EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 1, 2024, 416-425 ISSN 1307-5543 — ejpam.com Published by New York Business Global

On weakly (τ_1, τ_2) -continuous functions

Chawalit Boonpok¹, Chalongchai Klanarong^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. Our main purpose is to introduce the concept of weakly (τ_1, τ_2) -continuous functions. Moreover, several characterizations of weakly (τ_1, τ_2) -continuous functions are considered.

2020 Mathematics Subject Classifications: 54C08, 54E55

Key Words and Phrases: $\tau_1\tau_2$ -open set, weakly (τ_1, τ_2) -continuous function

1. Introduction

In 1961, Levine [10] introduced the concept of weakly continuous functions. Moreover, Levine [11] introduced the notion of semi-continuous functions. Neubrunnová [13] showed that semi-continuity is equivalent to quasi-continuity due to Marcus [12]. In 1973, Popa and Stan [17] introduced and studied the concept of weakly quasi-continuous functions. Weak quasi-continuity is implied by both quasi-continuity and weak continuity which are independent of each other. In 1984, Rose [18] introduced the notion of subweakly continuous functions and investigated the relationships between subweak continuity and weak continuity. Noiri [14] studied properties of some weak forms of continuity. In 2002, Popa and Noiri [16] introduced the concept of weakly (τ, m) -continuous functions as functions from a topological space into a set satisfying some minimal conditions and investigated several characterizations of weakly (τ, m) -continuous functions. Popa and Noiri [15] introduced and investigated the notion of weakly M-continuous functions as functions from a set satisfying some minimal conditions into a set satisfying some minimal conditions. In 2008, Ekici et al. [8] introduced a new class of functions called weakly λ -continuous functions which is weaker than λ -continuous functions and studied some fundamental properties of weakly λ -continuous functions. In [3], the present author introduced the concept of weakly *-continuous functions and established the relationships between weak *-continuity and $\theta(\star)$ -continuity. In 2010, Boonpok [1] introduced and studied the concept of pairwise weakly M-continuous functions in bimininmal structure spaces. Viriyapong and Boonpok [20] introduced and investigated the concept of (Λ, sp) -continuous functions.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.4976

Email addresses: chawalit.b@msu.ac.th (C. Boonpok), chalongchai.k@msu.ac.th (C. Klanarong)

^{*}Corresponding author.

Moreover, some characterizations of almost (Λ, s) -continuous functions were presented in [6]. In [5], the authors introduced and studied the notion of weakly (Λ, p) -continuous functions. Laprom et al. [9] studied the concept of $\beta(\tau_1, \tau_2)$ -continuity for multifunctions. In addition, some characterizations of almost weak (τ_1, τ_2) -continuity for multifunctions were established in [4]. In this paper, we introduce the concept of weakly (τ_1, τ_2) -continuous functions. Furthermore, several characterizations of weakly (τ_1, τ_2) -continuous functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [7] if A = τ_1 -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [7] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [7] of A and is denoted by $\tau_1\tau_2$ -Int(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [19] (resp. $(\tau_1, \tau_2)s$ -open [2], $(\tau_1, \tau_2)p$ -open [2], $(\tau_1, \tau_2)\beta$ -open [2]) if $A = \tau_1 \tau_2 - \operatorname{Int}(\tau_1 \tau_2 - \operatorname{Cl}(A))$ (resp. $A \subseteq \tau_1 \tau_2 - \operatorname{Cl}(\tau_1 \tau_2 - \operatorname{Int}(A))$), $A \subseteq \tau_1 \tau_2 - \operatorname{Int}(\tau_1 \tau_2 - \operatorname{Cl}(A))$, $A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A))))$. The complement of a $(\tau_1,\tau_2)r$ -open (resp. $(\tau_1,\tau_2)s$ open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed, $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ closed, $(\tau_1, \tau_2)\beta$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [19] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [19] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

3. Characterizations of weakly (τ_1, τ_2) -continuous functions

In this section, we introduce the notion of weakly (τ_1, τ_2) -continuous functions. Moreover, some characterizations of weakly (τ_1, τ_2) -continuous functions are discussed.

Definition 1. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly (τ_1,τ_2) -continuous at a point $x\in X$ if for each $\tau_1\tau_2$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Cl(V). A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly (τ_1,τ_2) -continuous if f has this property at each point of X.

Theorem 1. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is weakly (τ_1, τ_2) -continuous at $x \in X$ if and only if $x \in \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2 - Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y containing f(x).

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Then, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Cl(V). Thus,

$$x \in U \subseteq f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))$$

and hence $x \in \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2$ -Cl(V))).

Conversely, let V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). By the hypothesis, $x \in \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2\text{-Cl}(V)))$. Then, there exists a $\tau_1\tau_2$ -open set U of X such that $x \in U \subseteq f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$. Thus, $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(V)$ and hence f is weakly (τ_1, τ_2) -continuous at x.

Theorem 2. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is weakly (τ_1,τ_2) -continuous if and only if $f^{-1}(V)\subseteq \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2-Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in f^{-1}(V)$. Then, $f(x) \in V$. Since f is weakly (τ_1, τ_2) -continuous at x, by Theorem 1 we have $x \in \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2\text{-Cl}(V)))$ and hence $f^{-1}(V) \subseteq \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2\text{-Cl}(V)))$.

Conversely, let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Then, we have $x \in f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$. By Theorem 1, f is weakly (τ_1, τ_2) -continuous at x. This shows that f is weakly (τ_1, τ_2) -continuous.

Theorem 3. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is weakly (τ_1,τ_2) -continuous if and only if $\tau_1\tau_2$ - $Cl(f^{-1}(V))\subseteq f^{-1}(\sigma_1\sigma_2-Cl(V))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y. Suppose that

$$\tau_1 \tau_2$$
-Cl $(f^{-1}(V)) \nsubseteq f^{-1}(\sigma_1 \sigma_2$ -Cl (V)).

There exists $x \in \tau_1\tau_2\text{-Cl}(f^{-1}(V))$, but $x \notin f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$. Then, $f(x) \notin \sigma_1\sigma_2\text{-Cl}(V)$ and there exists a $\sigma_1\sigma_2$ -open set W of Y containing f(x) such that $W \cap V = \emptyset$. Thus, $\sigma_1\sigma_2\text{-Cl}(W) \cap V = \emptyset$. Since f is weakly (τ_1, τ_2) -continuous at x, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(W)$. Therefore, $f(U) \cap V = \emptyset$. Since $x \in \tau_1\tau_2\text{-Cl}(f^{-1}(V))$, $U \cap f^{-1}(V) \neq \emptyset$ and $f(U) \cap V \neq \emptyset$, which is a contradiction. This shows that $\tau_1\tau_2\text{-Cl}(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$.

Conversely, let V be any $\sigma_1\sigma_2$ -open set of Y. Then, $Y - \sigma_1\sigma_2$ -Cl(V) is $\sigma_1\sigma_2$ -open in Y. By the hypothesis, $\tau_1\tau_2$ -Cl $(f^{-1}(Y - \sigma_1\sigma_2$ -Cl $(V))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl $(Y - \sigma_1\sigma_2$ -Cl(V)). Thus, $X - \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2$ -Cl $(V))) \subseteq X - f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V))) \subseteq X - f^{-1}(V)$ and hence $f^{-1}(V) \subseteq \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2$ -Cl(V))). By Theorem 2, f is weakly (τ_1, τ_2) -continuous.

Theorem 4. For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2 Cl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2$ - $Int(K))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B)))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;
- (5) $f^{-1}(\sigma_1\sigma_2\text{-Int}(B)) \subseteq \tau_1\tau_2\text{-Int}(f^{-1}(\sigma_1\sigma_2\text{-}Cl(\sigma_1\sigma_2\text{-Int}(B))))$ for every subset B of Y;
- (6) $\tau_1\tau_2$ - $Cl(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. $(1) \Rightarrow (2)$: By Theorem 2.

 $(2) \Rightarrow (3)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then, Y - K is $\sigma_1 \sigma_2$ -open in Y and by (2),

$$X - f^{-1}(K) = f^{-1}(Y - K)$$

$$\subseteq \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - K)))$$

$$= \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(Y - \sigma_1 \sigma_2 \operatorname{-Int}(K)))$$

$$= X - \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(K))).$$

Thus, $\tau_1\tau_2$ -Cl $(f^{-1}(\sigma_1\sigma_2$ -Int $(K))) \subseteq f^{-1}(K)$.

- $(3) \Rightarrow (4)$: Let B be any subset of Y. Then, $\sigma_1 \sigma_2$ -Int(B) is $\sigma_1 \sigma_2$ -closed in Y. By (3), $\tau_1 \tau_2$ -Cl $(f^{-1}(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(B))) \subseteq f^{-1}(\sigma_1 \sigma_2$ -Cl(B)).
 - $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4).

$$f^{-1}(\sigma_1\sigma_2\text{-Int}(B)) = X - f^{-1}(\sigma_1\sigma_2\text{-Cl}(Y - B))$$

$$\subseteq X - \tau_1\tau_2\text{-Cl}(f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(Y - B))))$$

$$= \tau_1\tau_2\text{-Int}(f^{-1}(\sigma_1\sigma_2\text{-Cl}(\sigma_1\sigma_2\text{-Int}(B)))).$$

(5) \Rightarrow (6): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \notin f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$. Then, there exists a $\sigma_1\sigma_2$ -open set U of Y containing f(x) such that $U \cap V = \emptyset$. By (5),

$$x \in f^{-1}(U) \subseteq \tau_1 \tau_2\text{-Int}(f^{-1}(\sigma_1 \sigma_2\text{-Cl}(U)))$$

and there exists a $\tau_1\tau_2$ -open set G of X containing x such that $f(G) \subseteq \sigma_1\sigma_2$ -Cl(U). Thus, $G \cap f^{-1}(V) = \emptyset$ and hence $x \notin \tau_1\tau_2$ -Cl $(f^{-1}(V))$. This shows that

$$\tau_1\tau_2\text{-Cl}(f^{-1}(V))\subseteq f^{-1}(\sigma_1\sigma_2\text{-Cl}(V)).$$

(6) \Rightarrow (1): Let $x \in X$ and V be any be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Since $V = \sigma_1 \sigma_2$ -Int $(V) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)), by (6) we have

$$x \in f^{-1}(V) \subseteq f^{-1}(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

= $X - f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)))$

$$\subseteq X - \tau_1 \tau_2 - \operatorname{Cl}(f^{-1}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

= $\tau_1 \tau_2 - \operatorname{Int}(f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))).$

There exists a $\tau_1\tau_2$ -open set U of X containing x such that $U \subseteq f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$; hence $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(V)$. Thus, f is weakly (τ_1, τ_2) -continuous at x. This shows that f is weakly (τ_1, τ_2) -continuous.

Theorem 5. For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2$ - $Int(K))) \subseteq f^{-1}(K)$ for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(V))$ for every $(\sigma_1,\sigma_2)\beta$ -open set V of Y;
- (4) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(V))$ for every $(\sigma_1,\sigma_2)s$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then, $\sigma_1\sigma_2$ -Int(K) is $\sigma_1\sigma_2$ -open in Y, by Theorem 4 (6) we have

$$\tau_1\tau_2$$
-Cl $(f^{-1}(\sigma_1\sigma_2$ -Int $(K))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(K))) = f^{-1}(K)$.

 $(2) \Rightarrow (3)$: Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Then, we have

$$\sigma_1 \sigma_2$$
-Cl $(V) \subseteq \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)) \subseteq \sigma_1 \sigma_2$ -Cl (V)

and hence $\sigma_1 \sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed. By (2),

$$\tau_1 \tau_2$$
-Cl $(f^{-1}(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)))) \subseteq f^{-1}(\sigma_1 \sigma_2$ -Cl $(V))$.

- $(3) \Rightarrow (4)$: This is obvious.
- $(4) \Rightarrow (1)$: Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, we have V is $(\sigma_1, \sigma_2)s$ -open in Y. By (4), $\tau_1\tau_2$ -Cl $(f^{-1}(V)) \subseteq \tau_1\tau_2$ -Cl $(f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V) and by Theorem 4 (6), f is weakly (τ_1, τ_2) -continuous.

Theorem 6. For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(V))$ for every $(\sigma_1,\sigma_2)p$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y;

(4)
$$f^{-1}(V) \subseteq \tau_1 \tau_2$$
-Int $(f^{-1}(\sigma_1 \sigma_2 - Cl(V)))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y .

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, we have

$$\sigma_1 \sigma_2$$
-Cl $(V) \subseteq \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)))$

and hence $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1,\sigma_2)r$ -closed in Y. Thus, by Theorem 5 (2),

$$\tau_1 \tau_2$$
-Cl $(f^{-1}(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)))) \subseteq f^{-1}(\sigma_1 \sigma_2$ -Cl $(V))$.

- $(2) \Rightarrow (3)$: The proof is obvious.
- $(3) \Rightarrow (4)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. By (3),

$$f^{-1}(V) \subseteq f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$

$$= X - f^{-1}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$

$$\subseteq X - \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(Y - \sigma_1 \sigma_2 \operatorname{-Cl}(V)))$$

$$= \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))).$$

 $(4) \Rightarrow (1)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y. Thus by (4) and Theorem 4 (2), f is weakly (τ_1, τ_2) -continuous.

Theorem 7. For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B)))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2\text{-}Int(K))) \subseteq f^{-1}(K)$ for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (4) $\tau_1\tau_2$ - $Cl(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (5) $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2 Cl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (6) $\tau_1\tau_2$ - $Cl(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y:
- (7) $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2 Cl(V)))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let B be any subset of Y and $x \notin f^{-1}(\sigma_1\sigma_2\text{-Cl}(B))$. Then, we have $f(x) \notin \sigma_1\sigma_2\text{-Cl}(B)$ and there exists a $\sigma_1\sigma_2$ -open set U of Y containing f(x) such that $U \cap B = \emptyset$. Therefore, $\sigma_1\sigma_2\text{-Cl}(U) \cap \sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(B)) = \emptyset$. Since f is weakly (τ_1, τ_2) -continuous at x, there exists a $\tau_1\tau_2$ -open set W of X containing x such that $f(W) \subseteq \sigma_1\sigma_2\text{-Cl}(U)$. Thus, $W \cap f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(B))) = \emptyset$ and hence

$$x \notin \tau_1 \tau_2$$
-Cl $(f^{-1}(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(B)))).$

This shows that $\tau_1\tau_2$ -Cl $(f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(B)))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(B)).

 $(2) \Rightarrow (3)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then by (2), we have

$$\tau_1 \tau_2 - \operatorname{Cl}(f^{-1}(\sigma_1 \sigma_2 - \operatorname{Int}(K))) = \tau_1 \tau_2 - \operatorname{Cl}(f^{-1}(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(\sigma_1 \sigma_2 - \operatorname{Int}(K)))))$$

$$\subseteq f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(\sigma_1 \sigma_2 - \operatorname{Int}(K)))$$

$$= f^{-1}(K).$$

- (3) \Rightarrow (4): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed in Y. By (3), $\tau_1\tau_2$ -Cl($f^{-1}(V)$) $\subseteq \tau_1\tau_2$ -Cl($f^{-1}(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V))) $\subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V).
- $(4) \Rightarrow (5)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Since $Y \sigma_1 \sigma_2$ -Cl(V) is $\sigma_1 \sigma_2$ -open in Y, by (4) we have

$$X - \tau_1 \tau_2 - \operatorname{Int}(f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))) = \tau_1 \tau_2 - \operatorname{Cl}(f^{-1}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$\subseteq f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$\subseteq X - f^{-1}(V)$$

and hence $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2$ -Cl(V))).

- (5) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). By (5), $x \in f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2 \operatorname{Cl}(V)))$. Put $W = \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2 \operatorname{Cl}(V)))$. Then, W is $\tau_1 \tau_2$ -open set of X containing x such that $f(W) \subseteq \sigma_1 \sigma_2$ -Cl(V). Thus, f is weakly (τ_1, τ_2) -continuous at x. This shows that f is weakly (τ_1, τ_2) -continuous.
- (1) \Rightarrow (6): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y and $x \notin f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$. Then, $f(x) \notin \sigma_1\sigma_2\text{-Cl}(V)$ and there exists a $\sigma_1\sigma_2$ -open set G of Y containing f(x) such that $G \cap V = \emptyset$. Since V is $(\sigma_1, \sigma_2)p$ -open, we have

$$V \cap \sigma_{1}\sigma_{2}\text{-}Cl(G) \subseteq \sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)) \cap \sigma_{1}\sigma_{2}\text{-}Cl(G)$$

$$\subseteq \sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)) \cap G)$$

$$\subseteq \sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V) \cap G))$$

$$\subseteq \sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V \cap G)))$$

$$\subseteq \sigma_{1}\sigma_{2}\text{-}Cl(V \cap G) = \emptyset.$$

Since f is weakly (τ_1, τ_2) -continuous at x, there exists a $\tau_1\tau_2$ -open set W of X containing x such that $f(W) \subseteq \sigma_1\sigma_2\text{-Cl}(G)$. Thus, $f(W) \cap V = \emptyset$ and hence $W \cap f^{-1}(V) = \emptyset$. Therefore, $x \notin \tau_1\tau_2\text{-Cl}(f^{-1}(V))$. This shows that $\tau_1\tau_2\text{-Cl}(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$.

(6) \Rightarrow (7): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, $Y - \sigma_1\sigma_2$ -Cl(V) is $\sigma_1\sigma_2$ -open and hence $Y - \sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)p$ -open in Y. Then by (6), we have

$$X - \tau_1 \tau_2 - \operatorname{Int}(f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))) = \tau_1 \tau_2 - \operatorname{Cl}(X - f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$= \tau_1 \tau_2 - \operatorname{Cl}(f^{-1}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$\subseteq f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(Y - \sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$= f^{-1}(Y - \sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$= X - f^{-1}(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$

$$\subseteq X - f^{-1}(V)$$

and hence $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2$ -Cl(V))).

 $(7) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Since V is $(\sigma_1, \sigma_2)p$ -open in Y and by (7), $x \in f^{-1}(V) \subseteq \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2\text{-Cl}(V)))$. Put $U = \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2\text{-Cl}(V)))$. Then, U is a $\tau_1\tau_2$ -open set of X containing x such that $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(V)$. Thus, f is weakly (τ_1, τ_2) -continuous at x. This shows that f is weakly (τ_1, τ_2) -continuous.

Theorem 8. For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $f(\tau_1\tau_2-Cl(A)) \subseteq (\sigma_1,\sigma_2)\theta-Cl(f(A))$ for every subset A of X;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(B)) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y.

Proof. (1) \Rightarrow (2): Let A be any subset of X. Suppose that $x \in \tau_1\tau_2\text{-Cl}(A)$ and G is any $\sigma_1\sigma_2$ -open set of Y containing f(x). Since f is weakly (τ_1, τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(G)$. Since $x \in \tau_1\tau_2\text{-Cl}(A)$, we have $U \cap A \neq \emptyset$. It follows that $\emptyset \neq f(U) \cap f(A) \subseteq \sigma_1\sigma_2\text{-Cl}(G) \cap f(A)$. Thus, $f(x) \in (\sigma_1, \sigma_2)\theta\text{-Cl}(f(A))$ and hence $f(\tau_1\tau_2\text{-Cl}(A)) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(f(A))$.

 $(2) \Rightarrow (3)$: Let B be any subset of Y. Then,

$$f(\tau_1\tau_2\text{-Cl}(f^{-1}(B))) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(f(f^{-1}(B))) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(B)$$

and hence $\tau_1\tau_2\text{-Cl}(f^{-1}(B)) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta\text{-Cl}(B))$.

 $(3) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Since

$$\sigma_1 \sigma_2$$
-Cl(V) \cap (Y $-\sigma_1 \sigma_2$ -Cl(V)) $= \emptyset$,

 $f(x) \notin (\sigma_1, \sigma_2)\theta$ -Cl $(Y - \sigma_1\sigma_2$ -Cl(V)) and hence $x \notin f^{-1}((\sigma_1, \sigma_2)\theta$ -Cl $(Y - \sigma_1\sigma_2$ -Cl(V))). By (3), $x \notin \tau_1\tau_2$ -Cl $(f^{-1}(Y - \sigma_1\sigma_2$ -Cl(V))) and there exists a $\tau_1\tau_2$ -open set U of X containing x such that $U \cap f^{-1}(Y - \sigma_1\sigma_2$ -Cl(V)) = \emptyset ; hence $f(U) \cap (Y - \sigma_1\sigma_2$ -Cl(V)) = \emptyset . Thus, $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V) and hence f is weakly (τ_1, τ_2) -continuous at x. This shows that f is weakly (τ_1, τ_2) -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

REFERENCES 424

References

- [1] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [2] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [3] C. Boonpok. Weak openness and weak continuity. Mathematica, 64(2):173–185, 2022.
- [4] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 14(4):1212–1225, 2021.
- [5] C. Boonpok and C. Viriyapong. On (Λ, p) -closed sets and the related notions in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):415–436, 2022.
- [6] C. Boonpok and C. Viriyapong. On some forms of closed sets and related topics. European Journal of Pure and Applied Mathematics, 16(1):336–362, 2023.
- [7] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions,. *Journal of Mathematics and Computer Science*,
 18:282–293, 2018.
- [8] E. Ekici, S. Jafari, M. Caldas, and T. Noiri. Weakly λ -continuous functions. *Novi Sad Journal of Mathematics*, 38:47–56, 2008.
- [9] K. Laprom, C. Boonpok, and C. Viriyapong. $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces. *Journal of Mathematics*, 2020:4020971, 2020.
- [10] N. Levine. A decomposition of continuity in topological spaces. *The American Mathematical Monthly*, 68:44–46, 1961.
- [11] N. Levine. Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, 70(1):36–41, 1963.
- [12] S. Marcus. Sur les fonctions quasicontinues au sens de S. Kempisty. *Colloquium Mathematicum*, 8:47–53, 1961.
- [13] A. Neubrunnová. On certain generalizations of the notions of continuity. *Matematiký* Časopis, 23:374–380, 1973.
- [14] T. Noiri. Properties of some weak forms of continuity. *International Journal of Mathematics and Mathematical Sciences*, 10(1):97–111, 1987.
- [15] V. Popa and T. Noiri. A unified theory of weak continuity for functions. *Rendiconti del Circolo Matematico di Palermo* (2), 51:439–464, 2002.
- [16] V. Popa and T. Noiri. On weakly (τ, m) -continuous functions. Rendiconti del Circolo Matematico di Palermo (2), 51:295–316, 2002.

REFERENCES 425

[17] V. Popa and C. Stan. On a decomposition of quasicontinuity in topological spaces. Studii și Cercetări de Matematică, 25:41–43, 1973.

- [18] D. A. Rose. Weak continuity and almost continuity. *International Journal of Mathematics and Mathematical Sciences*, 7:311–318, 1984.
- [19] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [20] C. Viriyapong and C. Boonpok. (Λ, sp) -continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.