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Abstract. The main objective of this paper is to effectively define a new concept of the fabulous
fuzzy set theory that is called m-polar Q-hesitant anti-fuzzy set and apply it to the BCK/BCI-
algebras. The m-polar Q-hesitant anti-fuzzy set is an astonishing development of the combination
between the m-polar fuzzy set and the Q-hesitant fuzzy set. However, we introduce knowledge of
the m-polar Q-hesitant anti-fuzzy subalgebra, m-polar Q-hesitant anti-fuzzy ideal, closed m-polar
Q-hesitant anti-fuzzy ideal, m-polar Q-hesitant anti-fuzzy commutative ideal, m-polar Q-hesitant
anti-fuzzy implicative ideal, and m-polar Q-hesitant anti-fuzzy positive implicative of BCK/BCI-
algebras. In addition, we investigate several theorems, examples, and properties of these notions.
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1. Introduction

In 1965, Zadeh [20] introduced the concept of fuzzy sets, which are sets whose elements
have degrees of membership. These sets are an extension of the classical notion of a set. A
fuzzy set is considered a class of objects with a continuum of grades of membership. Such a
set is characterized by a membership (characteristic) function which assigns to each object
a grade of membership ranging between zero and one. The notions of inclusion, union,
intersection, complement, relation, convexity, etc., are extended to such sets, and various
properties of these notions in the context of fuzzy sets are established. In particular, a
separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets
be disjoint.

Next, in 1966, Imai and Iseki [5] introduced BCI and BCK algebras, which are alge-
braic structures in universal algebra that describe fragments of the propositional calculus
involving implication known as BCI and BCK logics. These structures are defined as
follows: a triple (X, ∗, 0) is called a BCI algebra if it satisfies five conditions, as we show
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them in the next section. The BCI algebra (X, ∗, 0) is called a BCK algebra if it satisfies
one condition.

In 2010, Torra [16] introduced the notion of the hesitant fuzzy set, which is used in
decision-making problems. It is a very useful tool to deal with uncertainty and can be
accurately and perfectly described in terms of the opinions of decision makers. It serves
as a link between classical soft sets and hesitant fuzzy sets. Also, in recent years have
witnessed a growing interest in the application of (hesitant) fuzzy sets to various algebraic
structures. Notable contributions to this field have been made by researchers [11–13, 18].
Their studies have shed light on the potential of (hesitant) fuzzy sets in the context of
algebraic structures and opened up new avenues for research and application. In this con-
text see also, [14, 17]. In other hand Talee and all. In 2020 study explores the application
of hesitant fuzzy sets to ideal theory in ordered Γ-semigroups [15]. This work offers a
unique perspective on ideal theory, enhancing our understanding of ordered Γ-semigroups.
Muhiuddin and all. In 2021 apply fuzzy soft set theory to investigate commutative ideals
in BCK-algebras [8, 9]. Their research, published in the International Journal of Advanced
and Applied Sciences, provides insights into this specific algebraic context. Muhiuddin and
Aldhafeeri. In 2018 delve into subalgebras and ideals within BCK/BCI-algebras using uni-
hesitant fuzzy set theory [10]. This paper explores the potential of uni-hesitant fuzzy set
theory in understanding these algebraic structures. In this context, see, for instance, the
study by Alleheb and Alsager [2].

In 2014, Chen et al. [1, 4, 21] introduced the notion of m-polar fuzzy sets as a general-
ization of bipolar fuzzy sets and showed that bipolar fuzzy sets and 2-polar fuzzy sets are
cryptomorphic mathematical notions. The notions of fuzzy ideals and fuzzy subalgebras
were considered by Yehia [19]. Since then, the concepts and results of Lie algebras have
been broadened to the fuzzy setting.

In this paper, we introduce the notion of an m-polar fuzzy Lie ideal of a Lie algebra and
investigate some properties of the nilpotency of m-polar fuzzy Lie ideals. We also introduce
the concept of an m-polar fuzzy adjoint representation of Lie algebras and discuss the
relationship between this representation and nilpotent m-polar fuzzy Lie ideals.

There are three theories: the theory of probability, the theory of fuzzy sets, and interval
mathematics, which we can consider as mathematical tools for dealing with uncertainties.
However, all these theories have their own difficulties. Uncertainties can’t be handled
using traditional mathematical tools but may be dealt with using a wide range of existing
theories such as probability theory, the theory of intuitionistic fuzzy sets, the theory of
vague sets, the theory of interval mathematics, and the theory of rough sets.

The results of this paper are organized as follows: In Section 2, we present some rele-
vant notions that helped us with our work. In Section 3, we discuss the concept of m-polar
Q-hesitant anti-fuzzy subalgebra. In Section 4, we define the characterization of m-polar
Q-hesitant anti-fuzzy ideal. In Section 5, we describe the notion of a closed m-polar Q-
hesitant anti-fuzzy set. In Section 6, we introduce the concept of a m-polar Q-hesitant
anti-fuzzy commutative ideal. In Section 7, we investigate the notion of a m-polar Q-
hesitant anti-fuzzy implicative ideal. In Section 8, we define the concept of a m-polar
Q-hesitant anti-fuzzy positive implicative ideal. Finally, the study is concluded in Section
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9.

2. Preliminaries

In this section, we recall some basic definitions and axioms that will be used in our
work.

Definition 1. An algebra (B, ∗, 0) of type (2, 0) is called a BCK-algebra if it satisfies the
following conditions:

B1:
∀χ, ω, τ ∈ B, (((χ ∗ ω) ∗ (χ ∗ τ)) ∗ (τ ∗ ω) = 0) (1)

B2:
∀χ, ω ∈ B, ((χ ∗ (χ ∗ ω)) ∗ ω = 0) (2)

B3:
∀χ ∈ B, (χ ∗ χ = 0) (3)

B4:
∀χ, ω ∈ B, (χ ∗ ω = 0, ω ∗ χ = 0 ⇒ χ = ω) (4)

B5:
∀χ ∈ B, (0 ∗ χ = 0) (5)

Then, B is called a BCK-algebra.
Any BCK-algebra B satisfies the following axioms:

B6:
∀χ ∈ B, (χ ∗ 0 = χ) (6)

B7:
∀(χ, ω, τ ∈ B)(χ ≤ ω ⇒ χ ∗ τ ≤ ω ∗ τ, τ ∗ ω ≤ τ ∗ χ) (7)

B8:
∀χ, ω, τ ∈ B, (((χ ∗ ω) ∗ τ = (χ ∗ τ) ∗ ω)) (8)

B9:
∀χ, ω, τ ∈ B, (((χ ∗ τ) ∗ (ω ∗ τ) ≤ χ ∗ ω) (9)

Where, χ ≤ ω means that χ ∗ ω = 0.
Any BCI-algebra B satisfies the following axiom:

BI1:
∀χ, ω, τ ∈ B, (0 ∗ (0 ∗ ((χ ∗ τ) ∗ (ω ∗ τ))) = (0 ∗ ω) ∗ (0 ∗ χ)) (10)
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Definition 2. [6] A non-empty subset s of a BCK/BCI-algebra is called a Subalgebra of
B if χ ∗ ω ∈ s for all χ, ω ∈ s.

Definition 3. [6] A nonempty subset D of a BCK/BCI-algebra B is called an ideal if it
satisfies the following:

ID1:
0 ∈ D. (11)

ID2:
For allχ, ω ∈ B, (χ ∗ ω ∈ D) ∧ (χ ∈ D ⇒ ω ∈ D). (12)

Definition 4. [7] Let B be a BCK/BCI-algebra. A hesitant fuzzy set,

Φ = {(χ, µΦ(χ)) |χ ∈ B}, (13)

on B is called a hesitant fuzzy subalgebra of B if it satisfies:

For allχ, ω ∈ B, (µΦ(χ ∗ ω) ⊇ µΦ(χ) \ µΦ(ω)) . (14)

Definition 5. [7] Let B be a BCK/BCI-algebra. A hesitant fuzzy set,

Φ = {(χ, µΦ(χ)) |χ ∈ B}, (15)

on B is called a hesitant fuzzy ideal of B if it satisfies:

For allχ, ω ∈ B, (µΦ(χ ∗ ω) \ µΦ(ω) ⊆ µΦ(χ) ⊆ µΦ(0)) . (16)

Definition 6. [3] Let B be a non-empty finite universe and Q be a non-empty set. A
Q-hesitant fuzzy set ΦQ is a set given by:

ΦQ = {((χ, q), µQ(χ, q)) |χ ∈ B, q ∈ Q}, (17)

where ΦQ : B ×Q → [0, 1].

Definition 7. An m-polar Q-hesitant fuzzy set on a non-empty set B is the mapping
ΦQ : B ×Q → [0, 1]m. The membership value of every element χ ∈ B is denoted by:

ΦQ = {((χi, q), µΦQ
(χi, q)) |χi ∈ B, q ∈ Q}, (18)

which can be written as:

Φi = {(χ, q), µi(χ, q) |χ ∈ B, q ∈ Q}, (19)

where χ ∈ B and q ∈ Q for all i = 1, 2, . . . ,m.
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3. m-polar Q-hesitant anti-fuzzy subalgebra

In this section, we’ll explore a concept: m-polar Q-hesitant anti-fuzzy subalgebras.
These help us understand complex algebraic structures in the real world, where things
aren’t always clear-cut.

Definition 8. Let B be a BCK/BCI-algebra. The m-polar Q-hesitant anti-fuzzy set

Φi = {(ν, q), µi
Φ(ν, q) j ν ∈ B, q ∈ Q} (20)

on B is called an m-polar Q-hesitant anti-fuzzy subalgebra if it satisfies the following:

∀χ, ω ∈ B, q ∈ Q : µΦi(χ ∗ ω, q) ⊆ µΦi(χ, q) ∨ µΦi(ω, q) (21)

For all i = 1, 2, . . . ,m.

Example 1. Let B = {a, b, c} be a BCK-algebra with a binary operation ”∗,” which is
given in the following Cayley table.

∗ a b c

a a a a
b b a b
c c c a

Define the set Q = {a, b, c, d} and a 2-polar fuzzy set on B as follows:

(a, a) {0.9, 0.8, 0.8}, {0.9}
(a, b) {0.7, 0.8, 0.7}, {0.8, 0.8}
(a, c) {0.8, 0.9, 0.7}, {0.9, 0.8}
(a, d) {0.7, 0.8, 0.9}, {0.8, 0.8}
(b, a) {0.6, 0.9, 0.6}, {0.9, 0.3, 0.2}
(b, b) {0.1, 0.8, 0.4}, {0.5, 0.3, 0.8}
(b, c) {0.2, 0.9}, {0.5, 0.9}
(b, d) {0.4, 0.3, 0.9}, {0.1, 0.8, 0.1}
(c, a) {0.7, 0.9}, {0.8, 0.7, 0.9}
(c, b) {0.8, 0.5, 0.6}, {0.7, 0.8}
(c, c) {0.6, 0.4, 0.9}, {0.8, 0.7, 0.9}
(c, d) {0.7, 0.5, 0.9}, {0.8, 0.7, 0.6}

Thus, µΦi is an m-polar Q-hesitant anti-fuzzy subalgebra.

Proposition 1. If every m-polar Q-hesitant anti-fuzzy subalgebra of B satisfies the fol-
lowing inequality:

∀χ, ω ∈ B, q ∈ Q : µΦi(χ ∗ ω, q) ⊇ µΦi(ω, q) (22)

then we have
µΦi(χ, q) = µΦi(0, q) (23)

for all i = 1, 2, . . . ,m.
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Proof. From the BCK/BCI-algebra’s definition, we have ∀χ ∈ B, (χ ∗ 0) = χ. Then,
∀χ ∈ B, q ∈ Q, we have

µΦi(χ, q) = µΦi(χ ∗ 0, q) ⊆ µΦi(0, q),

and it follows from Proposition 1 that

µΦi(χ, q) = µΦi(0, q).

Proposition 2. Every m-polar Q-hesitant anti-fuzzy subalgebra of B satisfies the follow-
ing:

∀χ ∈ B, q ∈ Q : µΦi(χ, q) ⊇ µΦi(0, q) (24)

For all i = 1, 2, . . . ,m.

Proof. For any χ ∈ B and q ∈ Q, we have:

µΦi(0, q) = µΦi(χ ∗ χ, q) ⊆ µΦi(χ, q) ∪ µΦi(χ, q) = µΦi(χ, q),

which completes the proof.

4. m-polar Q-hesitant anti-fuzzy ideal

In this section, we will delve into the fascinating concept of an m-polar Q-hesitant
anti-fuzzy ideal. This concept adds a layer of complexity to algebraic structures, allowing
us to tackle real-world uncertainties and vagueness. We will begin by defining what an
m-polar Q-hesitant anti-fuzzy ideal.

Definition 9. Let
Φi = {(χ, q);µΦi(χ, q) j ν ∈ B, q ∈ Q} (25)

be a Q-hesitant anti-fuzzy set in B. Then, µΦi is called an m-polar Q-hesitant anti-fuzzy
ideal of B if it satisfies the following conditions:

(i)
µΦi(0, q) ⊆ µΦi(χ, q) (26)

(ii)
µΦi(χ, q) ⊆ µΦi(χ ∗ ω, q) ∪ µΦi(ω, q) (27)

for all (χ, ω) ∈ B; q ∈ Q and i = 1, 2, . . . ,m.
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Example 2. Let B = {a, b, c, d} be a set with a binary operation ”∗,” which is given in
the following Cayley table:

∗ a b c d

a c a a a
b b c b b
c c c c c
d d d d c

Then (B, ∗, c) is a BCK-algebra. Define a set Q = {a, b, c} and a 3-polar fuzzy set µΦi

on B as follows:

(a, a) {0.6, 0.9}, {0.8, 0.5}, {0.3, 0.8, 0.4}
(a, b) {0.5, 0.9, 0.6}, {0.9, 0.4}, {0.5, 0.9, 0.4, 0.5}
(a, c) {0.8, 0.5}, {0.4, 0.3, 0.9}, {0.8, 0.7}
(b, a) {0.3, 0.2, 0.9}, {0.4, 0.8}, {0.2, 0.1, 0.9}
(b, b) {0.4, 0.3, 0.9}, {0.3, 0.9}, {0.2, 0.9, 0.1}
(b, c) {0.1, 0.8}, {0.9}, {0.5, 0.8}
(c, a) {0.9, 0.9}, {0.8, 0.7}; {0.8}
(c, b) {0.9, 0.8}, {0.9}, {0.7, 0.9}
(c, c) {0.8}, {0.8, 0.9}, {0.7, 0.8}
(d, a) {0.7, 0.9}, {0.7, 0.8}, {0.8}
(d, b) {0.7, 0.6, 0.9}, {0.9, 0.6}, {0.6, 0.9}
(d, c) {0.8, 0.7}, {0.5, 0.9, 0.5}, {0.8, 0.7}

It is routine to check that µΦi is a 3-polar Q-hesitant anti-fuzzy ideal.

Theorem 1. In BCK-algebra B, every m-polar Q-hesitant anti-fuzzy ideal is every m-
polar Q-hesitant antifuzzy subalgebra.

Proof. Let q ∈ Q, and µΦi is a m-polar Q-hesitant fuzzy ideal over B. Then,

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ χ, q) ∪ µΦi(χ, q)

= µΦi((χ ∗ χ) ∗ ω, q) ∪ µΦi(χ, q)

= µΦi(0 ∗ ω, q) ∪ µΦi(χ, q)

= µΦi(0, q) ∪ µΦi(χ, q) ⊆ µΦi(ω, q) ∪ µΦi(χ, q)

for χ, ω ∈ B, q ∈ Q, and for all i = 1, 2, . . . ,m. Thus, µΦi is a m-polar Q-hesitant
anti-fuzzy subalgebra over B. This completes the proof.

Proposition 3. Every m-polar Q-hesitant anti-fuzzy ideal satisfies the following condi-
tions:

(1) If
χ ≤ ω, then µΦi(χ, q) ⊆ µΦi(ω, q) (28)



M. A. Alshayea, K. M. Alsager / Eur. J. Pure Appl. Math, 17 (1) (2024), 338-355 345

(2)
µΦi(χ ∗ ω, q) ⊆ µΦi(χ ∗ τ, q) ∪ µΦi(τ ∗ ω, q) (29)

(3) If
µΦi(χ ∗ ω, q) = µΦi(0, q), then µΦi(χ, q) ⊆ µΦi(ω, q) (30)

Proof. Let q ∈ Q and χ, ω, τ ∈ B.
(1) If χ ≤ ω, then χ ∗ ω = 0 since µΦi is a m-polar Q-hesitant anti-fuzzy ideal of B:

µΦi(χ, q) ⊆ µΦi(χ ∗ ω, q) ∪ µΦi(ω, q)

= µΦi(0, q) ∪ µΦi(ω, q)

= µΦi(ω, q).

(2) Since (χ ∗ ω) ∗ (χ ∗ τ) ≰ τ ∗ ω from (1), we have

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ (χ ∗ τ), q)
⊆ µΦi(χ ∗ τ, q) ∪ µΦi(τ ∗ ω, q)
⊆ µΦi(χ ∗ τ, q) ∪ µΦi(τ ∗ ω, q).

(3) If µΦi(χ ∗ ω, q) = µΦi(0, q), then

µΦi(χ, q) ⊆ µΦi(χ ∗ ω, q) ∪ µΦi(ω, q)

= µΦi(0, q) ∪ µΦi(ω, q)

= µΦi(ω, q).

Proposition 4. All m-polar Q-hesitant anti-fuzzy ideals over B satisfy the following con-
dition:

∀χ, ω, τ ∈ B, q ∈ Q : (χ, ω ≤ τ) ⇒ µΦi(χ, q) ⊆ µΦi(ω, q) ∪ µΦi(τ, q). (31)

Proof. Let χ, ω, τ ∈ B and q ∈ Q such that χ, ω ≤ τ . Then, (χ ∗ ω) ∗ τ = 0, so:

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q)
⊆ µΦi(τ, q).

It follows that:

µΦi(χ, q) ⊆ µΦi(χ ∗ ω, q) ∪ µΦi(ω, q)

⊆ µΦi(ω, q) ∪ µΦi(τ, q).

This completes the proof.

Proposition 5. Every m-polar Q-hesitant anti-fuzzy ideal over BCI-algebra B satisfies
the following inequality:

∀χ ∈ B, q ∈ Q : µΦi(0 ∗ (0 ∗ χ), q) ⊆ µΦi(χ, q). (32)
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Proof. Let µΦi be an m-polar Q-hesitant anti-fuzzy ideal. Then, for q ∈ Q and χ ∈ B:

µΦi(0 ∗ (0 ∗ χ), q) ⊆ µΦi((0 ∗ (0 ∗ χ)) ∗ ν, q)
⊆ µΦi(χ, q).

This holds for all i = 1, 2, . . . ,m.

5. Closed M-polar Q-hesitant Anti-fuzzy Ideal

In this section, we’ll explore the concept of a closed m-polar Q-hesitant Anti-fuzzy
Ideal. This intriguing concept extends the traditional ideals in algebra to accommodate
uncertainty and vagueness, making it a valuable tool for tackling real-world problems.
We’ll start by defining what a closed m-polar Q-hesitant Anti-fuzzy Ideal.

Definition 10. A m-polar Q-hesitant anti-fuzzy ideal Φi defined as:

Φi = {(ν, q);µΦi(ν, q) j ν ∈ B, q ∈ Q} (33)

of a BCI-algebra is said to be closed if it satisfies the following condition:

µΦi(ν, q) ⊇ µΦi(0 ∗ ν, q) (34)

for all ν ∈ B, q ∈ Q, and i = 1, 2, . . . ,m.

Example 3. The m-polar Q-hesitant anti-fuzzy ideal described in Example 4.2 is a closed
m-polar Q-hesitant anti-fuzzy ideal.

Theorem 2. A m-polar Q-hesitant anti-fuzzy ideal µΦi is said to be closed if and only if
it satisfies the following condition:

∀χ, ω ∈ B, q ∈ Q : µΦi(χ ∗ ω, q) ⊆ µΦi(χ, q) ∪ µΦi(ω, q) (35)

Proof. (⇒) Assume that µΦi is a closed m-polar Q-hesitant anti-fuzzy ideal over a
BCI-algebra B. Since (χ ∗ ω) ∗ χ ≤ 0 ∗ ω for all χ, ω ∈ B:

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ χ, q)
⊆ µΦi(χ, q) ∪ µΦi(0 ∗ ω, q)
⊆ µΦi(χ, q) ∪ µΦi(ω, q).

for all χ ∈ B, q ∈ Q, and i = 1, 2, . . . ,m. (⇐) Conversely, let µΦi be a m-polar Q-hesitant
anti-fuzzy ideal over a BCI-algebra B. Since µΦi(χ, q) ⊇ µΦi(0, q) for all χ ∈ B, q ∈ Q:

µΦi(0 ∗ χ, q) ⊆ µΦi(0, q) ∪ µΦi(χ, q)

= µΦi(χ, q).

Therefore, µΦi is a closed m-polar Q-hesitant anti-fuzzy ideal over a BCI-algebra B for all
i = 1, 2, . . . ,m.
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6. m-polar Q-hesitant Anti-fuzzy Commutative Ideal

In this section, we’ll explore a unique algebraic concept the m-polar Q-hesitant Anti-
fuzzy Commutative Ideal. This concept is designed to address uncertainties and hesitations
that often arise in real-world scenarios, making it a valuable tool for solving complex
problems. We’ll start by defining what a m-polar Q-hesitant Anti-fuzzy Commutative
Ideal.

Definition 11. A m-polar Q-hesitant anti-fuzzy set Φi defined as:

Φi = {(χ, q);µΦi(χ, q) j ν ∈ B, q ∈ Q} (36)

in a BCK-algebra is called a m-polar Q-hesitant anti-fuzzy commutative ideal of B if it
satisfies the following conditions:

(i)
µΦi(0, q) ⊆ µΦi(χ, q) for all χ ∈ B. (37)

(ii)

µΦi(χ∗(ω∗(ω∗χ)), q) ⊆ µΦi((χ∗ω)∗τ, q)∪µΦi(τ, q) for all χ, ω, τ ∈ B and i = 1, 2, . . . ,m.
(38)

Example 4. The m-polar Q-hesitant anti-fuzzy subalgebra described in Example 3.2 is a
m-polar Q-hesitant anti-fuzzy commutative ideal.

Theorem 3. Every m-polar Q-hesitant anti-fuzzy commutative ideal is a m-polar Q-
hesitant anti-fuzzy ideal of B.

Proof. Let χ, ω, τ ∈ B, q ∈ Q. Let µΦi be a m-polar Q-hesitant anti-fuzzy commutative
ideal of B. Then:

µΦi(χ, q) = µΦi(χ ∗ (0 ∗ (0 ∗ χ)), q)
⊆ µΦi((χ ∗ 0), q) ∪ µΦi(τ, q)

= µΦi(τ ∗ τ, q) ∪ µΦi(τ, q)

for all χ, τ ∈ B, q ∈ Q. Hence, µΦi is a m-polar Q-hesitant anti-fuzzy ideal.

Theorem 4. A m-polar Q-hesitant anti-fuzzy ideal of a BCK-algebra is a m-polar Q-
hesitant anti-fuzzy commutative ideal if and only if it satisfies the following condition:

µΦi(χ ∗ (ω ∗ (χ ∗ ω)), q) ⊆ µΦi(χ ∗ ω, q) (39)

for all χ, ω ∈ B and q ∈ Q.

Proof. Let χ, ω ∈ B and q ∈ Q.
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(i) Suppose that µΦi is a m-polar Q-hesitant anti-fuzzy commutative ideal of B.Taking
τ = 0, we have:

µΦi(χ ∗ (ω ∗ (χ ∗ ω)), q) ⊆ µΦi(χ ∗ ω ∗ 0, q) ∪ µΦi(0, q)

= µΦi(χ ∗ ω, q) (i)

(ii) Conversely, assume that µΦi satisfies:

µΦi(χ ∗ (ω ∗ (χ ∗ ω)), q) ⊆ µΦi(χ ∗ ω, q) (ii)

Combining (i) and (ii), we obtain:

µΦi(χ ∗ (ω ∗ (χ ∗ ω)), q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(τ, q) (39)

for all χ, ω, τ ∈ B and q ∈ Q. Hence, µΦi is a m-polar Q-hesitant anti-fuzzy com-
mutative ideal.

7. m-polar Q-hesitant anti-fuzzy implicative ideal

In this section, we will introduce a unique algebraic concept, the m-polar Q-hesitant
Anti-fuzzy Implicative Ideal. This concept is designed to handle complex uncertainties
and hesitations that often arise in practical situations. We will explore what this concept
entails and how it can be applied to solve real-world problems. This section is essential
for those interested in using algebraic structures to address complex, uncertain scenarios.

Definition 12. A m-polar Q-hesitant anti-fuzzy set

Φi = {(χ, q), µΦi(χ, q) j ν ∈ B, q ∈ Q in B} (40)

is called a m-polar Q-hesitant anti-fuzzy implicative ideal if it satisfies the following con-
ditions:

(i)
µΦi(0, q) ⊆ µΦi(χ, q) (41)

(ii)
µΦi(χ, q) ⊆ µΦi((χ ∗ (ω ∗ χ)) ∗ τ, q) ∪ µΦi(τ, q) (42)

for all i = 1, 2, . . . ,m.

Example 5. Let B = {α′
, β

′
, γ

′} be a BCK-algebra with a binary operation ”∗,” which is
given in the following Cayley table:
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∗ α
′

β
′

γ
′

α
′

α
′

α
′

α
′

β
′

β
′

α
′

β
′

γ
′

γ
′

γ
′

α
′

Define the set Q = {γ} and a 3-polar anti-fuzzy set on B as follows:

(α
′
, γ) {0.8, 0.9, 0.8}, {0.7, 0.6, 0.9}, {0.8}

(β
′
, γ) {0.7, 0.8, 0.9}, {0.5, 0.4, 0.9}, {0.6, 0.8}

(γ
′
, γ) {0.6, 0.9, 0.5}, {0.9, 0.2, 0.1}, {0.8, 0.1, 0.2}

Thus, µΦi is a 3-polar Q-hesitant anti-fuzzy implicative ideal.

Theorem 5. Let B be an implicative BCK-algebra, then every m-polar Q-hesitant anti-
fuzzy ideal over B is a m-polar Q-hesitant anti-fuzzy implicative ideal.

Proof. Let B be an implicative BCK-algebra. It follows that χ = χ ∗ (ω ∗ χ) for all
χ, ω ∈B. Let µΦi be a m-polar Q-hesitant anti-fuzzy ideal, then we have:

µΦi(χ, q) ⊆ µΦi((χ ∗ τ, q) ∪ µΦi(τ, q)

for all χ, ω, τ ∈B. Hence, it is a m-polar Q-hesitant anti-fuzzy implicative ideal of B. That
is, µΦi is a m-polar Q-hesitant anti-fuzzy implicative ideal of B.

Proposition 6. In BCK-algebra B, every m-polar Q-hesitant anti-fuzzy implicative ideal
is a m-polar Q-hesitant anti-fuzzy ideal.

Proof. Let µΦi be a m-polar Q-hesitant anti-fuzzy implicative ideal over B. Let
χ, ω, τ ∈ B, then:

µΦi(χ, q) ⊆ µΦi((χ ∗ (ω ∗ χ)) ∗ τ, q) ∪ µΦi(τ, q)

Replace ω = χ, and using χ ∗ χ = 0, we get:

µΦi(χ, q) ⊆ µΦi((χ ∗ (χ ∗ χ)) ∗ τ, q) ∪ µΦi(τ, q)

for all χ, τ ∈ B. Thus, µΦi is a m-polar Q-hesitant anti-fuzzy ideal.

Theorem 6. Let µΦi be a m-polar Q-hesitant anti-fuzzy ideal of a BCK-algebra B. Then
µΦi is a m-polar Q-hesitant anti-fuzzy implicative ideal of B if and only if it satisfies the
condition:

µΦi(χ, q) ⊆ µΦi(χ ∗ (ω ∗ χ), q) (43)

for all χ, ω ∈ B, q ∈ Q, and i = 1, 2, . . . ,m.
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Proof. Assume that µΦi is a m-polar Q-hesitant anti-fuzzy implicative ideal of B. Take
τ = 0 in:

µΦi(χ, q) ⊆ µΦi((χ ∗ (ω ∗ χ)) ∗ η, q) ∪ µΦi(τ, q)

= µΦi((χ ∗ (ω ∗ χ)) ∗ 0, q) ∪ µΦi(0, q)

= µΦi((χ ∗ (ω ∗ χ)), q)

Conversely, suppose that µΦi satisfies the condition. As µΦi is a m-polar Q-hesitant
anti-fuzzy ideal of B, we have:

µΦi(χ, q) ⊆ µΦi((χ ∗ (ω ∗ χ)), q)

⊆ µΦi((χ ∗ (ω ∗ χ)), q) ∪ µΦi(τ, q)

Then µΦi is a m-polar Q-hesitant anti-fuzzy implicative ideal of B, and the proof is
completed.

8. m-polar Q-hesitant anti-fuzzy positive implicative ideal

In this section, we will introduce m-polar Q-hesitant Anti-fuzzy positive Implicative
Ideals. These mathematical constructs provide a versatile framework to address uncer-
tainty and hesitation in algebraic structures. We will briefly explore the concept, its
properties.

Definition 13. A m-polar Q-hesitant anti-fuzzy set

Φi = {(χ, q), µΦi(χ, q) j ν ∈ B, q ∈ Q} (44)

in a BCK-algebra B is called a m-polar Q-hesitant anti-fuzzy positive implicative ideal of
B if it satisfies the following conditions:

(i)
µΦi(0, q) ⊆ µΦi(χ, q) (45)

(ii)
µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(ω ∗ τ, q) (46)

for all χ, ω, τ ∈ B, q ∈ Q, and i = 1, 2, . . . ,m.

Example 6. Let B = {i, d, e, a, l} be a BCK-algebra with a binary operation ”∗,” which
is given in the following Cayley table:

∗ i d e a l

i i i i i i
d d i i i i
e e e i i e
a a a a i a
l l l l l i
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Define the set Q = {a′
, b

′} and a 2-polar fuzzy set on B as follows:

(i, a
′
) {0.8, 0.9, 0.8}, {0.9}

(i, b
′
) {(0.8, 0.9), (0.8, 0.8)}

(d, a
′
) [0.5, 0.9], [0.7, 0.9]

(d, b
′
) (0.7, 0.9), (0.7, 0.6, 0.8]

(e, a
′
) (0.3, 0.9), [0.9]

(e, b
′
) (0.1, 0.3, 0.2, 0.9), (0.2, 0.8)

(a, a
′
) (0.2, 0.9), [0.3, 0.9]

(a, b
′
) (0.3, 0.9), (0.2, 0.8)

(l, a
′
) (0.4, 0.9), [0.5, 0.9]

(l, b
′
) (0.6, 0.9), [0.8]

Thus, µΦi is a 2-polar Q-hesitant anti-fuzzy positive implicative ideal.

Proposition 7. In BCK-algebra B, every m-polar Q-hesitant anti-fuzzy positive implica-
tive ideal is an m-polar Q-hesitant anti-fuzzy ideal.

Proof. Let µΦi be an m-polar Q-hesitant anti-fuzzy positive implicative ideal of BCK-
algebra B. For all χ, ω, τ ∈ B, and q ∈ Q, we have:

µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(ω ∗ τ, q)

Now, put τ = 0:

µΦi(χ, q) ⊆ µΦi((χ ∗ ω) ∗ η, q) ∪ µΦi(ω, q)

Therefore, µΦi is an m-polar Q-hesitant anti-fuzzy ideal. This concludes the proof.

Proposition 8. If B is a positive implicative BCK-algebra, then every m-polar Q-hesitant
anti-fuzzy ideal of B is an m-polar Q-hesitant anti-fuzzy positive implicative ideal of B.

Proof. Assume that µΦi is an m-polar Q-hesitant anti-fuzzy positive implicative ideal
of B. For all χ, ω ∈ B, and q ∈ Q, we have:

µΦi(χ, q) ⊆ µΦi(χ ∗ ω, q) ∪ µΦi(ω; q)

By replacing χ with χ ∗ τ and ω with ω ∗ τ , we get:

µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ τ) ∗ (ω ∗ τ), q) ∪ µΦi(ω ∗ τ, q)

Since B is a positive implicative BCK-algebra, (χ ∗ τ) ∗ (ω ∗ τ) = (χ ∗ ω) ∗ τ for all
χ, ω, τ ∈ B. Hence, we have:

µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(ω ∗ τ, q)

Thus, µΦi is an m-polar Q-hesitant anti-fuzzy positive implicative ideal of B for all
i = 1, 2, . . . ,m.
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Theorem 7. Let µΦi be an m-polar Q-hesitant anti-fuzzy ideal over B. Then µΦi is an
m-polar Q-hesitant anti-fuzzy positive implicative ideal if and only if:

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ ω, q) (47)

for all χ, ω, τ ∈ B, q ∈ Q, and i = 1, 2, . . . ,m.

Proof. (⇒) Suppose that the m-polar Q-hesitant anti-fuzzy ideal µΦi of B is a m-polar
Q-hesitant anti-fuzzy positive implicative ideal. So, we have:

µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(ω ∗ τ, q)

If we put τ = ω, we have:

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ ω, q) ∪ µΦi(ω ∗ ω, q)

But, in a BCK-algebra, ω ∗ ω = 0. So:

µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ ω, q)

For all χ, ω ∈ B, q ∈ Q, and i = 1, 2, . . . ,m.
(⇐) Conversely Suppose that µΦi is an m-polar Q-hesitant anti-fuzzy ideal over B and

satisfies the inequality:
µΦi(χ ∗ ω, q) ⊆ µΦi((χ ∗ ω) ∗ ω, q)

Since µΦi(χ
′, ω′, q) ⊆ µΦi(χ, q), we can now prove that for all χ, ω, τ ∈ B:

µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(ω ∗ τ, q)

In contrast, if there exist χ
′
, ω

′ ∈ B such that:

µΦi(χ
′, ω′, q) ⊆ µΦi((χ

′, ω′) ∗ ω′, q)

It implies that:
µΦi(χ

′, ω′, q) ⊆ µΦi(0, q)

Which is a contradiction. Therefore,

µΦi(χ ∗ τ, q) ⊆ µΦi((χ ∗ ω) ∗ τ, q) ∪ µΦi(ω ∗ τ, q)

For all χ, ω, τ ∈ B and q ∈ Q. Thus, µΦi is an m-polar Q-hesitant anti-fuzzy positive
implicative ideal of B for all i = 1, 2, . . . ,m.
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9. Conclusion

The exploration of m-polar Q-hesitant anti-fuzzy sets in the context of BCK-algebras
represents a substantial stride in uniting the realms of algebraic structures and fuzzy set
theories. This endeavor expands the boundaries of fuzzy set concepts within abstract
algebra, particularly within the framework of BCK-algebras.

As we look ahead to future research in this direction, several intriguing questions arise:

• Can we formulate the notion of BCK-algebra ideal spaces within the domain of
general topology?

• Is it feasible to extend the concept of m-polar Q-hesitant anti-fuzzy sets to BCK-
algebra ideal spaces, thereby establishing connections between algebraic structures
and topological spaces?

• Might we introduce the concept of BCK-algebra topological spaces, creating a bridge
between abstract algebra and general topology?

• Could the powerful concept of m-polar Q-hesitant anti-fuzzy sets find applications
in the domain of BCK-algebra topological spaces, leading to innovative approaches
to algebraic structures in the context of topological settings?

These questions open numerous things for further exploration and research, offering
exciting possibilities for interdisciplinary investigations that integrate algebraic structures,
fuzzy set theories, and topological spaces. The continuous evolution and interplay of these
theories hold the potential for groundbreaking insights and practical applications.
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