# Approximation of BV space-defined functionals containing piecewise integrands with $L^{1}$ condition

## Authors

• Thomas Wunderli The American University of Sharjah

## Keywords:

bounded variation, conjugate function, Carathéodory function, variational problems

## Abstract

We prove an approximation result for a class of functionals $\mathcal{G}% %EndExpansion (u)=\int_{\Omega }\varphi (x,Du)$ defined on $BV\left( \Omega \right)$
where $\varphi (\cdot ,Du)\in L^{1}\left( \Omega \right) ,$ $\Omega \subset \mathbb{R} ^{N}$ bounded, $\varphi (x,p)$ convex, radially symmetric and of the form
\begin{equation*}
\varphi (x,p)=\left\{
\begin{array}{ll}
$g(x,p)$ & if $|p|\leq \beta$ \\
$\psi (x)|p|+k(x)$ & if $|p|>\beta .$%
\end{array}%
\right.
\end{equation*}%
We show for each $u\in BV\left( \Omega \right) \cap L^{p}\left( \Omega \right) ,$ $1\leq p<\infty ,$ there exist $u_{k}\in W^{1,1}\left( \Omega \right) \cap C^{\infty }\left( \Omega \right) \cap L^{p}\left( \Omega \right)$ so that $\mathcal{G}% %EndExpansion (u_{k})\rightarrow %TCIMACRO{\TeXButton{mathcal G}{\mathcal{G}}}% %BeginExpansion \mathcal{G}% %EndExpansion (u).$ Approximation theorems in $BV$ are used to prove existence results for
the strong solution to the time flow $u_{t}=\func{div}\left( \nabla _{p}\varphi (x,Du\right) )$ in $L^{1}((0,\infty );BV\left( \Omega \right) \cap L^{p}\left( \Omega \right) ),$ typically with additional boundary
condition or penalty term in $u$ to ensure uniqueness. The functions in this
work are not covered by previous approximation theorems since for fixed $p$
we have $\varphi (x,p)\in L^{1}\left( \Omega \right)$ which do not in
general hold for assumptions on $\varphi$ in earlier work.

2023-10-30

## How to Cite

Wunderli, T. (2023). Approximation of BV space-defined functionals containing piecewise integrands with $L^{1}$ condition. European Journal of Pure and Applied Mathematics, 16(4), 2025–2034. https://doi.org/10.29020/nybg.ejpam.v16i4.4934

## Section

Nonlinear Analysis