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Abstract. Our main purpose is to introduce the concept of weakly (τ1, τ2)-continuous functions.
Moreover, several characterizations of weakly (τ1, τ2)-continuous functions are considered.
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1. Introduction

In 1961, Levine [10] introduced the concept of weakly continuous functions. Moreover,
Levine [11] introduced the notion of semi-continuous functions. Neubrunnová [13] showed
that semi-continuity is equivalent to quasi-continuity due to Marcus [12]. In 1973, Popa
and Stan [17] introduced and studied the concept of weakly quasi-continuous functions.
Weak quasi-continuity is implied by both quasi-continuity and weak continuity which are
independent of each other. In 1984, Rose [18] introduced the notion of subweakly contin-
uous functions and investigated the relationships between subweak continuity and weak
continuity. Noiri [14] studied properties of some weak forms of continuity. In 2002, Popa
and Noiri [16] introduced the concept of weakly (τ,m)-continuous functions as functions
from a topological space into a set satisfying some minimal conditions and investigated
several characterizations of weakly (τ,m)-continuous functions. Popa and Noiri [15] in-
troduced and investigated the notion of weakly M -continuous functions as functions from
a set satisfying some minimal conditions into a set satisfying some minimal conditions.
In 2008, Ekici et al. [8] introduced a new class of functions called weakly λ-continuous
functions which is weaker than λ-continuous functions and studied some fundamental
properties of weakly λ-continuous functions. In [3], the present author introduced the
concept of weakly ⋆-continuous functions and established the relationships between weak
⋆-continuity and θ(⋆)-continuity. In 2010, Boonpok [1] introduced and studied the concept
of pairwise weakly M -continuous functions in bimininmal structure spaces. Viriyapong
and Boonpok [20] introduced and investigated the concept of (Λ, sp)-continuous functions.
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Moreover, some characterizations of almost (Λ, s)-continuous functions were presented in
[6]. In [5], the authors introduced and studied the notion of weakly (Λ, p)-continuous func-
tions. Laprom et al. [9] studied the concept of β(τ1, τ2)-continuity for multifunctions. In
addition, some characterizations of almost weak (τ1, τ2)-continuity for multifunctions were
established in [4]. In this paper, we introduce the concept of weakly (τ1, τ2)-continuous
functions. Furthermore, several characterizations of weakly (τ1, τ2)-continuous functions
are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [7] if A =
τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection
of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [7] of A and is denoted by
τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior
[7] of A and is denoted by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is
said to be (τ1, τ2)r-open [19] (resp. (τ1, τ2)s-open [2], (τ1, τ2)p-open [2], (τ1, τ2)β-open [2])
if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-
open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed, (τ1, τ2)s-closed, (τ1, τ2)p-
closed, (τ1, τ2)β-closed. Let A be a subset of a bitopological space (X, τ1, τ2). A point
x ∈ X is called a (τ1, τ2)θ-cluster point [19] of A if τ1τ2-Cl(U)∩A ̸= ∅ for every τ1τ2-open
set U containing x. The set of all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure
[19] of A and is denoted by (τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2)
is said to be (τ1, τ2)θ-closed [19] if (τ1, τ2)θ-Cl(A) = A. The complement of a (τ1, τ2)θ-
closed set is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open sets of X contained
in A is called the (τ1, τ2)θ-interior [19] of A and is denoted by (τ1, τ2)θ-Int(A).

3. Characterizations of weakly (τ1, τ2)-continuous functions

In this section, we introduce the notion of weakly (τ1, τ2)-continuous functions. More-
over, some characterizations of weakly (τ1, τ2)-continuous functions are discussed.

Definition 1. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-
continuous at a point x ∈ X if for each τ1τ2-open set V of Y containing f(x), there
exists a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Cl(V ). A function
f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-continuous if f has this property
at each point of X.
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Theorem 1. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is weakly (τ1, τ2)-continuous at x ∈ X
if and only if x ∈ τ1τ2-Int(f

−1(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y containing
f(x).

Proof. Let x ∈ X and V be any σ1σ2-open set of Y containing f(x). Then, there exists
a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Cl(V ). Thus,

x ∈ U ⊆ f−1(σ1σ2-Cl(V ))

and hence x ∈ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))).

Conversely, let V be any σ1σ2-open set of Y containing f(x). By the hypothesis,
x ∈ τ1τ2-Int(f

−1(σ1σ2-Cl(V ))). Then, there exists a τ1τ2-open set U of X such that
x ∈ U ⊆ f−1(σ1σ2-Cl(V )). Thus, f(U) ⊆ σ1σ2-Cl(V ) and hence f is weakly (τ1, τ2)-
continuous at x.

Theorem 2. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is weakly (τ1, τ2)-continuous if and
only if f−1(V ) ⊆ τ1τ2-Int(f

−1(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y .

Proof. Let V be any σ1σ2-open set of Y and x ∈ f−1(V ). Then, f(x) ∈ V . Since f
is weakly (τ1, τ2)-continuous at x, by Theorem 1 we have x ∈ τ1τ2-Int(f

−1(σ1σ2-Cl(V )))
and hence f−1(V ) ⊆ τ1τ2-Int(f

−1(σ1σ2-Cl(V ))).
Conversely, let x ∈ X and V be any σ1σ2-open set of Y containing f(x). Then, we have

x ∈ f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))). By Theorem 1, f is weakly (τ1, τ2)-continuous

at x. This shows that f is weakly (τ1, τ2)-continuous.

Theorem 3. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is weakly (τ1, τ2)-continuous if and
only if τ1τ2-Cl(f

−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y .

Proof. Let V be any σ1σ2-open set of Y . Suppose that

τ1τ2-Cl(f
−1(V )) ⊈ f−1(σ1σ2-Cl(V )).

There exists x ∈ τ1τ2-Cl(f
−1(V )), but x ̸∈ f−1(σ1σ2-Cl(V )). Then, f(x) ̸∈ σ1σ2-Cl(V )

and there exists a σ1σ2-open set W of Y containing f(x) such that W ∩ V = ∅. Thus,
σ1σ2-Cl(W ) ∩ V = ∅. Since f is weakly (τ1, τ2)-continuous at x, there exists a τ1τ2-open
set U of X containing x such that f(U) ⊆ σ1σ2-Cl(W ). Therefore, f(U) ∩ V = ∅. Since
x ∈ τ1τ2-Cl(f

−1(V )), U ∩ f−1(V ) ̸= ∅ and f(U) ∩ V ̸= ∅, which is a contradiction. This
shows that τ1τ2-Cl(f

−1(V )) ⊆ f−1(σ1σ2-Cl(V )).
Conversely, let V be any σ1σ2-open set of Y . Then, Y −σ1σ2-Cl(V ) is σ1σ2-open in Y .

By the hypothesis, τ1τ2-Cl(f
−1(Y −σ1σ2-Cl(V ))) ⊆ f−1(σ1σ2-Cl(Y −σ1σ2-Cl(V ))). Thus,

X−τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) ⊆ X−f−1(σ1σ2-Int(σ1σ2-Cl(V ))) ⊆ X−f−1(V ) and hence

f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))). By Theorem 2, f is weakly (τ1, τ2)-continuous.

Theorem 4. For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:
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(1) f is weakly (τ1, τ2)-continuous;

(2) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(σ1σ2-Int(B)))) for every subset B of Y ;

(6) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y .

Proof. (1) ⇒ (2): By Theorem 2.
(2) ⇒ (3): Let K be any σ1σ2-closed set of Y . Then, Y −K is σ1σ2-open in Y and by

(2),

X − f−1(K) = f−1(Y −K)

⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(Y −K)))

= τ1τ2-Int(f
−1(Y − σ1σ2-Int(K)))

= X − τ1τ2-Cl(f
−1(σ1σ2-Int(K))).

Thus, τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(K).

(3) ⇒ (4): Let B be any subset of Y . Then, σ1σ2-Int(B) is σ1σ2-closed in Y . By (3),
τ1τ2-Cl(f

−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1(σ1σ2-Cl(B)).
(4) ⇒ (5): Let B be any subset of Y . By (4),

f−1(σ1σ2-Int(B)) = X − f−1(σ1σ2-Cl(Y −B))

⊆ X − τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(Y −B))))

= τ1τ2-Int(f
−1(σ1σ2-Cl(σ1σ2-Int(B)))).

(5) ⇒ (6): Let V be any σ1σ2-open set of Y and x ̸∈ f−1(σ1σ2-Cl(V )). Then, there
exists a σ1σ2-open set U of Y containing f(x) such that U ∩ V = ∅. By (5),

x ∈ f−1(U) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(U)))

and there exists a τ1τ2-open set G of X containing x such that f(G) ⊆ σ1σ2-Cl(U). Thus,
G ∩ f−1(V ) = ∅ and hence x ̸∈ τ1τ2-Cl(f

−1(V )). This shows that

τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )).

(6) ⇒ (1): Let x ∈ X and V be any be any σ1σ2-open set of Y containing f(x). Since
V = σ1σ2-Int(V ) ⊆ σ1σ2-Int(σ1σ2-Cl(V )), by (6) we have

x ∈ f−1(V ) ⊆ f−1(σ1σ2-Int(σ1σ2-Cl(V )))

= X − f−1(σ1σ2-Cl(Y − σ1σ2-Cl(V )))
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⊆ X − τ1τ2-Cl(f
−1(Y − σ1σ2-Cl(V )))

= τ1τ2-Int(f
−1(σ1σ2-Cl(V ))).

There exists a τ1τ2-open set U of X containing x such that U ⊆ f−1(σ1σ2-Cl(V )); hence
f(U) ⊆ σ1σ2-Cl(V ). Thus, f is weakly (τ1, τ2)-continuous at x. This shows that f is
weakly (τ1, τ2)-continuous.

Theorem 5. For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) f is weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(K) for every (σ1, σ2)r-closed set K of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set

V of Y ;

(4) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set

V of Y .

Proof. (1) ⇒ (2): Let K be any (σ1, σ2)r-closed set of Y . Then, σ1σ2-Int(K) is
σ1σ2-open in Y , by Theorem 4 (6) we have

τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(σ1σ2-Int(σ1σ2-Cl(K))) = f−1(K).

(2) ⇒ (3): Let V be any (σ1, σ2)β-open set of Y . Then, we have

σ1σ2-Cl(V ) ⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))) ⊆ σ1σ2-Cl(V )

and hence σ1σ2-Cl(V ) is (σ1, σ2)r-closed. By (2),

τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )).

(3) ⇒ (4): This is obvious.
(4) ⇒ (1): Let V be any σ1σ2-open set of Y . Then, we have V is (σ1, σ2)s-open in Y .

By (4), τ1τ2-Cl(f
−1(V )) ⊆ τ1τ2-Cl(f

−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) and
by Theorem 4 (6), f is weakly (τ1, τ2)-continuous.

Theorem 6. For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) f is weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set

V of Y ;

(3) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;
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(4) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)p-open set of Y . Then, we have

σ1σ2-Cl(V ) ⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V )))

and hence σ1σ2-Cl(V ) is (σ1, σ2)r-closed in Y . Thus, by Theorem 5 (2),

τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )).

(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Let V be any (σ1, σ2)p-open set of Y . By (3),

f−1(V ) ⊆ f−1(σ1σ2-Int(σ1σ2-Cl(V )))

= X − f−1(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

⊆ X − τ1τ2-Cl(f
−1(Y − σ1σ2-Cl(V )))

= τ1τ2-Int(f
−1(σ1σ2-Cl(V ))).

(4) ⇒ (1): Let V be any σ1σ2-open set of Y . Then, V is (σ1, σ2)p-open in Y . Thus by
(4) and Theorem 4 (2), f is weakly (τ1, τ2)-continuous.

Theorem 7. For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) f is weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Int(K))) ⊆ f−1(K) for every (σ1, σ2)r-closed set K of Y ;

(4) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(5) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(6) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(7) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) for every (σ1, σ2)p-open set V of Y .

Proof. (1) ⇒ (2): Let B be any subset of Y and x ̸∈ f−1(σ1σ2-Cl(B)). Then,
we have f(x) ̸∈ σ1σ2-Cl(B) and there exists a σ1σ2-open set U of Y containing f(x)
such that U ∩ B = ∅. Therefore, σ1σ2-Cl(U) ∩ σ1σ2-Int(σ1σ2-Cl(B)) = ∅. Since f is
weakly (τ1, τ2)-continuous at x, there exists a τ1τ2-open set W of X containing x such
that f(W ) ⊆ σ1σ2-Cl(U). Thus, W ∩ f−1(σ1σ2-Int(σ1σ2-Cl(B))) = ∅ and hence

x ̸∈ τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(B)))).

This shows that τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1(σ1σ2-Cl(B)).
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(2) ⇒ (3): Let K be any (σ1, σ2)r-closed set of Y . Then by (2), we have

τ1τ2-Cl(f
−1(σ1σ2-Int(K))) = τ1τ2-Cl(f

−1(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ f−1(σ1σ2-Cl(σ1σ2-Int(K)))

= f−1(K).

(3) ⇒ (4): Let V be any σ1σ2-open set of Y . Then, σ1σ2-Cl(V ) is (σ1, σ2)r-closed in
Y . By (3), τ1τ2-Cl(f

−1(V )) ⊆ τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ f−1(σ1σ2-Cl(V )).

(4) ⇒ (5): Let V be any σ1σ2-open set of Y . Since Y −σ1σ2-Cl(V ) is σ1σ2-open in Y ,
by (4) we have

X − τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) = τ1τ2-Cl(f

−1(Y − σ1σ2-Cl(V )))

⊆ f−1(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

⊆ X − f−1(V )

and hence f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))).

(5) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing f(x). By (5),
x ∈ f−1(V ) ⊆ τ1τ2-Int(f

−1(σ1σ2-Cl(V ))). Put W = τ1τ2-Int(f
−1(σ1σ2-Cl(V ))). Then,

W is τ1τ2-open set of X containing x such that f(W ) ⊆ σ1σ2-Cl(V ). Thus, f is weakly
(τ1, τ2)-continuous at x. This shows that f is weakly (τ1, τ2)-continuous.

(1) ⇒ (6): Let V be any (σ1, σ2)p-open set of Y and x ̸∈ f−1(σ1σ2-Cl(V )). Then,
f(x) ̸∈ σ1σ2-Cl(V ) and there exists a σ1σ2-open set G of Y containing f(x) such that
G ∩ V = ∅. Since V is (σ1, σ2)p-open, we have

V ∩ σ1σ2-Cl(G) ⊆ σ1σ2-Int(σ1σ2-Cl(V )) ∩ σ1σ2-Cl(G)

⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V )) ∩G)

⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ) ∩G))

⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ∩G)))

⊆ σ1σ2-Cl(V ∩G) = ∅.

Since f is weakly (τ1, τ2)-continuous at x, there exists a τ1τ2-open set W of X containing
x such that f(W ) ⊆ σ1σ2-Cl(G). Thus, f(W ) ∩ V = ∅ and hence W ∩ f−1(V ) = ∅.
Therefore, x ̸∈ τ1τ2-Cl(f

−1(V ). This shows that τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )).

(6) ⇒ (7): Let V be any (σ1, σ2)p-open set of Y . Then, Y − σ1σ2-Cl(V ) is σ1σ2-open
and hence Y − σ1σ2-Cl(V ) is (σ1, σ2)p-open in Y . Then by (6), we have

X − τ1τ2-Int(f
−1(σ1σ2-Cl(V ))) = τ1τ2-Cl(X − f−1(σ1σ2-Cl(V )))

= τ1τ2-Cl(f
−1(Y − σ1σ2-Cl(V )))

⊆ f−1(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

= f−1(Y − σ1σ2-Int(σ1σ2-Cl(V )))

= X − f−1(σ1σ2-Int(σ1σ2-Cl(V )))
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⊆ X − f−1(V )

and hence f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Cl(V ))).

(7) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing f(x). Since
V is (σ1, σ2)p-open in Y and by (7), x ∈ f−1(V ) ⊆ τ1τ2-Int(f

−1(σ1σ2-Cl(V ))). Put
U = τ1τ2-Int(f

−1(σ1σ2-Cl(V ))). Then, U is a τ1τ2-open set of X containing x such that
f(U) ⊆ σ1σ2-Cl(V ). Thus, f is weakly (τ1, τ2)-continuous at x. This shows that f is
weakly (τ1, τ2)-continuous.

Theorem 8. For a function (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) f is weakly (τ1, τ2)-continuous;

(2) f(τ1τ2-Cl(A)) ⊆ (σ1, σ2)θ-Cl(f(A)) for every subset A of X;

(3) τ1τ2-Cl(f
−1(B)) ⊆ f−1((σ1, σ2)θ-Cl(B)) for every subset B of Y .

Proof. (1) ⇒ (2): Let A be any subset of X. Suppose that x ∈ τ1τ2-Cl(A) and G is
any σ1σ2-open set of Y containing f(x). Since f is weakly (τ1, τ2)-continuous, there exists
a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Cl(G). Since x ∈ τ1τ2-Cl(A),
we have U ∩ A ̸= ∅. It follows that ∅ ̸= f(U) ∩ f(A) ⊆ σ1σ2-Cl(G) ∩ f(A). Thus,
f(x) ∈ (σ1, σ2)θ-Cl(f(A)) and hence f(τ1τ2-Cl(A)) ⊆ (σ1, σ2)θ-Cl(f(A)).

(2) ⇒ (3): Let B be any subset of Y . Then,

f(τ1τ2-Cl(f
−1(B))) ⊆ (σ1, σ2)θ-Cl(f(f

−1(B))) ⊆ (σ1, σ2)θ-Cl(B)

and hence τ1τ2-Cl(f
−1(B)) ⊆ f−1((σ1, σ2)θ-Cl(B)).

(3) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing f(x). Since

σ1σ2-Cl(V ) ∩ (Y − σ1σ2-Cl(V )) = ∅,

f(x) ̸∈ (σ1, σ2)θ-Cl(Y −σ1σ2-Cl(V )) and hence x ̸∈ f−1((σ1, σ2)θ-Cl(Y −σ1σ2-Cl(V ))). By
(3), x ̸∈ τ1τ2-Cl(f

−1(Y −σ1σ2-Cl(V ))) and there exists a τ1τ2-open set U of X containing
x such that U ∩ f−1(Y − σ1σ2-Cl(V )) = ∅; hence f(U) ∩ (Y − σ1σ2-Cl(V )) = ∅. Thus,
f(U) ⊆ σ1σ2-Cl(V ) and hence f is weakly (τ1, τ2)-continuous at x. This shows that f is
weakly (τ1, τ2)-continuous.
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