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Abstract. This paper introduces a novel trigonometric B-spline collocation method for solving
a specific class of second-order boundary value problems. The study showcases the method’s
practicality and effectiveness through various numerical examples. Furthermore, it evaluates the
technique’s performance by calculating maximum errors for different step sizes in the spatial do-
main. The paper also conducts a comparative analysis with alternative methods, demonstrating
the superior accuracy of the trigonometric B-spline approach.
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1. Introduction

System of second order ordinary differential equation associated with boundary condi-
tions arises in several applications and have been discussed in [1–22]. Issue of existence of
solution to such system has been discussed in [1–3]. The standard numerical approaches
to solve second order boundary value problems are to use the shooting and finite differ-
ence methods. In this paper, we focus on the use of cubic trigonometric B-spline method
(CTBSM). Consider the following system of second order boundary value problems:{

u′′(x) + a1(x)u
′(x) + a2(x)u(x) + a3(x)v

′′(x) + a4(x)v
′(x) + a5(x)v(x) = f1(x)

v′′(x) + b1(x)v
′(x) + b2(x)v(x) + b3(x)u

′′(x) + b4(x)u
′(x) + b5(x)u(x) = f2(x).

(1)

The following boundary conditions are associated with the system

u(a) = u(b) = 0, v(a) = v(b) = 0, (2)
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where a ≤ x ≤ b, f1(x) and f2(x) are continuous functions, ai(x) and bi(x), for i =
1, 2, 3, 4, 5, are sufficiently smooth real-valued functions of x.

Many approximate techniques have been suggested to solve linear and nonlinear sys-
tems of second order BVPs. In [4], Saadatmandi et al. introduced a homotopy pertur-
bation approach aimed at addressing nonlinear second-order boundary value problems.
This method generates solutions in the form of convergent series with readily computable
or minor perturbations. Ogunlaran and Ademola [5] introduced the Laplace homotopy
analysis method as an alternative for solving the same system. This technique obtains
solutions without resorting to discretization or imposing restrictive assumptions. The re-
sulting solution manifests in the form of a rapidly convergent series. Lu [6] introduced a
variational iteration approach to solve systems analogous to problem (1)-(2). [7, 8] pre-
sented a method to obtain the analytical and approximate solutions in the form of series
in the reproducing kernal space for linear and nonlinear system of second order BVPs. In
[9, 10], Dehghan, Saadatmandi, and El-Gamel utilized a numerical approach employing
the Sinc-collocation method for solving second-order nonlinear systems. This method is
acknowledged as effective for problems with potential singularities, infinite domains, or
boundary layers. Furthermore, it is applied to streamline the computation of solutions for
the system represented by equations (1)-(2) into a set of algebraic equations. Local ra-
dial basis function based differential quadrature collocation method [11] is also suggested
to solve system of second order BVPs, this method is easy to implementation and the
results is more efficient. Saadatmandi and J. Askari [12] solved similar systems using
the Chebyshev finite element method. Moreover, the continuous genetic algorithm, as
described in reference [13], has proven to be successful in addressing our problem. Addi-
tionally, a comprehensive analysis of the convergence and sensitivity of genetic operators
and control parameters for the algorithm has been conducted. Finally, [14–16] are also
proposed different methods to solve the system (1)-(2). The aim of this research is to
use CTBSM for solving linear system of second order BVPs. The system had already
been treated using spline collocation approach [17], cubic B-spline scaling functions [18],
B-spline method [19], Extended cubic B-spline method [20], Hybrid cubic B-spline method
[21]. CTBSM was developed to solve dynamical systems in [22], the results are promising.
In our present work, a new trigonometric B-spline technique is described and presented
for solving a linear system of second order BVPs. The technique is based on the cubic
trigonometric B-spline functions. CTBSM is used as an interpolating function in the space
dimension. The regular system is attempted using a trigonometric B-spline collocation
approach constructed over uniform mesh. The efficiency and applicability of the technique
are demonstrated by applying the scheme to solve several examples. The numerical results
demonstrate that this method is superior as it yields more accurate solutions.
The outline of this study is as follows: In section 2, the CTBSM is utilized as an interpo-
lating function in the space dimension for solving a linear system of second order BVPs.
A numerical solution of linear system of second order BVPs is presented in section 3.
Numerical results are also considered in section 4 to show the achievable of the proposed
method. Finally, the concluding remarks of this study are in section 5.
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2. Cubic Trigonometric B-Spline Method

In this section, the CTBSM is applied for the numerical solution of second order BVPs
(1)-(2). Let a = x0 < x1 < ... < xn = b be the mesh point in the interval [a, b] such that
xi = a+ ih, i = 0, 1, 2, ..., n with h = b−a

n .
Let the approximate solution U(x) and V (x) to the exact solution u(x) and v(x) at the
point xi respectively, and can be defined as:


U(x) =

n−1∑
i=−3

αiT
4
i (x), x ∈ [x0, xn], αi ∈ R,

V (x) =

n−1∑
i=−3

βiT
4
i (x), x ∈ [x0, xn], βi ∈ R.

(3)

where αi, βi are real coefficient to be determined for the approximated solutions U(x)
and V (x) respectively and Ti(x) are trigonometric B-spline basis functions which have C2

continuity at each knots and defined over the mesh by [21–23]

T 4
i (x) =

1

ω


p3(xi), x ∈ [xi, xi+1],

p(xi)(p(xi)q(xi+2) + q(xi+3)p(xi+1)) + q(xi+4)p
2(xi+1), x ∈ [xi+1, xi+2],

q(xi+4)(p(xi+1)q(xi+3) + q(xi+4)p(xi+2)) + p(xi)q
2(xi+3), x ∈ [xi+2, xi+3],

q3(xi+4), x ∈ [xi+3, xi+4].

(4)

where, p(xi) = sin(x−xi
2 ), q(xi) = sin(xi−x

2 ), ω = sin(h2 ) sin(h) sin(
3h
2 ).

For the numerical solution of proposed problem, the values of Ti(x) and its derivatives
T

′
i (x), T

′′
i (x) at nodal points are need and recorded in Table. 1.

Table 1: Coefficient of Ti(x), T
′
i (x) and T

′′
i (x)

x xi−1 xi xi+1
Ti(x) m1(x) m2(x) m1(x)

T
′
i (x) m3(x) 0 m4(x)

T
′′
i (x) m5(x) m6(x) m5(x)

where

m1(x) =
sin2(h2 )

sin(h) sin(3h2 )
, m2(x) =

2

1 + 2 cos(h)
, m3(x) =

3

4 sin(3h2 )
, m4(x) =

−3

4 sin(3h2 )
,

m5(x) =
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

, m6(x) =
−3 cot2(h2 )

2 + 4 cos(h)
.
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From equation (3) and (4), the values of U(x), U
′
(x), U

′′
(x), V (x), V

′
(x), and V

′′
(x) at

the knots xi are determined in the terms of αi and βi as
U(xi) = m1(x)αi−3 +m2(x)αi−2 +m1(x)αi−1,

U
′
(xi) = m3(x)αi−3 +m4(x)αi−1,

U
′′
(xi) = m5(x)αi−3 +m6(x)αi−2 +m5(x)αi−1.

(5)

and
V (xi) = m1(x)βi−3 +m2(x)βi−2 +m1(x)βi−1,

V
′
(xi) = m3(x)βi−3 +m4(x)βi−1,

V
′′
(xi) = m5(x)βi−3 +m6(x)βi−2 +m5(x)βi−1.

(6)

3. Solution of System of Second Order Boundary Value Problems

In this section, a numerical solution of a class of system of second order BVPs (1)-(2)
is obtained using collocation approach based on cubic trigonometric basis functions. It is
necessary to satisfy the proposed system of second order differential equation (1)-(2) by
putting the approximate (3) in (1) at x = xi, it follows as:

n−1∑
i=−3

αi[T
′′
i (xi) + a1(xi)T

′
i (xi) + a2(xi)Ti(xi)]+

n−1∑
i=−3

βi[a3(xi)T
′′
i (xi) + a4(xi)T

′
i (xi) + a5(xi)Ti(xi)] = f1(xi), i = 0, 1, ..., n (7)

n−1∑
i=−3

βi[T
′′
i (xi) + b1(xi)T

′
i (xi) + b2(xi)Ti(xi)]+

n−1∑
i=−3

αi[b3(xi)T
′′
i (xi) + b4(xi)T

′
i (xi) + b5(xi)Ti(xi)] = f2(xi), i = 0, 1, ..., n (8)

The boundary conditions (2) can be written as:

n−1∑
i=−3

αiTi(xi) = 0, x = 0, n (9)

n−1∑
i=−3

βiTi(xi) = 0, x = 0, n (10)

The values and derivatives of spline functions at knots xi are determined using Table 1 and
putting in (7)-(10). A system of equations with unknown α−3, α−2, α−1, ..., αn−1, β−3, β−2, β−1, ..., βn−1
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of order (2n+3)× (2n+3) is obtained and can be solved by Thompson algorithm [24] for
the trigonometric spline solution of proposed problem. This system can be written in the
matrix-vector form as follows

AB = C (11)

whereB = [α−3, α−2, ..., αn−1, β−3, β−2, ..., βn−1]
T , C = [0, f1(x0), ..., f1(xn), 0, 0, f2(x0), ..., f2(xn), 0]

T ,
and A is a 2(n+ 3)× 2(n+ 3) matrix given by

A =

M1 | M2

· · · · · · · · ·
M4 | M3

.

where MK ,K = 1, 2, 3, 4 are four submatrices, can be defined as:

M1 =



m1(x) m2(x) m1(x) 0 · · · 0 0
ϵ1(x0) ρ1(x0) τ1(x0) 0 · · · 0 0

0 ϵ1(x1) ρ1(x1) τ1(x1) 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 ϵ1(xn) ρ1(xn) τ1(xn)
· · · · m1(x) m2(x) m1(x)


(n+3)×(n+3)

M2 =



0 0 0 0 · · · 0 0
ϵ2(x0) ρ2(x0) τ2(x0) 0 · · · 0 0

0 ϵ2(x1) ρ2(x1) τ2(x1) 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 ϵ2(xn) ρ2(xn) τ2(xn)
· · · · 0 0 0


(n+3)×(n+3)

M3 =



m1(x) m2(x) m1(x) 0 · · · 0 0
ϵ3(x0) ρ3(x0) τ3(x0) 0 · · · 0 0

0 ϵ3(x1) ρ3(x1) τ3(x1) 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 ϵ3(xn) ρ3(xn) τ3(xn)
· · · · m1(x) m2(x) m1(x)


(n+3)×(n+3)

M4 =



0 0 0 0 · · · 0 0
ϵ4(x0) ρ4(x0) τ4(x0) 0 · · · 0 0

0 ϵ4(x1) ρ4(x1) τ4(x1) 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 ϵ4(xn) ρ4(xn) τ4(xn)
· · · · 0 0 0


(n+3)×(n+3)

The input of M1, M2, M3, and M4 are given below for i = 0, 1, ..., n.

ϵ1(xi) =
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ a1(xi)
−3

4 sin(3h2 )
+ a2(xi)

sin2(h2 )

sin(h) sin(3h2 )
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ρ1(xi) =
−3 cot2(h2 )

2 + 4 cos(h)
+ a1(xi)(0) + a2(xi)

2

1 + 2 cos(h)

τ1(xi) =
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ a1(xi)
3

4 sin(3h2 )
+ a2(xi)

sin2(h2 )

sin(h) sin(3h2 )

ϵ2(xi) = a3(xi)
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ a4(xi)
−3

4 sin(3h2 )
+ a5(xi)

sin2(h2 )

sin(h) sin(3h2 )

ρ2(xi) = a3(xi)
−3 cot2(h2 )

2 + 4 cos(h)
+ a4(xi)(0) + a5(xi)

2

1 + 2 cos(h)

τ2(xi) = a3(xi)
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ a4(xi)
3

4 sin(3h2 )
+ a5(xi)

sin2(h2 )

sin(h) sin(3h2 )

ϵ3(xi) =
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ b1(xi)
−3

4 sin(3h2 )
+ b2(xi)

sin2(h2 )

sin(h) sin(3h2 )

ρ3(xi) =
−3 cot2(h2 )

2 + 4 cos(h)
+ b1(xi)(0) + b2(xi)

2

1 + 2 cos(h)

τ3(xi) =
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ b1(xi)
3

4 sin(3h2 )
+ b2(xi)

sin2(h2 )

sin(h) sin(3h2 )

ϵ4(xi) = b3(xi)
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ b4(xi)
−3

4 sin(3h2 )
+ b5(xi)

sin2(h2 )

sin(h) sin(3h2 )

ρ4(xi) = b3(xi)
−3 cot2(h2 )

2 + 4 cos(h)
+ b4(xi)(0) + b5(xi)

2

1 + 2 cos(h)

τ4(xi) = b3(xi)
3(1 + 3 cos(h))

16 sin2(h2 )(2 cos(
h
2 ) + cos(3h2 ))

+ b4(xi)
3

4 sin(3h2 )
+ b5(xi)

sin2(h2 )

sin(h) sin(3h2 )

Error analysis of the boundary value problem (1) and implementation on method is dis-
cussed in the following section through three numerical examples.

4. Numerical Results and Discussions

Some numerical examples are considered in this section to demonstrate the competency
of the proposed trigonometric spline method. Numerical results found by the method are
compared with existing methods in the literature such as [6] and [19] and with the ana-
lytical solution at knots xi using different N . It was establish that proposed method in
contrast with these methods is more accurate. Absolute errors of the proposed method is
calculated numerically by the following formula [25–27]

L∞ = max
i

| u(xi)− U(xi) | or L∞ = max
i

| v(xi)− V (xi) |
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L2 =

√√√√ N∑
i=1

(u(xi)− U(xi))
2 or L2 =

√√√√ N∑
i=1

(v(xi)− V (xi))
2

Example 1.Consider the following system [6]


u

′′
(x) + (2x− 1)u

′
(x) + cos(πx)v

′
(x) = f1(x)

v
′′
(x) + xu(x) = f2(x)

u(0) = u(1) = 0, v(0) = v(1) = 0,

(12)

where 0<x<1, f1(x) = −π2 sin(πx) + (2x − 1)π cos(πx) + (2x − 1) cos(πx), and f2(x) =
2 + x sin(πx). The exact solutions are u(x) = sin(πx) and v(x) = x2 − x. The errors are
different knots found using CTBSM at h = 1/40 are tabulated in Table 2 and compared
with existing methods. It is concluded that the present CTBSM is acceptable and accurate
than both VIM and CBSM. The numerical results obtained by CTBSM are illustrated in
Fig. 1 and Fig. 2.

Table 2: Comparison of present method with VIM [6] and CBSM [19] for Example 1 for
u(x) and v(x)

x VIM U(x) CBSM U(x) CBSM V (x) CTBSM U(x) CTBSM V (x)
0.0 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 3.30E − 04 1.40E − 04 5.74E − 06 4.27E − 05 6.53E − 06
0.2 2.51E − 03 2.80E − 04 1.13E − 05 5.45E − 05 2.12E − 06
0.3 7.84E − 03 3.90E − 04 1.64E − 05 6.56E − 05 2.45E − 06
0.4 1.66E − 02 4.60E − 04 2.03E − 05 7.29E − 05 2.88E − 06
0.5 2.77E − 02 4.80E − 04 2.26E − 05 7.48E − 05 3.21E − 06
0.6 3.87E − 02 4.60E − 04 2.26E − 05 7.29E − 05 3.22E − 06
0.7 4.59E − 02 3.90E − 04 2.01E − 05 6.56E − 05 2.87E − 06
0.8 4.49E − 02 2.80E − 04 1.51E − 05 5.45E − 05 2.44E − 06
0.9 3.09E − 02 1.50E − 04 8.14E − 06 4.27E − 05 8.87E − 06
1.0 0.00000 0.00000 0.00000 2.07E − 13 1.83E − 13

Figure 1: Numerical solution U(x) and exact solution u(x) for Example 1 with n = 5
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Figure 2: Numerical solution V (x) and exact solution v(x) for Example 1 with n = 5

Example 2.Consider the following equations [17, 28]


u

′′
(x) + u

′
(x) + xu(x) + v

′
(x) + 2xv(x) = f1(x)

v
′′
(x) + v(x) + 2u

′
(x) + x2u(x) = f2(x)

u(0) = u(1) = 0, v(0) = v(1) = 0

(13)

where 0 ≤ x ≤ 1, f1(x) = −2(x+1) cos(x)+π cos(πx)+2x sin(πx)+(4x−2x2−4) sin(x),
and f2(x) = −4(x−1) cos(x)−2(2−x2+x3) sin(x)− (π2−1) sin(πx). The exact solutions
are u(x) = 2(x − 1)sin(x), and v(x) = sin(πx). The Table 3 reports the maximum value
of the errors of present method compared with the results obtained in [8, 9] and exact
solutions. It is concluded that the present CTBSM is more accurate than the methods
developed in [8, 9]. Fig. 3 and Fig. 4 depict the numerical results obtained by CTBSM
at n = 25.

Table 3: Maximum errors for Example 2 with n = 25
x reproducing kernel [8] Sinc method [9] CTBSM

u(x) v(x) u(x) v(x) u(x) v(x)
0.08 3.3E − 03 7.7E − 03 3.2E − 03 1.5E − 03 1.1E − 04 3.2E − 04
0.24 7.7E − 03 2.2E − 02 9.4E − 04 7.0E − 03 1.5E − 04 7.8E − 04
0.40 9.7E − 03 2.7E − 02 2.0E − 03 7.4E − 03 1.3E − 04 1.1E − 03
0.56 9.5E − 03 2.7E − 02 2.2E − 04 1.0E − 02 1.2E − 04 1.1E − 03
0.72 7.3E − 03 2.0E − 02 4.1E − 03 4.4E − 03 8.2E − 05 0.8E − 03
0.88 3.4E − 03 9.4E − 03 1.0E − 02 2.1E − 02 1.3E − 05 3.6E − 04
0.96 1.1E − 03 3.1E − 03 2.1E − 03 6.9E − 03 2.7E − 07 1.3E − 04
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Figure 3: Numerical solution U(x) and exact solution u(x) for Example 2 with n = 5

Figure 4: Numerical solution V (x) and exact solution v(x) for Example 2 with n = 5

Example 3.Finally, we consider the system [19]


u

′′
(x) + xu(x) + xv(x) = 2

v
′′
(x) + 2xv(x) + 2xu(x) = −2

u(0) = u(1) = 0, v(0) = v(1) = 0

(14)

where 0<x<1. The exact solutions are u(x) = x2 − x and v(x) = x − x2. The
approximate and exact solutions at the nodal point are displayed in Table 4. Also, from
the table, the approximate solutions agree with the exact solutions. The errors at difficult
knots and absolute errors obtained by using proposed CTBSM at n = 21 are tabulated
in Table 5 and compared with existing methods [19]. It is concluded that the present
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CTBSM is acceptable and accurate than CBSM [19]. The numerical results obtained by
CTBSM are illustrated in Fig. 5 and Fig. 6.

Table 4: Comparison of present method with exact solution for Example 3 with n = 5
x Exact Solution u(x) Approx. Solution U(x) Absolute error Exact Solution v(x) Approx. Solution V (x) Absolute error
0.2 −0.160000 −0.160000 3.763546E − 16 0.160000 0.160000 4.216428E − 16
0.4 −0.240000 −0.240000 2.352348E − 17 0.240000 0.240000 5.807326E − 16
0.6 −0.240000 −0.240000 9.682004E − 16 0.240000 0.240000 2.472546E − 16
0.8 −0.160000 −0.160000 3.258334E − 15 0.160000 0.160000 3.371215E − 15

Table 5: Comparison of errors norms for CBSM and CTBSM for Example 3 with n = 21
for u(x) and v(x)

CBSM CTBSM
Errors u(x) v(x) u(x) v(x)

Max-Norm 3.72E − 13 2.53E − 13 1.25E − 13 1.22E − 13
L2-Norm 4.37E − 13 4.37E − 13 2.44E − 13 2.18E − 13

Figure 5: Numerical solution U(x) and exact solution u(x) for Example 3 with n = 5
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Figure 6: Numerical solution V (x) and exact solution v(x) for Example 3 with n = 5

5. Conclusions

In this paper, a numerical approach grounded on CTBSM has been utilized to solve
linear system of second order boundary value problems. The CTBSM used in this paper
is simple and straight forward to apply. The numerical results reported in the tables and
depicted in the graphs illustrated the validity of the method and provided highly accu-
rate solutions that are superior when compared with other available methods or compare
favorably with them to say the least.
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