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Köthe dual of some vector-valued sequence spaces
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Abstract. We study some properties of the spaces λ(E) of weakly λ-summable sequences and
λ⟨E⟩ of strongly λ-summable sequences of a locally convex space E. For example, after proving
results on bounded sets of these spaces, we express the elements of their Köthe duals in terms of
sequences in the continuous dual E′ of E, then we prove that these spaces possess the AK property
if and only if the Köthe dual coincides with the continuous dual.
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Introduction

In order to characterize the nuclearity of a locally convex space E, A. Pietsch [9]
introduced the spaces ℓp{E} and ℓp[E] of absolutely ℓp-summable and weakly ℓp-summable
sequences in E, respectively. This allowed the author also to introduce and study the
absolutely p-summing operators. Later, J. S. Cohen [2] introduced the space ℓp⟨E⟩ of
strongly p-summable sequences and used this space together with the spaces ℓp[E] and
ℓp{E} to define the strongly and the nuclear p-summing operators. H. Apiola [1], in
order to get new conditions for the nuclearity of E, generalized to an arbitrary locally
convex space E, the definition of ℓp⟨E⟩. On the other hand, A. Pietsch [9], dealing again
with a perfect sequence space λ equipped with its Köthe normal topology, introduced the
space λ(E) of weakly λ-summable sequences in E. We note that, considering the general
case where λ is no longer endowed with its Köthe normal topology, but with a general
polar topology, M. Florencio and P. J. Paúl [3] studied λ(E) and clarified the relationship
between λ(E) and the completion of the injective tensor product λ⊗ϵE. They determined
conditions on E that make λ(E) an AK space.
Let us mention here that the authors, in [7, 8, 10–13], studied many aspects of the space
λ(E) such as the reflexivity, the nuclearity and the representation of the continuous dual

DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.4992

Email address: sidaty1@hotmail.com (M. A. Sidaty)

https://www.ejpam.com 171 © 2024 EJPAM All rights reserved.



M. A. Sidaty / Eur. J. Pure Appl. Math, 17 (1) (2024), 171-179 172

in terms of strongly λ∗-summable sequences in E′, where λ∗ is the Köthe dual of λ and
E′ the continuous dual of E.
In this note, we consider on λ(E) and λ⟨E⟩ locally convex topologies defined in a natural
way as bellow, and then, we study some aspects of their properties such as, bounded sets
and the generalized Köthe dual. We introduce, in the preliminary section, the notations
and background that will be needed in the sequel. In section 2, a fundamental family of
bounded sets in λ(E) and some bounded sets of λ⟨E⟩ are exhibited. Section 3 is devoted to
the determination of the Köthe dual of λ(E) and λ⟨E⟩ in terms of sequences of continuous
linear forms on E. In particular, we extend to these spaces the well known result that, the
continuous dual of a scalar sequence space λ with respect to a polar topology, coincides
with its Köthe dual, if and only if λ has the AK property.

1. Notations and background

Throughout this note, if V is a normed space then V ′, ∥ · ∥V and BV will denote the
continuous dual, the norm and the closed unit ball of V , respectively.
We will stand by λ a perfect Banach sequence space and by λ∗ its Köthe dual. Although
many of results presented here are valid for more general setting, we will assume that the
norm of λ satisfies the conditions:
(1) If α, β ∈ λ, with α ≤ β, then ∥α∥λ ≤ ∥β∥λ, and
(2) (λ, ∥ · ∥λ) is an AK space, i.e., every α = (αn)n ∈ λ is the ∥ · ∥λ-limit of its sections
(α1, . . . , αn, 0, . . .), n ∈ N.
This condition is satisfied if and only if λ∗ = λ′. So, λ will be reflexive whenever (λ∗, ∥·∥λ∗)
is also an AK space. The results proved here are then applicable to many cases of the
Orlicz sequence spaces ℓM (see for example [12]) and, in particular, to the ℓp spaces.
Further, we mean by E a sequentially complete Hausdorff locally convex space, E′ its
continuous dual and by M the collection of all absolutely convex, σ(E′, E)-closed and
equicontinuous subsets of E′. The topology of E is then defined by the family of seminorms
(PM )M∈M such that, for all x ∈ E,

PM (x) = sup{|a(x)| : a ∈ M}, for all M ∈ M.

Define the following space

λ(E) =
{
x = (xn)n ⊂ E :

∑
αnxn converges in E, for all (αn)n ∈ λ∗

}
.

Following [3], a locally convex topology on λ(E) is defined by the family of seminorms
(ϵM )M∈M, where

ϵM (x) := sup

{ ∞∑
n=1

|αna(xn)| : a ∈ M, α ∈ Bλ∗

}
, for all x = (xn)n ∈ λ(E).

These seminorms turn out to be defined also on the space

λ[E] =
{
x = (xn)n ⊂ E : (a(xn))n ∈ λ∗, for all a ∈ E′} .
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Following [2] and [7], a sequence (xn)n ⊂ E is said to be strongly λ-summable if, for
every M ∈ M and (an)n ∈ λ∗[E′

M ], the series Σ|an(xn)| converges. We mean by E′
M the

linear subspace of E′ spanned by M and equipped with the gauge ∥ · ∥M of M . Denote
by λ ⟨E⟩ the space of all strongly λ−summable sequences in E. We will endow λ⟨E⟩
with the locally convex topology introduced in [8] and defined by the family of seminorms
(σM )M∈M, where

σM (x) = sup

{ ∞∑
n=1

|an(xn)| : a = (an)n ∈ Bλ∗(E′
M )

}
, for all x = (xn)n ∈ λ⟨E⟩.

Notice that, since λ is perfect, we have

λ ⟨E⟩ ⊂ λ(E) ⊂ λ[E].

The spaces λ ⟨E⟩, λ(E) and λ[E] are sequentially complete, in particular, Banach spaces
whenever λ and E are.
On the other hand, since λ′ coincides with λ∗, one deduces from [5, Theorem 1] that
λ(E) = λ[E].
For any sequence x = (xn)n in E and p ∈ N, denote by x(p) = (x1, x2, . . . , xp, 0, 0, . . . ) the
pth finite section of x. Let

x<p> = x− x(p) = (0, 0, . . . , 0, xp+1, xp+2, . . . ).

If en is the nth unit coordinate vector of CN, then x(p) =
∑p

n=1 xnen.
We will denote by λ(E)r (resp. λ⟨E⟩r), the subspace of λ(E) (rep. λ⟨E⟩) consisting of all
the sequences x = (xn)n which are limits of their finite sections x(p). The reader is referred
to [6, 14] for notations and concepts related to the Köthe theory of sequence spaces and
the general theory of locally convex spaces.

2. Bounded sets of λ(E)

If B is a closed, absolutely convex and bounded subset of E, and S = Bλ∗ , let

B̃ =

{
(xn)n ∈ λ(E) : ∀α = (αn)n ∈ S,

∑
n

αnxn ∈ B

}
. (1)

We have the following result.

Proposition 1. The collection {B̃ : B bounded in E} constitutes a fundamental system
of bounded sets for λ(E).

Proof. If B is a bounded set in E, then the corresponding set B̃ in (1) is bounded in
λ(E), by [8, Proposition 1]. Now, let B be a bounded set of λ(E) and S the unit ball of
λ∗. Consider the subset B of E defined by

B =

{
y ∈ λ(E) : y =

∞∑
n=1

αnxn, for some α ∈ S and x = (xn)n ∈ B

}
.
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Let a ∈ E′, M ∈ M with a ∈ M and x = (xn)n ∈ B. Then,∣∣∣∣∣
〈
a,

∞∑
n=1

αnxn

〉∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=1

αna(xn)

∣∣∣∣∣ ≤
∞∑
n=1

|αna(xn)| ≤ εM (x).

Since S is a normal disk in λ∗ and B is bounded in λ(E), then B is a bounded disk in E.
Moreover, by the definition of B, we see that B ⊂ B̃. ■

Lemma 2. For every t ∈ E and β = (βn)n ∈ λ, we have (βnt)n ∈ λ⟨E⟩.
Proof. For t ∈ E, let δt denote the evaluation defined on E′ by δt(x

′) = x′(t). We have,
if M ∈ M, then |δt(x′)| ≤ PM (t)∥x′∥M for every x′ ∈ E′

M . This means that δt ∈ (E′
M )′

and that ∥δt∥ ≤ PM (t). Let β = (βn)n ∈ λ and (an)n ∈ λ∗[E′
M ]. By the definition of

λ∗[E′
M ], (an(t))n = (δt(an)) ∈ λ∗, and then

∞∑
n=1

|an(βnt)| =
∞∑
n=1

|an(t)βn| < ∞.

Thus, (βnt)n ∈ λ⟨E⟩. ■

Now, for S = Bλ and a closed absolutely convex bounded subset B of E, define

B̄ =

{ ∞∑
k=1

ξkβ
kxk : βk = (βk

n)n ∈ Bλ, xk ∈ B, and

∞∑
k=1

|ξk| ≤ 1

}
. (2)

Proposition 3. The set B̄ is a bounded subset of λ⟨E⟩.
Proof. Let {βk = (βk

n)n}∞k and {xk}∞k be sequences in Bλ and B respectively.
Fix k ∈ N, M ∈ M and a = (an)n ∈ λ∗[E′

M ] = λ∗(E′
M ), with ∥a∥λ∗(E′

M ) ≤ 1. As in the
proof of the previous lemma, δxk

denotes the evaluation defined on E′
M . We have

∞∑
n=1

∣∣∣an(βk
nxk)

∣∣∣ = ∞∑
n=1

∣∣∣βk
nan(xk)

∣∣∣ = ∞∑
n=1

∣∣∣βk
nδxk

(an)
∣∣∣

= ∥βk∥λPM (xk)
∞∑
n=1

∣∣∣∣ βk
n

∥βk∥λ
δxk

PM (xk)
(an)

∣∣∣∣
≤ ∥βk∥λPM (xk)∥a∥λ∗(E′

M )

≤ ∥βk∥λPM (xk) ≤ PM (xk).

Since B is bounded in E, then there exists ρ > 0, so that PM (xk) ≤ ρ for every k ∈ N;
and, by the definition of σM , one has σM (βkxk) ≤ ρ, for every k ∈ N. Moreover, if (ξk)k
satisfies

∑∞
k=1 |ξk| ≤ 1 then,

∞∑
k=1

σM (ξkβ
kxk) ≤

∞∑
k=1

|ξk|∥βk∥λPM (xk) ≤ ρ
∞∑
k=1

|ξk| ≤ ρ. (3)

By Lemma 2, the terms of the series
∑∞

k=1 ξkβ
kxk belong to λ⟨E⟩. Since λ⟨E⟩ is sequen-

tially complete, we derive from (3) that this series is convergent in λ⟨E⟩ and that the
corresponding set B̄ in (2) is well defined, contained and bounded in λ⟨E⟩. ■
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3. Köthe Duals of λ(E) and λ⟨E⟩

Following [4], if F is a linear subspace of EN, the generalized Köthe dual of F is defined
by

F ∗ =
{
(an)n ⊂ E′ :

∑
|an(xn)| converges for all x = (xn)n ∈ F

}
.

For every x ∈ E, denote by δx the evaluation defined, as in the proof of Lemma 2, by
δx(x

′) = x′(x), for x′ ∈ E′. Thanks to the linear and isometric map δ : x → δx from E to
E′′, we always have F ⊂ F ∗∗. The sequence space F is said to be perfect if F ∗∗ = F .

Proposition 4. Let λ be a perfect normed sequence space with dual space λ∗ and E a
locally convex space. Then (λ(E)r)

∗ = (λ(E))∗ and (λ⟨E⟩r)∗ = (λ⟨E⟩)∗.

Proof. We prove that (λ(E)r)
∗ = (λ(E))∗, the same argument applies for the second

equality. It is clear that (λ(E))∗ ⊂ (λ(E)r)
∗. Let a = (an)n ∈ (λ(E)r)

∗ and x =
(xn)n ∈ λ(E). To prove that

∑∞
n=1 |an(xn)| converges, it is enough to prove that, for every

(γn)n ∈ c0, the series
∑∞

n=1 |γnan(xn)| converges. Set y = (yn)n where yn = γnxn, for all
n ∈ N. We see that y ∈ λ(E). In the other hand, for M ∈ M, a ∈ M , α = (αn)n ∈ Bλ∗

and p ∈ N, one has

∞∑
n=p+1

|αna (γnxn)| ≤ sup
n≥p+1

|γn|
∞∑

n=p+1

|αna (xn)| ≤ ∥γ<p>∥c0ϵM (x).

This shows that ϵM (y<p>) ≤ ∥γ<p>∥c0ϵM (x), and then y ∈ λ(E)r since (γ
<p>)p converges

to 0. Now, we have

∞∑
n=1

|γnan(xn)| =
∞∑
n=1

|an(γnxn)| =
∞∑
n=1

|an(yn)| < ∞.

This completes the proof. ■

According to [7, Theorem 7], the continuous dual λ(E)r of (λ(E)r)
′ is given by (λ(E)r)

′ =⋃
M∈M λ∗⟨E′

M ⟩. In particular, if λ and E are Banach spaces then

(λ(E)r)
′ = λ∗⟨E′⟩. (4)

The last equality is actually topological, by ([6, 15.12(2)]).

Proposition 5. For every Banach space E, we have

(a) the Köthe dual of (λ(E))∗ satisfies (λ(E))∗ = λ∗⟨E′⟩ = (λ(E)r)
′,

(b) the Köthe dual of (λ(E))∗ satisfies (λ(E))∗∗ = λ(E′′). In particular, if E is reflexive
then (λ(E))∗∗ = λ(E).
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Proof. By the definition of the spaces λ∗⟨E′⟩ and (λ(E))∗, we have λ∗⟨E′⟩ ⊂ (λ(E))∗.
Let a = (an)n ∈ (λ(E))∗. Using the closed graph theorem ([6, 15.12(3)]), we can prove
that the mapping fa : λ(E)r → ℓ1 defined by fa(x) = (an(xn))n is continuous, and then
a ∈ (λ(E)r)

′. So, (λ(E))∗ ⊂ (λ(E)r)
′. The part (a) follows from (4). For (b), we have

(λ(E))∗ = (λ(E)r)
∗, (by Proposition 4)

= (λ(E)r)
′, (by (a))

= (λ⊗̃εE)′, (by [3, Prop. 2])

= λ∗⊗̃πE
′, (by [6, 45.6(5)]).

On the other hand, since

(λ∗⟨E′⟩)′ = (λ⊗̃εE)′′ = (λ∗⊗̃πE
′)′ = L(λ∗, E′′), (by [6, 41.3(6)])

= λ(E′′), (by [10, Propoition 2])

then, (λ(E))∗∗ = λ(E′′). ■

Now, by [8, Theorem 1], the continuous dual (λ⟨E⟩r)′ of λ⟨E⟩r is given by the algebraic
equality (λ⟨E⟩r)′ =

⋃
M∈M λ∗(E′

M ). If λ and E are Banach spaces then

(λ⟨E⟩r)′ = λ∗(E′). (5)

This equality is topological, by ([6, 15.12(2)]).

Similarly, we have

Proposition 6. For every Banach space E, the following equalities hold

(a) (λ⟨E⟩)∗ = λ∗(E′) = (λ⟨E⟩r)′,

(b) (λ⟨E⟩)∗∗ = λ⟨E′′⟩. In particular, if E is reflexive then (λ⟨E⟩)∗∗ = λ⟨E⟩.

Proof. The proof is similar to that of Proposition 5, but we present it for the sake of
completeness.
By [5, Theorem 1], λ∗(E′) = λ∗[E′], and then, by the definition of the space λ⟨E⟩, we have
λ∗(E′) ⊂ (λ⟨E⟩)∗. On the other hand, in view of the closed graph theorem ([6, 15.12(3)]),
we deduce that every a = (an)n ∈ (λ⟨E⟩)∗ corresponds to a continuous linear form on
λ⟨E⟩r by setting fa(x) =

∑∞
n=1 an(xn). Thus, (λ⟨E⟩)∗ ⊂ (λ⟨E⟩r)′. The part (a) follows

from (5). Regarding (b), we have

(λ⟨E⟩)∗ = (λ⟨E⟩r)∗, (by Proposition 4)

= (λ⟨E⟩r)′, (by (a))

= λ∗(E′), (by [8, Theorem 1]).

This leads to

(λ⟨E⟩)∗∗ = (λ∗(E′))∗ = λ∗∗⟨E′′⟩ = λ⟨E′′⟩, (by (a) of Proposition 5).

This ends the proof. ■
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Proposition 7. Suppose that E and λ are Banach spaces with λ reflexive. Then,

λ∗⟨E′⟩r = λ∗⟨E′⟩.

Proof. Let a = (an)n ∈ λ∗⟨E′⟩, and consider

φa : λ(E′′) → ℓ1, φa((x
′′
n)n) = (x′′n(an))n.

The linear mapping φa is well defined, since λ(E′′) = λ[E′′] by [5, Theorem 1]. Let us
show that φa is weak to weak continuous. If (αn)n ∈ ℓ∞ then (αnan)n ∈ λ∗⟨E′⟩ and for
all (x′′n)n ∈ λ(E′′), we have〈

(αn)n, (x′′n(an))n
〉
=

〈
(αnan)n, (x

′′
n)n

〉
.

Let B be a bounded set in λ(E)r. The Alaoglu-Bourbaki Theorem ([6, 20.9(4)]) asserts that
B is relatively weak∗ compact. We derive from [6, 22.4(3)] that

{
(an(xn))n : (xn)n ∈ B

}
is relatively compact in ℓ1 and then

lim
p→∞

sup


∞∑

n=p+1

|an(xn)| : (xn)n ∈ B

 = 0.

This means that (a<p>)p is a null sequence in λ∗⟨E′⟩. This completes the proof. ■

Proposition 8. Let E be a Banach and λ a reflexive Banach sequence space. Then, the
elements of λ∗⟨E′⟩ are the sequences a = (an)n ⊂ E′ that have the form

a =
∞∑
k=1

λkβ
kx′k,

where (λk)k ∈ ℓ1 and, for every k ∈ N, βk = (βk
n)n ∈ Bλ and x′k ∈ BE′.

Proof. As in Proposition 7, we have

λ∗⟨E′⟩ = (λ(E)r)
′, by [7, Theorem 7]

= (λ⊗̃εE)′, by [3, Prop. 2]

= I(λ× E), integral bilinear forms on λ× E, by [6, 45.1(2)]

= LI(λ,E′), integral mappings of λ in E′, by [6, 45.4(1)]

= N (λ,E′). nuclear operators from λ in E′ by [6, 45.6(1) and 45.6(4)]

For a = (an)n ∈ λ∗⟨E′⟩, the corresponding fa ∈ LI(λ,E′) is defined by fa(α) ∈ E′ such
that fa(α)(t) = B(α, t) = ⟨a, αt⟩, for α = (αn)n ∈ λ and t ∈ E, where B ∈ I(λ × E) is
the integral bilinear form on λ× E corresponding to fa.
Now, since fa ∈ N (λ,E′), then by [6, 42.5(5)-(6)], there are (λk)k ∈ ℓ1, a sequence
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{βk = (βk
n)n : k ∈ N} in Bλ and a sequence (x′k)k in BE′ such that, for every α ∈ λ and

t ∈ E, we have

⟨a, αt⟩ = fa(α)(t) =

∞∑
k=1

λk⟨βk, α⟩x′k(t).

This implies that an =
∑∞

k=1 λkβ
k
nx

′
k for every n ∈ N and that a =

∑∞
k=1 λkβ

kx′k.
By ascending the previous chain of equalities, we easily see that the inverse is true. ■

Proposition 9. (λ(E))∗ = (λ(E))′ if and only if λ(E)r = λ(E).

Proof. By (a) of Proposition 5, if λ(E)r = λ(E) then (λ(E))∗ = (λ(E)r)
′ = (λ(E))′.

Inversely, suppose that (λ(E))∗ = (λ(E))′. As in the proof of Proposition 7, for every
x = (xn)n ∈ λ(E),

φx : (λ(E))′ → ℓ1, φx((an)n) = (an(x))n,

is well defined, linear and weak to weak continuous. Denote by H the closed unit ball
of (λ(E))∗. Here also, the Alaoglu-Bourbaki Theorem ([6, 20.9(4)]) guarantees that H is
relatively weak∗ compact. We derive from [6, 22.4(3)], that

{
(an(xn))n : (an)n ∈ H

}
is

relatively compact in ℓ1 and then

lim
p→∞

εM (x<p>) = lim
p→∞

sup


∞∑

n=p+1

|an(xn)| : (an)n ∈ H

 = 0.

Thus, x ∈ λ(E)r. ■

Proposition 10. (λ⟨E⟩)∗ = (λ⟨E⟩)′ if and only if λ⟨E⟩r = λ⟨E⟩.

Proof. The proof is similar to that of Proposition 9 when interchanging the roles of
λ(E) and (λ(E))′ by those of λ⟨E⟩ and (λ⟨E⟩)′, respectively. ■

Conclusion

Let E be a Banach space and λ a perfect Banach sequence space which is reflexive.
We prove that λ(E) and λ⟨E⟩ have the AK property if and only if the Köthe dual and
the continuous dual are equal. If, moreover E is reflexive, these spaces become perfect.
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