Approximation of BV space-defined functionals containing piecewise integrands with $L^{1}$ condition
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4934Keywords:
bounded variation, conjugate function, Carathéodory function, variational problemsAbstract
We prove an approximation result for a class of functionals $
\mathcal{G}%
%EndExpansion
(u)=\int_{\Omega }\varphi (x,Du)$ defined on $BV\left( \Omega \right) $
where $\varphi (\cdot ,Du)\in L^{1}\left( \Omega \right) ,$ $\Omega \subset
\mathbb{R}
^{N}$ bounded, $\varphi (x,p)$ convex, radially symmetric and of the form
\begin{equation*}
\varphi (x,p)=\left\{
\begin{array}{ll}
$g(x,p)$ & if $|p|\leq \beta $ \\
$\psi (x)|p|+k(x)$ & if $|p|>\beta .$%
\end{array}%
\right.
\end{equation*}%
We show for each $u\in BV\left( \Omega \right) \cap L^{p}\left( \Omega
\right) ,$ $1\leq p<\infty ,$ there exist $u_{k}\in W^{1,1}\left( \Omega
\right) \cap C^{\infty }\left( \Omega \right) \cap L^{p}\left( \Omega
\right) $ so that $
\mathcal{G}%
%EndExpansion
(u_{k})\rightarrow
%TCIMACRO{\TeXButton{mathcal G}{\mathcal{G}}}%
%BeginExpansion
\mathcal{G}%
%EndExpansion
(u).$ Approximation theorems in $BV$ are used to prove existence results for
the strong solution to the time flow $u_{t}=\func{div}\left( \nabla
_{p}\varphi (x,Du\right) )$ in $L^{1}((0,\infty );BV\left( \Omega \right)
\cap L^{p}\left( \Omega \right) ),$ typically with additional boundary
condition or penalty term in $u$ to ensure uniqueness. The functions in this
work are not covered by previous approximation theorems since for fixed $p$
we have $\varphi (x,p)\in L^{1}\left( \Omega \right) $ which do not in
general hold for assumptions on $\varphi $ in earlier work.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.