averaging perturbation method [21]. The approxi-
mate solutions, stability, and control for the car model with the harmonic balance and
averaging methods with nonlinear saturation controller (NSC) controller a cubic-position
negative-velocity and a cubic-position negative-velocity feedback (CPNV) controllers [22-
23]. The mathematical methods are presented and explained for obtaining approximate
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analytical solutions to differential and difference equations that cannot be solved exactly.
The mathematical methods discussed in this book are known collectively as¬ asymptotic
and perturbative analysis [24]. The stability analysis of even multidimensional strongly
nonlinear systems described by PDEs are studied [25]. Tuned mass and liquid column
dampers are used to reduce the excessive vibration responses of offshore wind turbines
[26]. A tuned mass damper with passive control in a floating platform can reduce and im-
prove the dynamic responses of the offshore wind turbine [27]. The high frequency tuned
mass damper installed in the nacelle is examined using numerical methods to see whether
it effectively reduces tower response while having little effect on platform response [28]. A
new technique for minimizing the motion of a two-degree-of-freedom tuned mass damper is
applied for offshore wind turbines on floating spar supports [29]. Using an electromagnetic
shunt tuned mass damper, floating offshore wind turbine vibration can be reduced [30].
According to the articles described above, none of them discuss controlling the primary
and internal resonance response via the positive position feedback (PPF) controller, which
was the main motive of such a response. The current work suggests using this control ap-
proach. In the present work, we focused on the control, energy transfer, and vibration
performance under multi mixed excitations for the system of offshore wind turbine tower.
For reducing the controlled system oscillations and energy transfers, the PPF controller
be applied. With the help of the phase plane approach, frequency response equations, and
Poincare maps, the bifurcation and stability at worst resonance cases are sought and in-
vestigated. The vibration behaviors are studied numerically at different parameters values
for the wind turbine system.

2. System modelling

The parts of the OWTT system are the hub, blade, tower, and concentrated mass.
This system is investigated in terms of some excitation forces as in Fig. 1(a). As in Figure
1(b), the structural model with multiple external forces, including the effects of wave FH ,
earthquake Feqk, and wind Faero forces.
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(a) (b)

Figure 1: (a) The wind turbine tower model, (b)The wind tower’s forces.

The wind forces Faero acting on the Rotor Nacelle Assembly (RNA) and associate
instrumentation can be considered as concentrated forces (hydrodynamic forces) which
depend on the wind velocity. The wave force FH were utilized to compute the hydrody-
namic wave forces acting on the wind tower, where the wave height H, wavelength L, and
wave period T are the major wave parameters. The strong force acting on the turbine
tower structure is the earthquake force due to the seismic excitation. The below equation
governing the SDOF system’s equation of motion, which was obtained from [10]:

mz̈(t) + ϵcż(t) + kz(t) + ϵF (t) = ϵG(t) (1a)

Where z̈(t) is the acceleration, ż(t) is the velocity, z(t) is the coordinate vector, F (t) is the
total force, G(t) is controller signal, m is the mass, c and k are the damping and stiffness
coefficients, respectively. As proceeding in Ref [10], then the system’s equation of motion
is derived and modified by the next ordinary differential equation:

z̈ϵµ1ż + ω1
2z + ϵfeqk + ϵfa sinΩ1(t) = ϵfh cosΩ1(t)| cosΩ1(t)|. (1b)

Where µ1 =
c
m , ω2

1 = k
m , F (t) = 1

m(Feqk+Faero sinω1(t), G(t) = 1
m(FH cosω1(t)| cosω1(t)|).

Applying the positive position feedback (PPF) controller donate by equation (2b) to the
wind turbine tower system in equation (1b). In order to control the oscillation of the
tower system, the control unit must acquire the feedback signal from the tower system,
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the updated equation (1b) would be as follows:

z̈ + ϵµ1z + ω2
1z + ϵfa sin(ω1(t)) = ϵfh cos(ω1(t))| cos(ω1(t))|+ ϵβ1y. (2a)

ÿ + ϵµ2y + ω2
2y = ϵβ2z. (2b)

Where µ1, µ2 are linear damping factors of the system and control unit, ϵ is small pertur-
bation, fa, fh are excitation wind and wave forces, feqk = α cos(πt) is earthquake force,
ω1,ω2 are natural frequencies tower system and control unit,ω1 is the excitation frequency
and β1, β2 are control units.

3. Approximate analytical solution

The goal of perturbation methods is to propose approximately analytical solutions
to problems that do not have exact solutions depending on a small parameter ϵ where
0 ≪ ϵ ≪ 1. During the solution process, (unwanted) secular terms are eliminated using the
new independent variables. The latter applies solvability conditions, which are constraints
on the approximate solution. Approximate solutions of problem (2) are produced using the
Multiple Scale Perturbation (MSP) approach [14-17], and the solutions have the following
form:

z(t, ϵ) = z0(T0, T1) + ϵz1(T0, T1) +O(ϵ2) (3a)

y(t, ϵ) = y0(T0, T1) + ϵy1(T0, T1) +O(ϵ2) (3b)

We provide the derivatives in the following format:

d

dt
=

{
D0 + ϵD1,
d2

dt2
= D2

0 + 2ϵD0D1.
(3c)

where T0 = t, T1 = ϵt and D0 = ∂
∂T0, D1 = ∂

∂T1 are the time scales and derivatives
respectively and substituting equations (3a) (3b) through (3c) into equation (2), we get

(D2
0z0 + ω2

1z0) + ϵ(D2
0z1 + ω2

1z1 + 2D0D1z0 + µ1D0z0 + α cos(πT0) + fa sin(Ω1T0)

−fh cos(Ω1T0)| cos(Ω1T0)| − β1y0) + ϵ2(D2
0z2 + ω2

1z2 + 2D0D1z1 +D2
1z0 − fh cos(Ω1T0)

| cos(Ω1T0)| − β1y0) + ϵ2(D2
0z2 + ω2

1z2 + 2D0D1z1 +D2
1z0 + µ1(D1z0 +D0z1)− β1y1) = 0.

(4a)

(D2
0y0 + ω2

2y0) + ϵ(D2
0y1 + ω2

2y1 + 2D0D1y0 + µ2D0y0 − β2z0) + ϵ2(D2
0y2+

ω2
2y2 + 2D0D1y1 +D2

1y0 + µ2(D1y0 +D0y1 − β1z1) = 0.

(4b)
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Equating the coefficients of ϵ in equation (4) leads: O(ϵ0):

(D2
0 + ω2

1)z0 = 0. (5a)

(D2
0 + ω2

2)y0 = 0. (5b)

O(ϵ1):

(D2
0+ω2

1)z1 = −2D0D1z0−µ1D0z0−α cos(πT0)−fa sin(ω1T0)+fh cos
2(ω1T0)+β1y0, cos(ω1T0) ≥ 0.

(6a)
or

(D2
0+ω2

1)z1 = −2D0D1z0−µ1D0z0−α cos(πT0)−fa sin(ω1T0)−fh cos
2(ω1T0)+β1y0, cos(ω1T0) < 0.

(6b)
(D2

0 + ω2
2)y1 = −2D0D1y0 − µ2D0y0 + β2z0. (6c)

Equation (5) has a general solution expressed as:

z0 = A1(T1)e
iω1T0Ā1(T1)e

−iω1T0 . (7a)

y0 = A2(T1)e
iω2T0 + Ā2(T1)e

−iω2T0 (7b)

Substituting equation (7) into equation (6), the following are obtained:

(D2
0 + ω2

1)z1 = [−iω1(2D1A1 + µ1A1)]e
iω1T0 + [iω1(2D1Ā1 + µ1Ā1)]e

−iω1T0

+β1A2e
iω2T0 + β1Ā2e

−iω2T0 + (ifa)/2(e
iΩ1T0 − e−iΩ1T0) +

fh
4
(e(2iΩ1T0+

e−2iΩ1T0 + 2)− α

2
eiπT0 − α

2
e−iπT0), cos(Ω1T0) ≥ 0.

(8a)

or

(D2
0 + ω2

1)z1 = [−iω1(2D1A1 + µ1A1)]e
iω1T0 + [iω1(2D1Ā1 + µ1Ā1)]e

−iω1T0

+β1A2e
iω2T0 + β1Ā2e

−iω2T0 + (ifa)/2(e
iΩ1T0 − e−iΩ1T0) +

fh
4
(e(2iΩ1T0+

e−2iΩ1T0 + 2)− α

2
eiπT0 − α

2
e−iπT0), cos(Ω1T0) < 0.

(8b)

(D2
0+ω2

2)y1 = [−iω2(2D1A2+µ1A2)]e
iω2T0+[iω2(2D1Ā2+µ1Ā2)]e

−iω2T0+β1A1e
iω2T0+β1Ā1e

−iω1T0 .
(8c)
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After the secular terms e( ± iω1T0) and e( ± iω2T0) were eliminated from equations (8a)
-(8c), the general solutions given as

z1 = (A3e
iω1T0 + Ā3e

iω1T0) +
β1

(ω2
1 − ω2

2)
(A2e

iω2T0 + Ā2e
−iω2T0)

+
(ifa)

2
(ω2

1 − Ω2
1)(e

iΩ1T0 − e−iΩ1T0) +
fh
4
(ω2

1 − 4Ω2
1)(e

2iΩ1T0 + e−2iΩ1T0)

+
fh

(2ω2
1)

− α

2
(ωA2

1 − π2)(eiπT0 + e−iπT0).

(9a)

or

z1 = (A3e
iω1T0 + Ā3e

iω1T0) +
β1

(ω2
1 − ω2

2)
(A2e

iω2T0 + Ā2e
−iω2T0)

+
(ifa)

2
(ω2

1 − Ω2
1)(e

iΩ1T0 − e−iΩ1T0)− fh
4
(ω2

1 − 4Ω2
1)(e

2iΩ1T0 + e−2iΩ1T0)

− fh
(2ω2

1)
− α

2
(ω2

1 − π2)(eiπT0 + e−iπT0).

(9b)

y1 = (A4e
(iω2T0) + Ā4e

−iω2T0) +
β2

(ω2
2 − ω2

1)
(A1e

iω1T0 + Ā1e
−iω1T0). (9c)

The resonances were obtained from the approximations and are given as follows:

a . Primary, super-harmonic and Internal resonance are: Ω1 ≊ ±ω1,Ω1 ≊ ±ω12 and
ω1 ≊ ±ω2.

b With any combination of the above resonance cases, simultaneous resonance is ob-
tained.

Analysis and studies are done on the solution’s stability in the primary with internal
resonance caseΩ1 ≊ ω1, ω1 ≊ ω2 , Where the detuning σ1 and σ2 are given as:

Ω1 = ω1 + ϵσ1, ω2 = ω1 + ϵσ2. (10)

The first order approximation’s solvability conditions are given by inserting equation (10)
into equation (8a) -(8b) and removing the secular then we get:

−iω1(2D1A1 + µ1A1) + β1A2e
iσ2T1 +

(ifa)

2
eiσ1T1 = 0. (11a)
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−iω2(2D1A2 + µ2A2) + β1A1e
( − iσ2T0) = 0. (11b)

Let’s introduce the polar form as:

A1 =
1

2
a1(T1)e

iϕ1(T1), A2 =
1

2
a2(T1)e

iϕ2(T1) (12)

where ϕ1, ϕ2 are the motion’s phases and a1, a2 are the amplitudes steady state. By
inserting equation (12) into equations (11a)–(11b) and equating the real and imaginary
parts, the modulation of the phases and amplitudes is achieved, and the result is as follows.

ȧ1 =
−µ1a1

2
+

(β1a2)

2ω1 sin θ2
+

fa
2ω1

cos θ1 (13a)

a1ϕ̇1 =
−β1a2

2ω1 cos θ2
+

fa
2ω1

sin θ1 (13b)

ȧ2 =
−µ2a2

2
− β2a1

2ω2
sin θ2 (14a)

a2ϕ̇2 =
−β2a1
2ω2

cos θ2 (14b)

Where
θ1 = σ1T1 − ϕ1, θ2 = σ2T1 − ϕ1 + ϕ2 (15)

From equation (15) we have

ϕ̇1 = σ1 − θ̇1, ϕ̇2 = σ2 − σ1 − θ̇2 + θ1 (16)

Substituting equation (16) into equations (13a) -(14b), we obtained

ȧ1 =
−µ1a1

2
+

β1a2)

2ω1
sin θ2 +

fa
(2ω1

cos θ1. (17a)

a1θ̇1 = a1σ1 +
β1a2
2ω1

cos θ2 −
fa
2ω1

sin θ1 (17b)

ȧ2 =
−µ2a2

2
− β2a1

2ω2
sin θ2 (18a)

a2θ̇2 = a2σ2 −
β2a1
2ω2

cos θ2 +
β1a

2
2

2ω1a1
cos θ2 −

faa2
2ω1a1

sin θ1 (18b)

It is too difficult to find the solutions of equations (17) and (18) analytically, but we can
obtain the solutions numerically. To obtain the approximate periodic solutions, substitut-
ing equations (7a), (7b) and (12) into equations (3a), (3b) and neglecting terms of o(ϵ),
we have

z =
1

2
a1e

i(ω1T0+ϕ1) +
1

2
a1e

−i(ω1T0+ϕ1) (19a)

y =
1

2
a2e

i(ω2T0+ϕ2)) +
1

2
a2e

−i(ω2T0+ϕ2) (19b)
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We can write the first approximation periodic solution in the form:

z = a1 cos(Ω1T0 − θ1) (20a)

y = a2 cos(Ω1T0 + θ2 − θ1) (20b)

where a1, a2, θ1 and θ2 are the solutions of the equations (17) and (18) at the steady state.

4. Stability investigations

To get vibration amplitudes of the steady state, we set ȧ1 = ȧ2 = θ̇1 = θ̇2 = 0, into
equations (17a) -(18b), we get:

µ1a1
2

=
β1a2
2ω1

sin θ2 +
fa
2ω1

cos θ1 (21a)

a1σ1 =
−β1a2
2ω1

cos θ2 +
fa
2ω1

sin θ1 (21b)

µ2a2
2

= −β2a1
2ω2

sin θ2 (22a)

a2(σ2 − σ1) =
β2a1

2ω2 cos θ2
. (22b)

Eliminating θ1 and θ2 from equations (21) and (22) leads to:

a1
2 =

ω2
2

β2
2 (µ2

2 + 4(σ2 − σ1)
2)a2

2. (23)

f2
a

4ω2
1

=

(
µ1a1
2

+
β1a

2
2µ2ω2

2β2a1ω1

)2

+

(
σ1a1 +

β1a2)
2ω2

β2a1ω1
(σ2 − σ1)

)2

. (24)

Equations (23) and (24) are the frequency-response equations for the system steady-state
behavior at the practical case (a1, a2 ̸= 0). By computationally resolving the above alge-
braic problem using the Newton-Raphson technique, we can get the steady state solution
of equations (2a) and (2b). Using Lyapunov’s direct method [15], the solution stability is
evaluated. Assume the following equation:

an = an0 + an1 and θn = θn0 + θn1(n = 1, 2). (25)

Where an0 and an1 are perturbative and steady-state amplitudes. Similarly, θn0 and θn1
are perturbative phases and steady-state phases. Inserting equation (25) into equations
(17-18) and linearizing give us

ȧ11
θ̇11
ȧ21
θ̇21

=J


a11
θ11
a21
θ21

=


r11 r12 r13 r14
r21 r22 r23 r24
r31
r41

r32
r42

r33
r43

r34
r44




a11
θ11
a21
θ21
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where J is the Jacobian matrix, and its constituent parts are listed in the appendix. J is
defining equation of a fourth-degree equation in the following form.

λ4+R1λ
3+R2λ

2+R3λ+R4= 0 (26)

where Ri (i= 1,· · ·,4) are listed in the appendix. The roots of equation (26) are the
eigenvalues of J and they determine whether the system solutions are stable or not.
The system’s periodic solution is unstable if the real part of the eigenvalue is positive;
if not, the system becomes stable. The Routh-Huriwitz criterion demonstrates that the
roots of equation (26) had negative real parts, If and only if the following equation holds
true:

R1> 0, R1R2−R3> 0, R3 (R1R2−R3)−R2
1R4> 0, R4> 0 (27)

5. Discussion on the primary and internal resonance curves

As it has been concluded in equations (23) and (24) that there two cases:

1 . (a1, a2 ̸= 0) where the controller is active.

2 . (a1, a2 = 0) where the controller is inactive.

The system parameters are given by µ1 = 0.04, µ2 = 0.02, β1 = 5, β2 = 0.5, α = 9.73,Ω1 =
1.26, ω1 = 1.26, ω2 = 1.26, fa = 67.17, fh = 5.129.

5.1. Effect of some important different parameters on the wind tower
system before control

In this part, we looked at how various parameters affected the behavior of the wind
tower system before control. The system behavior is shown in Figures 2(a, b) as a mono-
tonically decreasing function of the damping coefficient µ1 and a monotonically increasing
function in the excitation wind force fa.

(a) (b)

Figure 2: (a) Effect of linear damping µ1, (b)Effect of excitation wind force fa on wind
tower system response.
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5.2. Curves of force and frequency response for the system without con-
trol

The equilibrium behavior of the wind turbine tower amplitude a1 in terms of the forcing
amplitude fa before control (β1 = 0, β2 = 0) is shown in Fig. 3. As the parameters µ1

and ω1 are increased, the stable nontrivial amplitudes decreased. In Fig. 4 (a, b, c), the
equilibrium behavior of the amplitude a1 in terms of the frequency detuning σ1 is plotted
before control (β1 = 0, β2 = 0). In this figure, increasing the parameters µ1 and ω1 can
reduce the oscillations of the system, but the oscillations is increased with the increase the
parameters fa.

(a) (b)

Figure 3: (a) Curves of force response for OWTT system before control (β1 = 0, β2 = 0)
at different values of linear damping µ1, (b)Curves of force response for OWTT system
before control (β1 = 0, β2 = 0) at different values of natural frequency ω1.
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(a) (b)

(c)

Figure 4: (a) Curves of force response for OWTT system before control (β1 = 0, β2 = 0)
at different values of linear damping µ1 , (b) Curves of force response for OWTT system
before control (β1 = 0, β2 = 0) at different values of natural frequency ω1, (c) Curves of
force response for OWTT system before control (β1 = 0, β2 = 0) at different values of
wind amplitude force fa.

5.3. Curves of frequency response for the controlled system

Using frequency response curves, we investigated the effects of the various factors on
the controlled system’s stability zone. In Figs. (5-10), the equilibrium behavior of the
(WTT)amplitudes a1, a2 in terms of the frequency detuning σ1 is plotted before control
(β1 = 5, β2 = 0.5).According to Fig. 5, the controlled system behavior is a monotonically
increasing function in the parameter fa. Figures (6–8) demonstrate the controlled system’s
behavior as a monotonic decreasing function of the parameters µ1, µ2, ω1 andω2. We utilize
these parameters to reduce the oscillations of the OWTT system based on these figures.
Additionally, the saturation occurs, and the curves are shifted to the right for the system
behavior with the change in values β1, β2, but the control behavior is decreased with
increasing β1 and increased with increasing β2 as shown in Figs. (9, 10).
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Figure 5: Curves demonstrating the controlled system’s frequency response after control
(β1 = 5, β2 = 0.5) at different values of wind amplitude force fa.

Figure 6: Curves demonstrating the controlled system’s frequency response after control
(β1 = 5, β2 = 0.5) at different values of linear damping µ1.

Figure 7: Curves demonstrating the controlled system’s frequency response after control
(β1 = 5, β2 = 0.5) at different values of linear damping µ2.

Figure 8: Curves demonstrating the controlled system’s frequency response after control
(β1 = 5, β2 = 0.5) at different values of natural frequencies ω1, ω2.
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Figure 9: Curves demonstrating the controlled system’s frequency response after control
(β1 = 5, β2 = 0.5) at different values of control unit β1.

Figure 10: Curves demonstrating the controlled system’s frequency response after control
(β1 = 5, β2 = 0.5) at different values of control unit β2.

6. Discussion of analytical and numerical results

Using the fourth order Rung-Kutta numerical approach, Figures 11 to 14 simulate
the wind turbine tower vibrations both before and after control. In terms of time before
control, Figure 11 shows the wind turbine tower’s nontrivial vibrations. Figure 11(a)
depicts the system oscillations, which have an amplitude of about 43 centimeters, while
Figure 11(b) depicts a steady-state system oscillation of last 20 seconds to demonstrate
the reader the specifics of the solution waveform. Additionally, the controlled system’s
oscillation amplitude can reach 0.6 centimeters, and the unit control’s effectiveness (Ea=
the amplitude before control/amplitude after control) equal Ea=72 when (β1 = 5, β2 =
0.5, ω1 = 1.26) as shown in Fig. 12, this mean that the steady oscillations of the wind
turbine had been reduced from their former state by about 98.5. Also, the oscillation
amplitude of the controlled system can reach approximately 7 centimeters and Ea=6.2
when (β1 = 5, β2 = 0.05, ω1 = 1.26) as shown in Fig 13, and reach approximately 1
centimeters and Ea=43 when (β1 = 5, β2 = 0.5, ω1 = 2.01) as shown in Fig. 14. In
According to Fig. 15, with the addition of a PPF controller, energy is moved from the
system before control to the system after control and the performance of PPF control is
more effective at the primary and internal resonance case Ω1 ≊ ω1 ≊ ω2 with small values
of values ω1 and ω2.
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(a) (b)

Figure 11: The OWTT vibrations before control atβ1 = 0, β2 = 0, ω1 = 1.26 (a) all-round
response, (b) last 20 seconds of the all-round response

(a) (b)

Figure 12: The OWTT vibrations after control at β1 = 5, β2 = 0.5, ω1 = 1.26 (a) all-round
response, (b) last 20 seconds of the all-round response
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(a) (b)

Figure 13: The OWTT vibrations after control at β1 = 5, β2 = 0.05, ω1 = 1.26 (a) all-
round response, (b) last 20 seconds of the all-round response

(a) (b)

Figure 14: The OWTT vibrations after control at β1 = 5, β2 = 0.5, ω1 = 2.01 (a) all-round
response, (b) last 20 seconds of the all-round response
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Figure 15: Energy flow between uncontrolled and controlled systems occurs at Ω1 = ω1 =
ω2 = 1.26

6.1. Comparison of analytical and numerical simulation

As illustrated in Figures 16 and 17, this subsection compares numerical simulation for
the controlled system of equation (2) with perturbation solutions of equations (17) and
(18) at various values of the controller values β1 and β2 at primary and internal resonance
Ω1 = ω1 = ω2. While the blue line denotes numerical integration, the red line represents
the perturbation solution. These graphs show good agreement between the analytical and
numerical simulation results. Figs. 17(a) and 18(a) represent the system response after
control, but Figs. 17(b) and 18(b) represent the controller response.
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(a)

(b)

Figure 16: Comparison of the controlled system’s analytical and numerical simulations at
β1 = 5, β2 = 0.5, ω1 = 1.26 (a) system response, (b) control response.
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(a)

(b)

Figure 17: Comparison of the controlled system’s analytical and numerical simulations at
β1 = 5, β2 = 0.05, ω1 = 1.26 (a) system response, (b) control response.

6.2. The Poincaré maps

This section examines stability and uses Poincaré maps to plot bifurcation diagrams.
These maps are used to transform the complex response in phase space to a discrete map
in the lower dimensional space. Figures 18 and 19 analyzed the wind turbine behavior
under the simultaneous primary and internal resonance case Ω1 ≊ ω1, ω1 ≊ ω2 using differ-
ent values of control unit parameters β1, β2 with response and Poincaré map, respectively.
Figure 18(a, b) demonstrates how the system begins with a chaotic reaction before stabi-
lizing and exhibiting periodic motion on Poincare’s maps at β1 = 0, β2 = 0. The controlled
system has a quasi-periodic motion at β1 = 5, β2 = 0.5, as depicted in Figure 19(a, b).
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(a) (b)

Figure 18: (a)Time responses of the system before control, (b) Poincare´ maps of the
system before control at β1 = 0, β2 = 0, ω1 = 1.26, σ1 = 0, σ2 = 0,
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(a) (b)

(c) (d)

Figure 19: (a) Time responses of the system after control (b) Poincare´ maps of the system
after control (c) Time responses of the controller (d) Poincare´ maps of the controller at
β1 = 5, β2 = 0.5, ω1 = 1.26, σ1 = 0, σ2 = 0.

6.3. Comparison with published works

In comparison to previous studies, Dagli et al. [10] performed a dynamic vibration
analysis for the single degree of freedom (SDOF) equation of motion using Rayleigh’s
energy. Hamed et al. [12] used an NPD controller to suppress the OWTT system’s
behavior with multiple external and parametric excitation forces. To analyze the response
and stability, the averaging method is used. The steady oscillations of the wind turbine
had been reduced from their former state by about 91 and the effectiveness of control is
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Ea=12. With this work, the dynamics behavior and stability of the offshore wind turbine
system with external excitation and applying PPF controller are studied. The steady
oscillations of the wind turbine had been reduced from their former state by about 98.5
and the effectiveness of control is Ea=72.

7. Concluding Remarks

This study proposed a PPF controller to mitigate the offshore wind turbine tower
model’s nontrivial oscillations. Using the multiple time scale method, the equation of mo-
tion has been approximately solved. Using the phase plane technique, frequency response
equations, and Poincare maps, the stability at worst resonance cases will be checked and
analyzed. The whole work results can be summarized as follows:

1 . Before control, the wind turbine caused strong vibrations and jumps due to the ex-
istence of bifurcation points. after control, the wind turbine showed stable solutions
without jumps due to the absence of bifurcation points.

2 . The wind turbine vibrations reached minimum levels in the range σ1 ∈ [−0.3, 0.3]
especially at σ1=0.

3 . Wind turbines operates safely in the range σ1 ∈ [−0.65, 0.65] when σ1 = σ2.

4 . Before control, the amplitude is 43 and after applying PPF control the amplitude
become 0.6 then the effectiveness of control is Ea=72.

5 . The control signal gain β1 and the feedback signal gain β2 can be used to change
the minimum amplitudes bandwidth.

6 . The wind turbine vibration amplitudes are very sensitive to the wind force am-
plitude of fa before and after control and it is reasonable to channel most of the
vibration energy to the controller.

7 . The steady oscillations of the wind turbine had been reduced from their former
state by about 98.5.

8 . The controller damping µ1 and µ2 and natural frequencies ω1 and ω2 are inversely
proportional with the minimum vibratory level reached at σ1 = σ2.

9 . Energy is moved from the system before control to the system after adding control
at varying values ω1, ω2 and Ω1.

10 . Saturation phenomenon exhibit with change values of the control parameters β1
and β2.

11 . On Poincare’s maps, periodic motion may be seen before control and a quasi-
periodic motion appear control.
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Appendix

The elements rij (i, j= 1,· · ·, 4) of the Jacobian matrix J given in Eq. 26

r11 = −µ1

2 , r12 =
fa
2ω1

sinθ10, r13 =
β1

2ω1
sinθ20 r14 =

β1a20
2ω1

cosθ20

r21 = − β1a20
2ω1a210

cosθ20 +
fa

2ω1a210
sinθ10, r22 = − fa

2ω1a10
cosθ10, r23 =

β1

2ω1a10
cosθ20,

r24 = − β1a20
2ω1a10

sinθ20

r31 = − β2

2ω2
sinθ20, r32 = 0, r33 = −µ2

2

r34 = −β2a10
2ω2

cosθ20

r41 = − β2

2ω2a20
cosθ20 − β1a20

2ω1a210
cosθ20 + fa

2ω1a210
sinθ10 , r42 = − fa

2ω1a10
cosθ10

r43 =
β2a10
2ω2a220

cosθ20 + θ1
2θ1a10

cosθ20 ,

r44 =
β2a10
2ω2a20

sinθ20 − β1a20
2ω1a10

sinθ20
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The elements Ri (i= 1,· · ·, 4) of Eq. 27: R1= −
∑4

i=1 rii
R2=

1
2!

∑4
i=1

∑4
j=1 riirjj−rijrji

R3= − 1
3!

∑4
i=1

∑4
j=1

∑4
k=1 riirjjrkk−3riirjkrkj+2rijrjkrki

R4=
1
4!

∑4
i=1

∑4
j=1

∑4
k=1

∑4
l=1 riirjjrkkrll−6riirjjrklrlk+8riirjkrklrlj+3rijrjirklrlk−6rijrjkrklrli


