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A general family of fifth-order iterative methods for
solving nonlinear equations
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Abstract. A family of fifth-order iterative methods is proposed for solving nonlinear equations
using the weight function technique. This family offers flexibility through its structure and the
choice of weight functions, resulting in a wide range of new specific schemes. It is demonstrated that
this proposed family includes several well-known and recent methods as special cases. In addition,
several new particular methods are designed to achieve better results than existing methods of the
same type. Convergence analysis is conducted, and numerical examples in both real and complex
domains are provided for several specific schemes within the proposed family. Comparisons between
the existing methods within this family and the newly introduced methods generally indicate
improved performance among the new members. Notably, the study of complex dynamics and
basins of attraction reveals that our new specific schemes have broader sets of initial points that
lead to convergence.
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1. Introduction

Solving nonlinear equations is a very important problem in various fields of science
and technology [2]. It is mostly impossible to find exact or analytical solutions for these
equations. Therefore, iterative methods are used to find approximate solutions for them.
In the literature, numerous iterative methods have been developed for approximating a
root of a nonlinear equation f(x) = 0. Newton’s method is the most popular and widely
used iterative scheme defined by

xn+1 = xn − f(xn)
f ′(xn) , n = 0, 1, . . . ,

where x0 is the initial approximation to a root α. It is well known that this method is
quadratically convergent to simple roots. A root α is simple if f(α) = 0 but f ′(α) ̸= 0.
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In the last two decades, many higher order iterative methods have been derived and
analyzed for solving nonlinear equations, see [1–4, 6–12, 14–23] and the references therein.
In particular, many fifth-order iterative methods are found in the literature, see [6, 7, 9–
12, 14, 18, 20].

Commonly, the order of convergence and the efficiency index are important in rating
iterative methods. The efficiency index E.I. is defined as E.I. = p

1
d , where p is the order of

convergence and d is the total number of new function evaluations per iteration. According
to the Kung and Traub conjecture [13] a multi-point method which uses d evaluations could
achieve, at most, a convergence order p = 2d−1. Methods that reach this bound are known
as optimal. According to the Kung -Traub conjecture, a fifth-order scheme requires a
minimum of four function evaluations per iteration.

To achieve fifth-order convergence, several authors have modified classical methods
such as Newton’s method, Chebyshev’s method, and Chebyshev-Halley’s method [7, 11,
12, 18]. But these methods require the evaluation of the second derivative, which can be
expensive. Recently, several fifth-order methods have been developed by using the weight
function technique [10, 14, 20].

In this paper, a two-step family of fifth-order iterative methods is presented. Conver-
gence analysis is established, and a general error equation is derived for the family. The
methods in this family require four new function evaluations per iteration, which is the min-
imum number of new function evaluations per iteration for fifth-order iterative methods,
in the sense of Kung -Traub conjecture. Thus, the efficiency index is E.I. = 5 1

4 = 1.495.
The presented family has the flexibility of choice in its formation and in selecting

suitable weight functions, offering a large number of particular schemes. It is shown
that several well-known and recent schemes are considered as special cases of the family.
Namely, these methods include the Ham and Chun method [9], the Fang et al. method
[6], the Sivakumar and Jayaraman method [20], the Liu et al. method [14], and the recent
method of Khirallah and Alkhomsan [10].

Furthermore, the flexibility of choice within the presented family enables us to establish
several specific schemes that exhibit better stability compared to existing methods of the
same type. Indeed, four new particular schemes are deduced from the general family.
Numerical results and the basins of attraction show better performance for the new schemes
compared with the existing schemes mentioned above.

This paper is organized as follows: Section 2 provides preliminaries. Section 3 presents
the construction and convergence analysis of the new family of fifth-order methods. In
Section 4, some special cases of the proposed family are established. Also, some well-known
schemes are listed as particular cases of the proposed family. Section 5 is devoted to study
the stability of particular methods by using the basins of attraction technique. In section
6, numerical results for particular methods in real domain are given and comparisons are
made.

2. Preliminaries

Definition 1. [5] Suppose {xn} is a sequence that converges to a limit α. If there exist
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an integer constant p ≥ 1 and a non-zero constant C such that

lim
n→∞

xn+1 − α

(xn − α)p
= C,

then p is called the order of convergence and C is called the asymptotic error constant.

Let en = xn − α is the error in the nth iteration. The equation

en+1 = Cep
n + O(ep+1

n )

is called the error equation for the method, where p is the order of convergence, see [23].

Definition 2. [23] Let α be a root of f(x) = 0 and suppose that xn−1, xn, and xn+1
are three consecutive iterations closer to the root α. Then the computational order of
convergence can be computed by using the formula

p ≈ ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)| .

3. Construction of the new family and convergence analysis

Assume that α is a simple root of f(x) = 0, where f : I ⊆ R → R is a sufficiently
differentiable function. The new family of fifth-order iterative methods consists of two
steps as follows:

yn = xn − f(xn)
f ′(xn) , (1)

xn+1 = yn − G(ηn) f(yn)
Af ′(xn) + Bf ′(yn) , (2)

where A and B are parameters, and G is a weight function in terms of

ηn = 1 − f ′(yn)
f ′(xn) . (3)

The first step of this family involves the classical Newton’s method. In the second step,
the parameters A and B are chosen arbitrarily. Then, the weight function G is designed to
achieve fifth-order convergence, as demonstrated in Theorem 1. Note that, the symbolic
computations in all proofs in this paper are performed by using Maple software.

Remark 1. In this paper, we remark that:

(i) The notation yn given in (1) represents the Newton step.

(ii) The conventional notation cj = f (j)(α)
j!f ′(α) , j = 2, 3, ... is employed.
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Theorem 1. Let α ∈ I be a simple root of a sufficiently differentiable function f : I ⊆
R → R for an open interval I. If x0 is sufficiently close to α, and the weight function
G(η) satisfies

G(0) = A + B, G′(0) = A, G′′(0) = 5A + B

2 , (4)

then the iterative family (2) converges to α with order of convergence five and satisfies the
error equation

en+1 =
((

14A + 4B − 4
3G′′′(0)

)
c4

2
A + B

− c2
2c3

)
e5

n + O(e6
n). (5)

Provided A + B ̸= 0 and |G′′′(0)| < ∞.

Proof. Expanding f(xn) and f ′(xn) about α by using Taylor’s series, we get

f(xn) = f ′(α)[en + c2e2
n + c3e3

n + c4e4
n + c5e5

n] + O(e6
n) (6)

and
f ′(xn) = f ′(α)[1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n + 6c6e5
n] + O(e6

n). (7)

From (6) and (7), we get

f(xn)
f ′(xn) = en − c2e2

n + (2c2
2 − 2c3)e3

n + (−4c3
2 + 7c2c3 − 3c4)e4

n

+ (8c4
2 − 20c2

2c3 + 10c2c4 + 6c2
3 − 4c5)e5

n + O(e6
n). (8)

Subtracting α from both sides of (1), then using en = xn − α and inserting (8), we have

yn − α = en − f(xn)
f ′(xn)

= c2e2
n − (2c2

2 − 2c3)e3
n − (−4c3

2 + 7c2c3 − 3c4)e4
n

− (8c4
2 − 20c2

2c3 + 10c2c4 + 6c2
3 − 4c5)e5

n + O(e6
n). (9)

Expanding f(yn) and f ′(yn) about α and using (9) we obtain

f(yn) = f ′(α)[c2e2
n + (−2c2

2 + 2c3)e3
n + (5c3

2 − 7c2c3 + 3c4)e4
n

− 2(6c4
2 − 12c2

2c3 + 5c2c4 + 3c2
3 − 2c5)e5

n] + O(e6
n) (10)

and

f ′(yn) = f ′(α)[1 + 2c2
2e2

n − (4c3
2 − 4c2c3)e3

n + (8c4
2 − 11c2

2c3 + 6c2c4)e4
n

− 2c2(8c4
2 − 14c2

2c3 + 10c2c4 − 4c5)e5
n] + O(e6

n). (11)

From (7), (10), and (11), we have
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f(yn)
Af ′(xn) + Bf ′(yn) = c2e2

n

A + B
+
[
(−4c2

2 + 2c3)A − 2(c2
2 − c3)B

] e3
n

(A + B)2

+
[
(13c3

2 − 14c2c3 + 3c4)A2 + (12c3
2 − 21c3c2 + 6c4)AB

+ (3c3
2 − 7c3c2 + 3c4)B2

] e4
n

(A + B)3

+
[
(−38c4

2 + 64c2
2c3 − 20c2c4 − 12c2

3 + 4c5)A3

− (48c4
2 − 124c2

2c3 + 50c2c4 + 30c2
3 − 12c5)BA2

− (22c4
2 − 76c2

2c3 + 40c2c4 + 24c2
3 − 12c5)B2A

− (4c4
2 − 16c2

2c3 + 10c2c4 + 6c2
3 − 4c5)B3

] e5
n

(A + B)4 + O(e6
n). (12)

Using (7) and (11) we can write the weight function variable η given in (3) as

ηn = 1 − f ′(yn)
f ′(xn)

= 2c2en + (−6c2
2 + 3c3)e2

n + (16c3
2 − 16c2c3 + 4c4)e3

n

+(−40c4
2 + 61c2

2c3 − 22c2c4 − 9c2
3 + 5c5)e4

n

+(96c5
2 − 198c3

2c3 + 88c2
2c4 + 66c2c2

3 − 28c2c5 − 24c3c4 + 6c6)e5
n + O(e6

n). (13)

Then, expanding the weight function G(ηn) around zero, we get

G(ηn) = G(0) + G′(0)ηn + G′′(0)
2 η2

n + G′′′(0)
6 η3

n + . . .

= G(0) + 2G′(0)c2en +
[
(−6c2

2 + 3c3)G′(0) + 2G′′(0)c2
2

]
e2

n

+
[
(48G′(0) − 36G′′(0) + 4G′′′(0))c3

2
3 − (16G′(0) − 6G′′(0))c2c3 + 4G′(0)c4

]
e3

n + · · · .

(14)

Because the least order in equation (12) is two, we expand G(ηn) to the third order.
Finally, according to (9), (12) and (14), the error equation of the scheme (2) is

en+1 = yn − α − G(ηn) f(yn)
Af ′(xn) + Bf ′(yn)

= [A + B − G(0)]c2
e2

n

A + B
+
[
(−2c2

2 + 2c3)A2

+
(
(−4c2

2 + 4c3)B + (4G(0) − 2G′(0))c2
2 − 2G(0)c3

)
A

− 2
(
(c2

2 − c3)B + (−G(0) + G′(0))c2
2 + G(0)c3

)
B
] e3

n

(A + B)2
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+
[(

4A3 + (12B − 13G(0) + 14G′(0) − 2G′′(0))A2 + (12B − 12G(0) + 24G′(0)

− 4G′′(0))AB + (4B − 3G(0) + 10G′(0) − 2G′′(0))B2
)

c3
2

− 7(A + B)(A2 + (2B − 2G(0) + G′(0))A + B(B − G(0) + G′(0)))c2c3

+ 3c4(A + B)2(A + B − G(0))
] e4

n

(A + B)3 + ξe5
n + O(e6

n), (15)

where ξ = ξ (A, B, c2, ..., c5, G(0), G′(0), G′′(0), G′′′(0)) is the coefficient of e5
n.

To obtain a fifth-order convergence, we need the coefficients of e2
n, e3

n and e4
n in (15)

to be zero. It is clear that the first condition in (4) makes the coefficient of e2
n zero. To

simplify the calculations, we substitute G(0) = A + B in (15), to get

en+1 = 2c2
2[A − G′(0)] e3

n

A + B
− c2

[(
9A2 +

(
4B − 14G′(0) + 2G′′(0)

)
A

− (B + 10G′(0) − 2G′′(0))B
)

c2
2 − (7c3(A − G′(0))(A + B))

] e4
n

(A + B)2

+ γe5
n + O(e6

n), (16)

where γ = γ(A, B, c2, ..., c5, G′(0), G′′(0), G′′′(0)).
Obviously, the second condition in (4) eliminates the third-order error. Thus, applying

G′(0) = A in (16) leads to

en+1 = c3
2(5A + B − 2G′′(0)) e4

n

A + B
+ µe5

n + O(e6
n), (17)

where µ = µ(A, B, c2, ..., c5, G′′(0), G′′′(0)).
By applying the third condition in (4), the fourth-order error vanishes in the error

equation (17). That is, using G′′(0) = 5A + B

2 results in

en+1 =
((

14A + 4B − 4
3G′′′(0)

)
c4

2
A + B

− c2
2c3

)
e5

n + O(e6
n).

This ends the proof of the theorem.
The case A+B = 0 is excluded from Theorem 1. In this case, without loss of generality,

the family of methods (2) can be written as

xn+1 = yn − G(ηn) f(yn)
f ′(xn) − f ′(yn) . (18)

For the scheme (18), we have the following convergence result.

Theorem 2. Let α ∈ I be a simple root of a sufficiently differentiable function f : I ⊆
R → R for an open interval I. If x0 is sufficiently close to α, and the weight function
G(η) satisfies

G(0) = 0, G′(0) = 1, G′′(0) = 2, G′′′(0) = 15
2 , (19)
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then the iterative scheme (18) converges to α with order of convergence five and satisfies
the error equation

en+1 =
(1

3
(
42 − G(4)(0)

)
c4

2 − c2
2c3

)
e5

n + O(e6
n). (20)

Provided |G(4)(0)| < ∞.

Proof. Following the proof of Theorem 1, according to (7), (10) and (11), we have

f(yn)
f ′(xn) − f ′(yn) = en

2 + −2c2
2 + c3
4c2

e2
n + · · · . (21)

Since the least order in (21) is one, we expand G(ηn) to the fourth order, i.e.

G(ηn) = G(0) + G′(0)ηn + G′′(0)η2
n

2 + G′′′(0)η3
n

6 + G(4)(0)η4
n

24 + · · · . (22)

Now, combining (9), (13), (21) and (22), we get the error equation for the scheme (18)

en+1 = yn − α − G(ηn) f(yn)
f ′(xn) − f ′(yn)

= −G(0)en

2 +
[
(2G(0) − 4G′(0) + 4)c2

2 − G(0)c3
] e2

n

4c2
+ · · · . (23)

To make the coefficients of en and e2
n zero, we obtain the first two conditions in (19), i.e.

G(0) = 0 and G′(0) = 1. Substituting these values in the error equation (23), we get

en+1 = −c2
2(G′′(0)−2)e3

n +7c2

[(
G′′(0) − 2G′′′(0)

21 − 9
7

)
c2

2 − c3(G′′(0) − 2)
2

]
e4

n + · · · .

It is clear that setting G′′(0) = 2 eliminates the third-order error. Subsequently, the
fourth-order error is eliminated when G′′′(0) = 15

2 . Therefore, we establish the third and
fourth conditions in (19), leading to the following form of the error equation

en+1 =
(1

3
(
42 − G(4)(0)

)
c4

2 − c2
2c3

)
e5

n + O(e6
n).

Thus, the proof is complete.

4. Particular cases of the proposed family

Many fifth-order iterative methods can be derived from the family (2) because of the
arbitrary nature of A and B. Furthermore, several weight functions can satisfy (4) for a
specific choice of A and B. Here, some well-known methods are listed as particular cases
of the family (2):



A. Zein / Eur. J. Pure Appl. Math, 16 (4) (2023), 2323-2347 2330

(i) Let A = −1 and B = 5, then the weight function G(η) satisfies the condition (4) if:

G(0) = 4, G′(0) = −1, G′′(0) = 0.

Taking G(η) = 4 − η, the scheme (2) becomes

xn+1 = yn −
[

f ′(yn) + 3f ′(xn)
5f ′(yn) − f ′(xn)

]
f(yn)
f ′(xn) , (24)

which is the method proposed by Ham and Chun (HCM) [9].

(ii) If A = 1 and B = 0, then (4) holds if G(η) satisfies

G(0) = 1, G′(0) = 1, G′′(0) = 5
2 . (25)

Taking G(η) = 5 + 3(1 − η)2

1 + 7(1 − η)2 , the scheme (2) takes the form

xn+1 = yn −
[

5f ′2(xn) + 3f ′2(yn)
f ′2(xn) + 7f ′2(yn)

]
f(yn)
f ′(xn) , (26)

which is the method of Fang et al. (FLM) [6].

Another choice for the weight function satisfying (25) is G(η) = 1 + η + 5
4η2 − 1

6η3,
leading to the following scheme

xn+1 = yn −
[
2 − f ′(yn)

f ′(xn) + 5
4

(
1 − f ′(yn)

f ′(xn)

)2
− 1

6

(
1 − f ′(yn)

f ′(xn)

)3] f(yn)
f ′(xn) , (27)

this is a special iterative scheme of the second family of fifth-order iterative methods
introduced by Liu et al. (LM) [14].

(iii) Suppose A = 0 and B = 1, by (4)

G(0) = 1, G′(0) = 0, G′′(0) = 1
2 .

We can choose G(η) = 1 + 1
4η2, then the corresponding method is given as

xn+1 = yn −
[

5
4 − f ′(yn)

2f ′(xn) + f ′2(yn)
4f ′2(xn)

]
f(yn)
f ′(yn) , (28)

which is the method of Sivakumar and Jayaraman (PJM) [20].
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(iv) Let A = 1 and B = 1, then G(η) satisfies (4) if

G(0) = 2, G′(0) = 1, G′′(0) = 3.

Assuming the weight function as G(η) = 4 − 4η

2 − 3η
, we get the method of Khirallah

and Alkhomsan (AMK1) [10]

xn+1 = yn +
[ 4f ′(yn)

f ′(xn) − 3f ′(yn)

]
f(yn)

f ′(xn) + f ′(yn) . (29)

Next, we present four new particular methods of the family (2) by considering alter-
native choices for A and B as follows:

1. If A = −2 and B = 7, the weight function G(η) satisfies the condition (4) if

G(0) = 5, G′(0) = −2, G′′(0) = −3
2 .

Taking G(η) = 40 − 31η

8 − 3η
, the scheme (2) takes the form

xn+1 = yn −
[9f ′(xn) + 31f ′(yn)

5f ′(xn) + 3f ′(yn)

]
f(yn)

7f ′(yn) − 2f ′(xn) . (30)

We denote this new scheme as AZ1.

2. Let A = −1 and B = 4, the condition (4) holds if the weight function G(η) satisfies

G(0) = 3, G′(0) = −1, G′′(0) = −1
2 .

Assuming G(η) = 12 − 7η

4 − η
, then the resulting scheme (AZ2) is given as

xn+1 = yn −
[5f ′(xn) + 7f ′(yn)

3f ′(xn) + f ′(yn)

]
f(yn)

4f ′(yn) − f ′(xn) . (31)

3. Let A = 10 and B = 3, then the weight function G(η) satisfies the condition (4) if

G(0) = 13, G′(0) = 10, G′′(0) = 53
2 .

Using G(η) = 1040 − 578η

80 − 106η
leads to the following scheme (AZ3)

xn+1 = yn −
[231f ′(xn) + 289f ′(yn)

−13f ′(xn) + 53f ′(yn)

]
f(yn)

10f ′(xn) + 3f ′(yn) . (32)
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4. If A = 1 and B = −1, i.e. A + B = 0, then the weight function G(η) is selected to
satisfy the condition (19) in Theorem 2 to obtain fifth-order schemes of type (18).
Several forms for G(η) can be designed to satisfy (19). For example, assuming

G(η) = −4η

η3 + η2 + 4η − 4 ,

we obtain the following scheme (AZ4)

xn+1 = yn + 4f ′2(xn)f(yn)
(f ′(xn) − f ′(yn))2 (2f ′(xn) − f ′(yn)) − 4f ′2(xn)f ′(yn)

. (33)

The error equations for the methods mentioned above are derived using the general
error equation (5) when A+B ̸= 0 and the error equation (20) when A+B = 0. As shown,
error equation (5) involves the evaluation of G′′′(0), while error equation (20) requires the
evaluation of G(4)(0). Table 1 presents the mentioned methods along with their respective
error equations

Table 1: Error equations for particular methods within the proposed family of iterative
methods (2).

Method Equation Error equation

HCM (24) en+1 =
(3

2c4
2 − c2

2c3

)
e5

n + O(e6
n)

FLM (26) en+1 =
(7

2c4
2 − c2

2c3

)
e5

n + O(e6
n)

LM (27) en+1 =
(46

3 c4
2 − c2

2c3

)
e5

n + O(e6
n)

PJM (28) en+1 =
(
4c4

2 − c2
2c3
)

e5
n + O(e6

n)

AMK1 (29) en+1 = −c2
2c3e5

n + O(e6
n)

AZ1 (30) en+1 =
( 9

20c4
2 − c2

2c3

)
e5

n + O(e6
n)

AZ2 (31) en+1 =
(5

6c4
2 − c2

2c3

)
e5

n + O(e6
n)

AZ3 (32) en+1 =
(231

260c4
2 − c2

2c3

)
e5

n + O(e6
n)

AZ4 (33) en+1 = −c2
2c3e5

n + O(e6
n)
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5. Basins of attraction

Any iterative method can converge if the initial estimate is chosen appropriately, re-
gardless of the order of convergence. Therefore, applying an iterative method to some
test functions for one or more initial estimates does not fully illustrate the stability of the
method. To address this, many authors have considered complex dynamics and basins of
attraction for testing the stability and reliability of iterative methods, see [2, 3, 8, 10].
Indeed, basins of attraction shows how an iterative method converges based on different
initial estimates in a specified region. This technique generates a picture in complex plane
that provides a visual comparison for different methods.

To plot the basins of attraction, we specify a rectangular region, denoted as D, in
the complex plane that contains all the roots of the considered complex polynomial g(z).
Different colors are assigned to different roots at a point z0 ∈ D based on the corresponding
roots to which the method converges when starting from z0. The brightness of the colors
depends on the number of iterations required for convergence; a brighter color indicates
fewer iterations, while a darker color indicates that the method requires more iterations.
Points in the region D are assigned the black color if the method does not converge
according to the convergence criteria. In this section, we assume a tolerance of 10−3 with
a maximum of 20 iterations.

Table 2: Complex polynomials and their roots.

Function Roots

g1(z) = z2 − 1 ±1

g2(z) = z3 − 1 1, − 0.5 ± 0.866025i

g3(z) = z3 + z + i −0.56228 − 0.662359i, 1.32472i, 0.56228 − 0.662359i

g4(z) = z4 − 1 ±1, ± i

g5(z) = z4 − z + i −0.759845 + 0.592595i, − 0.532605 − 1.08829i,
0.181924 + 0.732098i, 1.11052 − 0.236405i

g6(z) = z5 − 1 1, − 0.809017 ± 0.587785i, 0.309017 ± 0.951057i

g7(z) = z6 − 1 ±1, − 0.5 ± 0.866025i, 0.5 ± 0.866025i

g8(z) = z11 − 1 1, − 0.959493 ± 0.281733i, −0.654861 ± 0.75575i,
−0.142315 ± 0.989821i, 0.415415 ± 0.909632i,

0.841254 ± 0.540641i

g9(z) = z6 + 10z3 − 8 −2.20663, 0.906359, −0.45318 ± 0.78493i, 1.10332 ± 1.911i

g10(z) = z(z2 + 1)(z2 − 4) 0, ± i, ±2
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In Table 2, ten complex polynomials are listed with their roots as test cases. We use
the region D = [−2, 2] × [−2, 2] for polynomials g1, g2, ..., g8, and D = [−3, 3] × [−3, 3] for
g9 and g10. A grid of 320 × 320 points is used in all experiments.

We compare the results of our new particular methods from the proposed family,
namely AZ1 (30), AZ2 (31), AZ3 (32), and AZ4 (33), with those of well-known methods:
HCM (24), FLM (26), LM (27), PJM (28), and AMK1 (29). To provide a summary, these
methods are listed in Table 3.

Table 3: Particular methods within the family (2). The first step is yn = xn − f(xn)
f ′(xn) in

all methods.

Method Second step of the method

HCM xn+1 = yn −
[

f ′(yn) + 3f ′(xn)
5f ′(yn) − f ′(xn)

]
f(yn)
f ′(xn)

FLM xn+1 = yn −
[

5f ′2(xn) + 3f ′2(yn)
f ′2(xn) + 7f ′2(yn)

]
f(yn)
f ′(xn)

LM xn+1 = yn −
[
2 − f ′(yn)

f ′(xn) + 5
4

(
1 − f ′(yn)

f ′(xn)

)2
− 1

6

(
1 − f ′(yn)

f ′(xn)

)3] f(yn)
f ′(xn)

PJM xn+1 = yn −
[

5
4 − f ′(yn)

2f ′(xn) + f ′2(yn)
4f ′2(xn)

]
f(yn)
f ′(yn)

AMK1 xn+1 = yn +
[ 4f ′(yn)

f ′(xn) − 3f ′(yn)

]
f(yn)

f ′(xn) + f ′(yn)

AZ1 xn+1 = yn −
[9f ′(xn) + 31f ′(yn)

5f ′(xn) + 3f ′(yn)

]
f(yn)

7f ′(yn) − 2f ′(xn)

AZ2 xn+1 = yn −
[5f ′(xn) + 7f ′(yn)

3f ′(xn) + f ′(yn)

]
f(yn)

4f ′(yn) − f ′(xn)

AZ3 xn+1 = yn −
[231f ′(xn) + 289f ′(yn)

−13f ′(xn) + 53f ′(yn)

]
f(yn)

10f ′(xn) + 3f ′(yn)

AZ4 xn+1 = yn + 4f ′2(xn)f(yn)
(f ′(xn) − f ′(yn))2 (2f ′(xn) − f ′(yn)) − 4f ′2(xn)f ′(yn)
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In Table 4, the number of black points is given for all test cases with the average value
across all cases for each method. In Figures 1, 2, 3, and 4, we illustrate the basins of
attraction for the functions g2, g4, g5, and g6, respectively.

It is clear that our four new methods and the AMK1 method exhibit good dynamical
behavior, i.e they are more stable than other methods. Based on the number of black points
for the given test functions, we can rank the best methods as follows: AZ1, followed by
AMK1, then AZ2 and AZ3 being nearly equal, and then AZ4.

Table 4: Number of black points for iterative methods for each test case and average
across all cases.

MD g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 Average

HCM 320 415 108 3688 54 6997 11002 18087 1714 104 4249
FLM 488 1035 450 9296 282 13627 18556 31282 5572 272 8086
LM 612 10929 4969 27936 10469 29856 32916 41961 22971 5742 18836
PJM 326 2928 1066 14844 1343 16903 20024 32524 8446 928 9933
AMK1 320 0 49 640 0 141 726 6541 8 0 842
AZ1 320 0 0 640 0 77 740 6017 0 0 779
AZ2 320 0 6 656 0 200 982 6543 10 0 872
AZ3 320 0 8 656 0 163 930 6659 0 0 874
AZ4 320 0 29 648 0 197 926 7161 11 0 929
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(a) HCM (b) FLM (c) LM

(d) PJM (e) AMK1 (f) AZ1

(g) AZ2 (h) AZ3 (i) AZ4

Figure 1: Basins of attraction associated with g2(z) = z3 − 1
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(a) HCM (b) FLM (c) LM

(d) PJM (e) AMK1 (f) AZ1

(g) AZ2 (h) AZ3 (i) AZ4

Figure 2: Basins of attraction associated with g4(z) = z4 − 1
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(a) HCM (b) FLM (c) LM

(d) PJM (e) AMK1 (f) AZ1

(g) AZ2 (h) AZ3 (i) AZ4

Figure 3: Basins of attraction associated with g5(z) = z4 − z + i
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(a) HCM (b) FLM (c) LM

(d) PJM (e) AMK1 (f) AZ1

(g) AZ2 (h) AZ3 (i) AZ4

Figure 4: Basins of attraction associated with g6(z) = z5 − 1

6. Numerical results

In this section, we consider numerical examples to confirm the order of convergence
and demonstrate the efficiency of the newly constructed methods: AZ1 (30), AZ2 (31),
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AZ3 (32), and AZ4 (33). We compare these new methods with the well-known methods:
HCM (24), FLM (26), LM (27), PJM (28), and AMK1 (29). All these methods, as shown,
belong to the proposed family (2).

All computations are performed using Maple 2021 with a precision of 2000 significant
digits. The applied stopping criterion is defined as |xn−xn−1| < 10−50. The computational
order of convergence ρ is approximated by using the formula [4]

ρ = ln |(xn+1 − xn)/(xn − xn−1)|
ln |(xn − xn−1)/(xn−1 − xn−2)| .

Table 5 lists eight of the most frequently used test functions in research. Their simple
roots are provided up to 25 decimal places. Tables 6, 7, 8, and 9 display the following
metrics: the number of iterations (N) at which the stopping criterion is satisfied, the
computational order of convergence (ρ), the error |xN −xN−1|, |f(xN )|, and the processing
time in seconds. The processing time is determined as the mean of 10,000 executions to
obtain reasonably accurate values.

Table 5: The test functions and their simple roots.

Function Root

f1(x) = x3 + 4x2 − 10 1.365230013414096845760807
f2(x) = sin2 x − x2 + 1 1.404491648215341226035087
f3(x) = x2 − ex − 3x + 2 0.257530285439860760455367
f4(x) = ln(x2 + x + 2) − x + 1 4.152590736757158274996989

f5(x) = xex2 − sin2 x + 3 cos x + 5 −1.207647827130918927009417
f6(x) = esin x − x + 1 2.630664147927903633975327
f7(x) = x5 + x − 10000 6.308777129972689094767572
f8(x) =

√
x2 + 2x + 5 − 2 sin x − x2 + 3 2.331967655883964010308044

Clearly, the computational order of convergence for all considered methods confirms
the theoretical analysis. The numerical results categorize the methods into two groups:

• The methods AZ1, AZ2, AZ3, AZ4 and AMK1.

• The methods HCM, FLM, LM, PJM.

In general, for the given test functions, the first category yields better results than the
second category, with fewer iterations in some test cases and higher accuracy in most cases.
Indeed, the results for the methods in the first category are comparable. It appears that
for some cases, AMK1 is the best method, while AZ1 is the best choice for other cases.

Based on the processing time, it seems that the methods HCM, AMK1, AZ1, AZ2,
and AZ3 require less execution time compared to the other methods.
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Table 6: Numerical results for test functions f1(x) and f2(x).

Function Method x0 N |xN − xN−1| |f(xN )| ρ Time

f1 HCM 0.8 4 9.15 × 10−51 7.63 × 10−251 5.00 0.0019
FLM 5 1.80 × 10−183 5.92 × 10−914 5.00 0.0031
LM 28 1.89 × 10−101 3.46 × 10−503 4.99 0.0203
PJM 5 2.49 × 10−137 3.44 × 10−683 5.00 0.0030
AMK1 4 1.34 × 10−68 1.02 × 10−340 4.99 0.0021
AZ1 4 3.34 × 10−86 7.82 × 10−429 5.00 0.0025
AZ2 4 7.14 × 10−70 1.03 × 10−346 5.00 0.0022
AZ3 4 1.93 × 10−67 1.62 × 10−334 5.00 0.0021
AZ4 5 1.02 × 10−222 2.63 × 10−1111 5.00 0.0032

f1 HCM 2.0 4 6.00 × 10−74 9.22 × 10−367 4.99 0.0019
FLM 4 3.12 × 10−63 9.16 × 10−313 4.99 0.0024
LM 5 1.41 × 10−248 7.94 × 10−1239 5.00 0.0040
PJM 4 4.60 × 10−63 7.39 × 10−312 4.99 0.0024
AMK1 4 1.97 × 10−111 7.12 × 10−555 5.00 0.0021
AZ1 4 2.72 × 10−90 2.80 × 10−449 5.00 0.0025
AZ2 4 3.76 × 10−81 4.18 × 10−403 4.99 0.0022
AZ3 4 2.63 × 10−80 7.62 × 10−399 4.99 0.0022
AZ4 4 1.31 × 10−88 9.11 × 10−441 4.99 0.0029

f2 HCM 1.0 5 2.64 × 10−195 1.63 × 10−973 5.00 0.0036
FLM 5 1.65 × 10−128 3.83 × 10−639 5.00 0.0045
LM 6 1.17 × 10−135 3.10 × 10−674 5.00 0.0063
PJM 5 1.26 × 10−66 1.16 × 10−329 5.00 0.0051
AMK1 4 7.61 × 10−63 3.42 × 10−312 4.99 0.0032
AZ1 4 1.11 × 10−83 4.82 × 10−416 4.99 0.0033
AZ2 4 1.03 × 10−58 7.55 × 10−291 5.00 0.0030
AZ3 4 1.71 × 10−56 1.01 × 10−279 5.00 0.0032
AZ4 5 4.28 × 10−168 1.92 × 10−838 5.00 0.0054

f2 HCM 3.0 5 9.57 × 10−195 1.02 × 10−970 5.00 0.0039
FLM 5 3.00 × 10−167 7.69 × 10−833 5.00 0.0039
LM 5 2.01 × 10−128 4.63 × 10−638 4.99 0.0050
PJM 5 7.36 × 10−167 7.77 × 10−831 5.00 0.0042
AMK1 5 7.32 × 10−250 2.81 × 10−1247 5.00 0.0044
AZ1 5 1.41 × 10−226 1.61 × 10−1130 5.00 0.0046
AZ2 5 2.87 × 10−210 1.25 × 10−1048 5.00 0.0039
AZ3 5 1.41 × 10−208 3.95 × 10−1040 5.00 0.0046
AZ4 5 1.24 × 10−249 3.88 × 10−1246 5.00 0.0044
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Table 7: Numerical results for test functions f3(x) and f4(x).

Function Method x0 N |xN − xN−1| |f(xN )| ρ Time

f3 HCM −1.0 4 5.87 × 10−104 1.01 × 10−519 4.99 0.0021
FLM 4 2.26 × 10−95 5.12 × 10−477 5.00 0.0024
LM 4 1.35 × 10−74 1.12 × 10−372 5.00 0.0026
PJM 4 1.40 × 10−95 3.91 × 10−478 4.99 0.0027
AMK1 4 2.91 × 10−88 3.93 × 10−441 4.99 0.0022
AZ1 4 8.63 × 10−92 8.38 × 10−459 4.99 0.0020
AZ2 4 2.55 × 10−95 1.77 × 10−476 4.99 0.0022
AZ3 4 6.94 × 10−96 2.62 × 10−479 4.99 0.0024
AZ4 4 2.41 × 10−91 1.52 × 10−456 4.99 0.0024

f3 HCM 1.5 4 8.53 × 10−80 6.53 × 10−399 5.00 0.0021
FLM 4 3.57 × 10−82 5.09 × 10−411 5.00 0.0023
LM 4 1.11 × 10−84 4.32 × 10−423 5.00 0.0028
PJM 4 9.64 × 10−83 6.08 × 10−414 4.99 0.0023
AMK1 4 2.46 × 10−78 1.70 × 10−391 5.00 0.0022
AZ1 4 8.94 × 10−79 1.00 × 10−393 5.00 0.0023
AZ2 4 3.80 × 10−79 1.29 × 10−395 5.00 0.0022
AZ3 4 3.36 × 10−79 6.93 × 10−396 5.00 0.0024
AZ4 4 1.65 × 10−78 2.28 × 10−392 5.00 0.0028

f4 HCM 2.0 4 1.80 × 10−67 5.05 × 10−339 5.00 0.0023
FLM 4 6.50 × 10−59 4.92 × 10−296 5.00 0.0027
LM 5 4.57 × 10−145 2.73 × 10−726 5.00 0.0036
PJM 4 2.31 × 10−54 3.05 × 10−273 5.00 0.0031
AMK1 4 1.15 × 10−81 2.90 × 10−410 5.00 0.0024
AZ1 4 9.02 × 10−77 1.08 × 10−385 5.00 0.0022
AZ2 4 3.68 × 10−73 1.43 × 10−367 5.00 0.0023
AZ3 4 1.14 × 10−72 4.21 × 10−365 5.00 0.0026
AZ4 4 5.79 × 10−78 9.44 × 10−392 4.99 0.0026

f4 HCM 6.0 4 2.42 × 10−118 2.20 × 10−593 4.99 0.0024
FLM 4 3.09 × 10−113 1.19 × 10−567 4.99 0.0027
LM 4 3.81 × 10−101 1.10 × 10−506 4.99 0.0029
PJM 4 1.37 × 10−112 2.20 × 10−564 4.99 0.0031
AMK1 4 2.25 × 10−124 8.39 × 10−624 4.99 0.0025
AZ1 4 3.82 × 10−122 1.48 × 10−612 4.99 0.0021
AZ2 4 1.42 × 10−120 1.22 × 10−604 4.99 0.0024
AZ3 4 2.28 × 10−120 1.34 × 10−603 4.99 0.0027
AZ4 4 1.81 × 10−123 2.84 × 10−619 4.99 0.0026



A. Zein / Eur. J. Pure Appl. Math, 16 (4) (2023), 2323-2347 2343

Table 8: Numerical results for test functions f5(x) and f6(x).

Function Method x0 N |xN − xN−1| |f(xN )| ρ Time

f5 HCM -2.5 6 3.11 × 10−61 1.84 × 10−301 4.99 0.0082
FLM 7 2.88 × 10−102 5.38 × 10−506 4.99 0.0105
LM 8 3.12 × 10−207 4.42 × 10−1030 5.00 0.0139
PJM 7 1.22 × 10−120 8.61 × 10−598 4.99 0.0107
AMK1 5 1.63 × 10−140 1.07 × 10−697 5.00 0.0067
AZ1 6 2.25 × 10−200 2.58 × 10−997 5.00 0.0094
AZ2 6 4.97 × 10−127 1.70 × 10−631 4.99 0.0093
AZ3 6 7.25 × 10−123 2.25 × 10−612 5.00 0.0098
AZ4 6 8.47 × 10−103 3.99 × 10−509 5.00 0.0099

f5 HCM -1.0 4 4.08 × 10−67 7.16 × 10−331 5.00 0.0051
FLM 5 2.75 × 10−237 4.27 × 10−1181 5.00 0.0069
LM 6 4.81 × 10−111 3.86 × 10−549 5.00 0.0091
PJM 5 9.30 × 10−195 2.24 × 10−968 5.00 0.0069
AMK1 4 2.71 × 10−64 1.34 × 10−316 4.99 0.0048
AZ1 4 5.71 × 10−71 2.74 × 10−350 4.99 0.0054
AZ2 4 3.33 × 10−87 2.28 × 10−432 4.99 0.0056
AZ3 4 1.26 × 10−100 3.61 × 10−501 5.00 0.0058
AZ4 5 3.78 × 10−241 7.04 × 10−1201 5.00 0.0086

f6 HCM 1.5 5 3.22 × 10−54 1.27 × 10−270 4.98 0.0025
FLM 6 3.34 × 10−249 1.65 × 10−1245 5.00 0.0042
LM 9 1.44 × 10−92 3.66 × 10−462 4.99 0.0085
PJM 6 1.04 × 10−235 5.06 × 10−1178 5.00 0.0045
AMK1 5 1.40 × 10−57 1.81 × 10−287 4.98 0.0025
AZ1 5 9.92 × 10−57 3.33 × 10−283 4.98 0.0030
AZ2 5 6.55 × 10−56 4.25 × 10−279 4.98 0.0028
AZ3 5 8.76 × 10−56 1.82 × 10−278 4.98 0.0030
AZ4 5 9.62 × 10−60 2.80 × 10−298 4.99 0.0035

f6 HCM 3.5 4 5.22 × 10−71 1.41 × 10−354 5.00 0.0021
FLM 4 2.32 × 10−67 2.70 × 10−336 5.00 0.0023
LM 5 2.05 × 10−243 2.15 × 10−1216 5.00 0.0039
PJM 4 2.34 × 10−65 2.83 × 10−326 5.00 0.0030
AMK1 4 1.63 × 10−74 3.87 × 10−372 5.00 0.0022
AZ1 4 1.49 × 10−73 2.54 × 10−367 5.00 0.0022
AZ2 4 1.12 × 10−72 6.12 × 10−363 5.00 0.0020
AZ3 4 1.51 × 10−72 2.76 × 10−362 5.00 0.0025
AZ4 4 1.24 × 10−77 9.83 × 10−388 5.00 0.0028
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Table 9: Numerical results for test functions f7(x) and f8(x).

Function Method x0 N |xN − xN−1| |f(xN )| ρ Time

f7 HCM 4.0 Div - - - -
FLM 10 6.66 × 10−63 3.15 × 10−309 4.99 0.0065
LM Div - - - -
PJM 34 4.60 × 10−84 5.75 × 10−415 4.99 0.0256
AMK1 5 7.16 × 10−61 7.54 × 10−300 5.00 0.0033
AZ1 5 8.08 × 10−72 1.38 × 10−355 4.99 0.0033
AZ2 5 1.03 × 10−73 3.14 × 10−364 4.99 0.0030
AZ3 5 2.35 × 10−77 2.22 × 10−382 4.99 0.0037
AZ4 6 3.57 × 10−147 2.33 × 10−731 5.00 0.0046

f7 HCM 8.0 5 1.26 × 10−248 2.57 × 10−1238 5.00 0.0033
FLM 5 6.57 × 10−194 2.94 × 10−964 5.00 0.0034
LM 5 2.73 × 10−142 1.80 × 10−705 5.00 0.0037
PJM 5 2.18 × 10−195 1.39 × 10−971 5.00 0.0038
AMK1 4 2.79 × 10−65 6.80 × 10−322 5.00 0.0024
AZ1 4 3.41 × 10−72 1.85 × 10−357 4.99 0.0024
AZ2 4 2.40 × 10−58 2.13 × 10−287 4.99 0.0027
AZ3 4 3.07 × 10−57 8.51 × 10−282 4.99 0.0028
AZ4 4 4.47 × 10−61 7.16 × 10−301 4.99 0.0028

f8 HCM 1.0 4 2.20 × 10−151 1.03 × 10−756 5.00 0.0092
FLM 4 4.58 × 10−152 3.07 × 10−760 5.00 0.0085
LM 4 3.00 × 10−152 3.17 × 10−761 5.00 0.0095
PJM 4 2.86 × 10−152 2.67 × 10−761 5.00 0.0090
AMK1 4 5.61 × 10−151 1.31 × 10−754 5.00 0.0084
AZ1 4 4.31 × 10−151 3.34 × 10−755 5.00 0.0099
AZ2 4 3.40 × 10−151 9.86 × 10−756 5.00 0.0092
AZ3 4 3.29 × 10−151 8.24 × 10−756 5.00 0.0092
AZ4 4 5.60 × 10−151 1.30 × 10−754 5.00 0.0092

f8 HCM 4.0 4 1.30 × 10−84 7.37 × 10−423 4.99 0.0083
FLM 4 1.28 × 10−52 5.28 × 10−263 5.00 0.0079
LM 5 3.12 × 10−209 3.87 × 10−1046 5.00 0.0114
PJM 4 1.90 × 10−54 3.43 × 10−272 5.00 0.0082
AMK1 5 3.60 × 10−245 1.42 × 10−1225 5.00 0.0111
AZ1 4 6.97 × 10−55 3.69 × 10−274 4.99 0.0093
AZ2 4 6.29 × 10−61 2.12 × 10−304 4.99 0.0092
AZ3 4 5.93 × 10−62 1.58 × 10−309 4.99 0.0095
AZ4 4 1.43 × 10−57 1.42 × 10−287 4.99 0.0095
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7. Conclusion

We have used the weight function procedure to develop a two-step family of fifth-order
iterative methods for solving nonlinear equations. This family has a wide range of choices
due to its formation and the ability to select various weight functions. This flexibility
allows us to design specific methods with improved stability and accuracy. Furthermore, we
show that the proposed family includes several well-known and recent fifth-order iterative
methods as special cases. We provide a detailed convergence analysis and assess the
methods’ stability using basins of attraction. The basins of attraction in the complex
plane, along with numerical results in the real domain, reveal that the newly constructed
methods AZ1, AZ2, AZ3, and AZ4, as well as the recent method AMK1 [10], exhibit
superior stability and accuracy when compared to other known fifth-order methods within
the same family.
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