Geodetic Roman Dominating Functions in a Graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4962Keywords:
geodetic set, geodetic dominating set, Roman dominating function, Roman domination number, geodetic Roman dominating function, geodetic Roman domination numberAbstract
Let $G$ be a connected graph. A function $f: V(G)\rightarrow \{0,1,2\}$ is a \textit{geodetic Roman dominating function} (or GRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \cup V_2$ is a geodetic set in $G$. The weight of a geodetic Roman dominating function $f$, denoted by $\omega_{G}^{gR}(f)$, is given by $\omega_{G}^{gR}(f)=\sum_{v \in V(G)}f(v)$. The minimum weight of a GRDF on $G$, denoted by $\gamma_{gR}(G)$, is called the \textit{geodetic Roman domination number} of $G$. In this paper, we give some properties of geodetic Roman domination and determine the geodetic Roman domination number of some graphs.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.