EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 1, 2024, 222-242
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Looking at Two Ways of Constructing Quotient Hyper $B N$-algebras and Some Notes on Hyper $B N$-ideals

Lyster Rey B. Cabardo ${ }^{1,2, *}$, Gaudencio C. Petalcorin, Jr. ${ }^{1,2}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City, Lanao del Norte, Philippines
${ }^{2}$ Center for Graph Theory, Algebra, and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City, Lanao del Norte, Philippines

Abstract

A hyper $B N$-algebra is a nonempty set H together with a hyperoperation " \circledast " and a constant 0 such that for all $x, y, z \in H: x \ll x, x \circledast 0=\{x\}$, and $(x \circledast y) \circledast z=(0 \circledast z) \circledast(y \circledast x)$, where $x \ll y$ if and only if $0 \in x \circledast y$. We investigated the structures of ideals in the Hyper $B N$-algebra setting. We established equivalency of weak hyper $B N$-ideals and hyper sub $B N$-algebras. Also, we found a condition when a strong hyper $B N$-ideal become a hyper $B N$-ideal. Finally, we looked at two ways in constructing the quotient hyper $B N$-algebras and investigated the relationship between the two constructions.

2020 Mathematics Subject Classifications: 08A05, 08A30
Key Words and Phrases: Hyper $B N$-algebra, hyper $B N$-ideal, quotient hyper $B N$-algebra, congruence relation, reflexive normal hyper $B N$-algebra

1. Introduction

In classical algebraic theory, groups are sets equipped with an operation that combines any two elements to produce a third element. They are often used to study symmetry and transformations. Rings, on the other hand, are sets with two operations, usually addition and multiplication, and they are used to study arithmetic properties. Fields are algebraic structures that have both addition and multiplication operations, and they are fundamental in areas like number theory and geometry.

The concept of the algebraic hyperstructure theory was brought by F. Marty [9] at the 8th Congress of Scandinavian Mathematicians in 1934. One of the main point of this

[^0]introduction is to generalized groups. A binary operation was generalized using hyperoperation in this setting. If we have a set H, then a hyperoperation is a mapping from $H \times H$ to the set of nonempty subsets of H.

After quite some time, researchers explore this concept and formulated counterparts of some classical algebraic structures. This led to various introduction of algebraic hyperstructures: hyper $B C I$-algebras [10], hyper $B C C$-algebras [1], hyper $G R$-algebras [7], hyper B-algebras [5], etc. In 2022, we applied this concept to $B N$-algebras [8]. We called them hyper $B N$-algebras [3].

In mathematics, an ideal is a fundamental concept in the study of algebraic structures, particularly in the field of abstract algebra. Ideals are subsets of algebraic structures that possess special properties. They are a powerful tool in abstract algebra, allowing mathematicians to study the structure and properties of algebraic structures in a more general and systematic way. In [10], various ideals of a hyper BCI-algebra was introduced and some relationship were established from among these ideals. A more specific properties involving weak and strong hyper $B C I$-ideals was dealt in [2]. Ideals were also investigated in other hyper algebras.

On the other hand, quotient structures of algebras are a concept in abstract algebra that allow us to create new algebraic structures by "modding out" or "factoring out" certain elements or subsets of an existing algebraic structure. This process involves defining an equivalence relation on the original structure and then forming equivalence classes based on this relation. The significance of quotient structures lies in their ability to simplify the study of algebraic structures by focusing on the essential properties and relationships. They provide a way to abstract away certain elements or subsets that may not be of immediate interest, allowing mathematicians to analyze the structure in a more manageable and structured manner.

In this paper, we will introduce the notion of ideals on hyper $B N$-algebras and look at two ways of constructing quotient hyper $B N$-algebras.

2. Preliminaries

This section provides some preliminary concepts and results needed for this paper.
Definition 1. [6] A binary relation or simply a relation \sim from a set A into a set B is a subset of $A \times B$. If \sim is a relation from A to B, we denote $(a, b) \in \sim$ as $a \sim b$. If $A=B$, we say that \sim is a relation on A.

Definition 2. [6] Let \sim be a binary relation on a set A. Then \sim is called
(i) reflexive if for all $x \in A, x \sim x$;
(ii) symmetric if for all $x, y \in A, x \sim y$ implies $y \sim x$; and
(iii) transitive if for all $x, y, z \in A, x \sim y$ and $y \sim z$ imply $x \sim z$.

If \sim is reflexive, symmetric, and transitive, then \sim is called an equivalence relation on A.

Definition 3. [6] Let \sim be an equivalence relation on a set A. For all $x \in A$, the set $\{y \in A: y \sim x\}$ is called the equivalence class determined by x, denoted by $[x]_{\sim}$.

Definition 4. [4] Define $\mathcal{P}(H)$ to be the power set of H and $\mathcal{P}^{*}(H)=\mathcal{P}(H) \backslash\{\varnothing\}$. A hyperoperation on a nonempty set H is a function $\circledast: H \times H \rightarrow \mathcal{P}^{*}(H)$. The value $(x, y) \in H \times H$ under \circledast is defined by $x \circledast y$. If $x \in H$ and $\varnothing \neq A, B \subseteq H$, then
(i) $A \circledast B=\bigcup_{a \in A, b \in B} a \circledast b$; and
(ii) $A \circledast x=A \circledast\{x\}$ and $x \circledast B=\{x\} \circledast B$.

In what follows, the concepts and results are taken from [3] as this is the main reference of this paper.

Definition 5. Let H be a nonempty set and \circledast be a hyperoperation on H. Then $(H, \circledast, 0)$ is called a hyper $B N$-algebra, if $0 \in H$ and the following conditions hold: for all $x, y, z \in H$,
(i) $x \ll x$;
(ii) $x \circledast 0=\{x\}$; and
(iii) $(x \circledast y) \circledast z=(0 \circledast z) \circledast(y \circledast x)$,
where $x \ll y$ if and only if $0 \in x \circledast y$.
Example 1. Let $H=\{0, a, b\}$ be a set. If we define a hyperoperation " \circledast " on H as follows:

\circledast	0	a	b
0	$\{0\}$	$\{a\}$	$\{b\}$
a	$\{a\}$	$\{0, a\}$	$\{b\}$
b	$\{b\}$	$\{b\}$	$\{0, b\}$

then by routinary calculations $(H, \circledast, 0)$ is a hyper $B N$-algebra.
Example 2. Let $H=\{0,1,2\}$ be a set. If we define a hyperoperation " \circledast " on H as follows:

\circledast	0	1	2
0	$\{0\}$	$\{1\}$	$\{2\}$
1	$\{1\}$	$\{0,2\}$	$\{0,1\}$
2	$\{2\}$	$\{0,1\}$	$\{0,1\}$

then by routinary calculations $(H, \circledast, 0)$ is a hyper $B N$-algebra.
Example 3. Let $H=\{0,1,2,3\}$ be a set. If we define a hyperoperation " \circledast " on H as follows:

\circledast	0	1	2	3
0	$\{0\}$	$\{1\}$	$\{3\}$	$\{2\}$
1	$\{1\}$	$\{0,1\}$	$\{0,1,2\}$	$\{0,1,3\}$
2	$\{2\}$	$\{0,1,3\}$	$\{0,1,2,3\}$	$\{0,2\}$
3	$\{3\}$	$\{0,1,2\}$	$\{0,3\}$	$\{0,1,2,3\}$

then by routinary calculations $(H, \circledast, 0)$ is a hyper $B N$-algebra.
Example 4. Let \mathbb{Z} be the set of integers. Define a hyperoperation " \circledast " on \mathbb{Z} by:

$$
x \circledast y= \begin{cases}\{x\}, & \text { if } y=0 \\ \{y\}, & \text { if } x=0 \\ \{x-y, y-x, x+y\}, & \text { otherwise } .\end{cases}
$$

Then, we can show that $(\mathbb{Z}, \circledast, 0)$ is a hyper $B N$-algebra. Note that, the same holds when \mathbb{Z} is replaced by \mathbb{Q}, \mathbb{R} or \mathbb{C}.

Theorem 1. In any hyper $B N$-algebra H, the following hold: for any $x, y, z \in H$ and $\varnothing \neq A, B, C \subseteq H$,
(i) $x \circledast x=\{x\} \Leftrightarrow x=0$;
$(i x)(x \circledast z) \circledast(y \circledast z)=(z \circledast y) \circledast(z \circledast x) ;$
(ii) $x \ll 0 \Rightarrow x=0$;
$(x) \quad A \ll A ;$
(iii) $0 \circledast(0 \circledast x)=\{x\}$;
(xi) $A \subseteq B \Rightarrow A \ll B ;$
(iv) $0 \circledast(x \circledast y)=y \circledast x$;
$(v) x \circledast y=(0 \circledast y) \circledast(0 \circledast x) ;$
$(x i i) A \subseteq B$ and $B \ll C$ imply $A \ll C$;
$(v i)(0 \circledast x) \circledast y=(0 \circledast y) \circledast x$;
(xiii) $A \ll\{0\} \Rightarrow A=\{0\} ;$
(vii) $x \ll y \Rightarrow y \ll x$;
(xiv) $A \circledast\{0\}=\{0\} \Rightarrow A=\{0\} ;$ and
(viii) $0 \circledast x=0 \circledast y \Rightarrow x=y$;
$(x v)(A \circledast B) \circledast C=(0 \circledast C) \circledast(B \circledast A)$.

Definition 6. A hyper $B N$-algebra H is said to be commutative if for all $x, y \in H$, $x \circledast y=y \circledast x$.

Example 5. The hyper $B N$-algebras in Example 1 and Example 2 are commutative while the hyper $B N$-algebra in Example 3 is not because $2 \circledast 0=\{2\} \neq\{3\}=0 \circledast 2$.

Theorem 2. Let H be a hyper $B N$-algebra. Then H is commutative if and only if $0 \circledast x=\{x\}$ for all $x \in H$.

We will provide some basic concepts and results related to hyper $B N$-algebras. These are taken again from [3].

Definition 7. Let $(H, \circledast, 0)$ be a hyper $B N$-algebra and let S be a subset of H containing 0 . If S is a hyper $B N$-algebra with respect to the hyperoperation " \circledast " on H, we say that S is a hyper sub $B N$-algebra of H.

Example 6. Consider the hyper $B N$-algebra H in Example 1. Let $S=\{0, a\}$ and $T=\{0, b\}$. By routine calculations, both S and T are hyper $\operatorname{sub} B N$-algebra of H. If we consider the hyper $B N$-algebra H in Example 2, then the sets $L=\{0,1\}$ and $M=\{0,2\}$ are not hyper $\operatorname{sub} B N$-algebra of H.
Theorem 3. Let S be a nonempty subset of a hyper BNalgebra. Then S is a hyper subBN-algebra if and only if $x \circledast y \subseteq S$, for all $x, y \in S$.
Definition 8. Let N be a nonempty subset of a hyper $B N$-algebra. Then N is called normal if $(x \circledast a) \circledast(y \circledast b) \subseteq N$ whenever $x \circledast y, a \circledast b \subseteq N$.
Example 7. Consider the hyper $B N$-algebra $H=\{0, a, b\}$ in Example 1. Let $N_{1}=\{0, a\}$ and $N_{2}=\{0, b\}$. Then it can be shown that N_{1} is normal. However, N_{2} is not normal because $0 \circledast b=\{b\} \subseteq N_{2}$ and $a \circledast b=\{b\} \subseteq N_{2}$ but $(0 \circledast a) \circledast(b \circledast b)=\{a, b\} \nsubseteq N_{2}$.
Definition 9. A nonempty subset I of a hyper $B N$-algebra H is said to be reflexive if $x \circledast x \subseteq I$ for all $x \in H$.

Example 8. Let $H=\{0,1,2\}$ with hyperoperation \circledast defined by the following Cayley table:

\circledast	0	1	2
0	$\{0\}$	$\{1\}$	$\{2\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$

H is a hyper $B N$-algebra by routine calculations. Let $I=\{0,1\}$. Then it is reflexive because $x \circledast x \subseteq I$ for $x=0,1,2$. Let $J=\{0,2\}$. Then J is not reflexive because $1 \circledast 1 \nsubseteq J$.

Theorem 4. Every normal subset N of a hyper $B N$-algebra H is a hyper subBN-algebra of H.

Definition 10. A hyper sub $B N$-algebra S of a hyper $B N$-algebra H is called reflexive (resp. normal) hyper subBN-algebra if it is reflexive (resp. normal). S is called a reflexive normal hyper subBN-algebra if it is both reflexive and normal.

Example 9. Consider the set $H=\{0,1,2,3,4\}$. Define the hyperoperation " \circledast " by the following Cayley table:

\circledast	0	1	2	3	4
0	$\{0\}$	$\{1\}$	$\{2\}$	$\{3\}$	$\{4\}$
1	$\{1\}$	$\{0,3\}$	$\{3\}$	$\{1\}$	$\{4\}$
2	$\{2\}$	$\{3\}$	$\{0,3\}$	$\{3\}$	$\{4\}$
3	$\{3\}$	$\{1\}$	$\{3\}$	$\{0,3\}$	$\{4\}$
4	$\{4\}$	$\{4\}$	$\{4\}$	$\{4\}$	$\{0,3\}$

By routine calculations, H is a hyper $B N$-algebra. Let $I=\{0,3\}$. Then I is a reflexive normal hyper $\operatorname{sub} B N$-algebra of H.

Theorem 5. The intersection of family of reflexive normal hyper $\operatorname{sub} B N$-algebras of a hyper $B N$-algebra H is a reflexive normal hyper $\operatorname{sub} B N$-algebra of H.

3. Hyper $B N$-ideals

In this section, we introduce hyper $B N$-ideals and reflexive normal hyper $B N$-ideals. We also give a weaker and stronger version of this concept. We will investigate the nature of relationships between these ideals and also gave some conditions where equivalency of some of these ideals are achieved.

3.1. (Weak, Strong) Hyper $B N$-ideals

In what follows, we will introduce the concepts of hyper $B N$-ideals, weak hyper $B N$ ideals, and strong hyper $B N$-ideals. We will also investigate their general relationship. Finally, we will investigate the relationship between hyper $B N$-ideals and hyper sub $B N$ algebras.

Definition 11. Let I be a nonempty subset of a hyper $B N$-algebra H such that $0 \in I$.
(i) I is a hyper $B N$-ideal if for all $x, y \in H, x \circledast y \ll I$ and $y \in I$ imply that $x \in I$.
(ii) I is a weak hyper $B N$-ideal if for all $x, y \in H, x \circledast y \subseteq I$ and $y \in I$ imply that $x \in I$.
(iii) I is a strong hyper $B N$-ideal if for all $x, y \in H,(x \circledast y) \cap I \neq \varnothing$ and $y \in I$ imply that $x \in I$.

Example 10. Consider the hyper $B N$-algebra H in Example 1. Let $I=\{0\}$ and $I_{1}=$ $\{0, a\}$. By routine calculations, I, and I_{1}, are hyper $B N$-ideals of H. If we consider the hyper $B N$-algebra H in Example 2, then the set $J=\{0\}$ is a hyper $B N$-ideal of H. However, $J_{1}=\{0,1\}$ is not a hyper $B N$-ideal of H because $2 \circledast 1=\{0,1\} \ll J_{1}$ and $1 \in J_{1}$ but $2 \notin J_{1}$. Also, $J_{2}=\{0,2\}$ is not a hyper $B N$-ideal of H because $1 \circledast 2=\{0,1\} \ll J_{2}$ and $2 \in J_{2}$ but $1 \notin J_{2}$.

Example 11. Consider the hyper $B N$-algebra $(\mathbb{Z}, \circledast, 0)$ in Example 4. Let $I_{x}=\{0, x\}$. By routine calculations, I_{x} is a hyper $B N$-ideal of H for all $x \in \mathbb{Z}$.

Example 12. Consider the hyper $B N$-algebra $H=\{0, a, b\}$ in Example 1. Let $I=\{0\}$ and $I_{1}=\{0, a\}$. By routine calculations, I and I_{1} are strong hyper $B N$-ideals of H. Furthermore, I and I_{1} are weak hyper $B N$-ideals of H.

Example 13. Consider the hyper $B N$-algebra $H=\{0,1,2\}$ in Example 2. Let $I_{1}=$ $\{0,1\}$. I_{1} is not a strong hyper $B N$-ideal of H because $(2 \circledast 1) \cap I_{1} \neq \varnothing$ and $1 \in I_{1}$ but $2 \notin I_{1}$. It is not also a weak hyper $B N$-ideal of H because $2 \circledast 1 \subseteq I_{1}$ and $1 \in I_{1}$ but $2 \notin I_{1}$.

Proposition 1. Let H be a hyper $B N$-algebra. Then
(i) every hyper $B N$-ideal of H is a weak hyper $B N$-ideal of H; and
(ii) every strong hyper $B N$-ideal of H is a hyper $B N$-ideal of H.

Proof. Let H be a hyper $B N$-algebra.
(i) Let I be a hyper $B N$-ideal of H. Thus, $0 \in I$. Suppose that $x, y \in H$ such that $x \circledast y \subseteq I$ and $y \in I$. By Theorem $1(x i), x \circledast y \ll I$. Since I is a hyper $B N$-ideal of H, it follows that $x \in I$. Thus, I is a weak hyper $B N$-ideal of H.
(ii) Let I be a strong hyper $B N$-ideal of H. Thus, $0 \in I$. Suppose that $x, y \in H$ such that $x \circledast y \ll I$ and $y \in I$. Then for each $a \in x \circledast y$, there exists $b \in I$ such that $a \ll b$, that is, $0 \in a \circledast b$. Since $0 \in I,(a \circledast b) \cap I \neq \varnothing$. I is a strong ideal with $b \in I$ implies that $a \in I$. Thus, $x \circledast y \subseteq I$. Hence, $(x \circledast y) \cap I \neq \varnothing$ and so we have $x \in I$. Therefore, I is a hyper $B N$-ideal of H.

The following example will show that the converse of Proposition $1(i)$ is not necessarily true.

Example 14. Consider the hyper $B N$-algebra H in Example 2 and let $J_{2}=\{0,2\}$. J_{2} is a weak hyper $B N$-ideal of H by routine calculations. However, it is not a hyper $B N$-ideal of H as shown in Example 10.

The following example will show that the converse of Proposition 1 (ii) is not necessarily true.

Example 15. Let $H=\{0,1,2,3\}$ be a set with hyperoperation \circledast defined by the following Cayley table:

\circledast	0	1	2	3
0	$\{0\}$	$\{1\}$	$\{2\}$	$\{3\}$
1	$\{1\}$	$\{0,1\}$	$\{1,2\}$	$\{1,3\}$
2	$\{2\}$	$\{1,2\}$	$\{0,2\}$	$\{2,3\}$
3	$\{3\}$	$\{1,3\}$	$\{2,3\}$	$\{0,3\}$

By routine calculations, H is a hyper $B N$-algebra. Let $I=\{0,1\}$. Then I is a hyper $B N$ ideal of H. However, I is not a strong hyper $B N$-ideal of H because $(2 \circledast 1) \cap I=\{1\} \neq \varnothing$ and $1 \in I$ but $2 \notin I$.

Theorem 6. If H is a hyper $B N$-algebra, then $\{0\}$ is a strong hyper $B N$-ideal. Moreover, it is a hyper $B N$-ideal and a weak hyper $B N$-ideal.

Proof. Let $x, y \in H$ and suppose that $(x \circledast y) \cap\{0\} \neq \varnothing$ and $y \in\{0\}$. Then $y=0$ and $(x \circledast 0) \cap\{0\} \neq \varnothing$. This implies that $0 \in x \circledast 0$, that is, $x \ll 0$. By Theorem $1(i i), x=0$ and so $x \in\{0\}$. Thus, $\{0\}$ is a strong hyper $B N$-ideal of H. By Propositions $1(i i)$ and (i), $\{0\}$ is also a hyper $B N$-ideal and a weak hyper $B N$-ideal of H.

Lemma 1. Let A, B, and C be nonempty subsets of a hyper $B N$-algebra. If $A \ll B$ and $B \subseteq C$, then $A \ll C$.

Proof. Let $a \in A$. Since $A \ll B$, there exists $b \in B$ such that $a \ll b$. Since $B \subseteq C$, $b \in C$ with $a \ll b$. Therefore, $A \ll C$.

Theorem 7. Let $\left\{A_{i}: i \in I\right\}$ be a nonempty collection of subsets of a hyper $B N$-algebra H.
(i) If A_{i} is a hyper $B N$-ideal of H for all $i \in I$, then so is $\bigcap_{i \in I} A_{i}$.
(ii) If A_{i} is a weak hyper $B N$-ideal of H for all $i \in I$, then so $i s \bigcap_{i \in I} A_{i}$.
(iii) If A_{i} is a strong hyper $B N$-ideal of H for all $i \in I$, then so $i s \bigcap_{i \in I} A_{i}$.

Proof. Let $\left\{A_{i}: i \in I\right\}$ be a nonempty collection of subsets of a hyper $B N$-algebra H.
(i) Suppose that A_{i} is a hyper $B N$-ideal of H for all $i \in I$. Thus, $0 \in A_{i}$ for all $i \in I$. And so, $0 \in \bigcap_{i \in I} A_{i}$. Assume $x, y \in H$ such that $x \circledast y \ll \bigcap_{i \in I} A_{i}$ and $y \in \bigcap_{i \in I} A_{i}$. Since $\bigcap A_{i} \subseteq A_{i}$ for all $i \in I$, it follows from Lemma 1 that $x \circledast y \ll A_{i}$ for all $i \in I$. Also, $i \in I$ ${ }_{y} \in I \in A_{i}$ for all $i \in I$. Since A_{i} is a hyper $B N$-ideal of H for all $i \in I$, we have $x \in A_{i}$ for all $i \in I$. Therefore, $x \in \bigcap_{i \in I} A_{i}$, and so $\bigcap_{i \in I} A_{i}$ is a hyper $B N$-ideal of H.
(ii) Suppose that A_{i} is a weak hyper $B N$-ideal of H for all $i \in I$. Thus, $0 \in A_{i}$ for all $i \in I$. And so, $0 \in \bigcap_{i \in I} A_{i}$. Assume $x, y \in H$ such that $x \circledast y \subseteq \bigcap_{i \in I} A_{i}$ and $y \in \bigcap_{i \in I} A_{i}$. Since $\bigcap_{i \in I} A_{i} \subseteq A_{i}$ for all $i \in I$, it follows that $x \circledast y \subseteq A_{i}$ for all $i \in I$. Also, $y \in A_{i}$ for all $i \in I$. Since A_{i} is a weak hyper $B N$-ideal of H for all $i \in I$, we have $x \in A_{i}$ for all $i \in I$. Therefore, $x \in \bigcap_{i \in I} A_{i}$, and so $\bigcap_{i \in I} A_{i}$ is a weak hyper $B N$-ideal of H.
(iii) Suppose that A_{i} is a strong hyper $B N$-ideal of H for all $i \in I$. Thus, $0 \in A_{i}$ for all $i \in I$. And so, $0 \in \bigcap_{i \in I} A_{i}$. Assume $x, y \in H$ such that $(x \circledast y) \cap\left(\bigcap_{i \in I} A_{i}\right) \neq \varnothing$ and $y \in \bigcap_{i \in I} A_{i}$. Since $\bigcap_{i \in I} A_{i} \subseteq A_{i}$ for all $i \in I$, it follows that $(x \circledast y) \cap A_{i} \neq \varnothing$ for all $i \in I$. Also, $y \in A_{i}$ for all $i \in I$. Since A_{i} is a strong hyper $B N$-ideal of H for all $i \in I$, we have $x \in A_{i}$ for all $i \in I$. Therefore, $x \in \bigcap_{i \in I} A_{i}$, and so $\bigcap_{i \in I} A_{i}$ is a strong hyper $B N$-ideal of H.

The following examples will show the relationship between hyper sub $B N$-algebras and hyper $B N$-ideals of hyper $B N$-algebras.

Example 16. Consider the set $H=\{0,1,2,3\}$ with hyperoperation \circledast defined by the following Cayley table:

\circledast	0	1	2	3
0	$\{0\}$	$\{1\}$	$\{2\}$	$\{3\}$
1	$\{1\}$	$\{0\}$	$\{1\}$	$\{1,3\}$
2	$\{2\}$	$\{1\}$	$\{0\}$	$\{2,3\}$
3	$\{3\}$	$\{1,3\}$	$\{2,3\}$	$\{0,3\}$

By routine calculations, we can show that H is a hyper $B N$-algebra. Let $S=\{0,1\}$. In view of Theorem $3, S$ is a hyper $\operatorname{sub} B N$-algebra of H. However, it is not a hyper $B N$-ideal because $2 \circledast 1 \ll S$ and $1 \in S$ but $2 \notin S$.

A hyper $\operatorname{sub} B N$-algebra of a hyper $B N$-algebra H may not be a hyper $B N$-ideal of H and a hyper $B N$-ideal of H may not be a hyper $\operatorname{sub} B N$-algebra as shown in the next example

Example 17. Consider the set $H=\{0, a, b\}$ with hyperoperation \circledast defined by the following Cayley table:

\circledast	0	a	b
0	$\{0\}$	$\{b\}$	$\{a\}$
a	$\{a\}$	$\{0, a, b\}$	$\{a, b\}$
b	$\{b\}$	$\{a, b\}$	$\{0, a, b\}$

By routine calculations, we can show that H is a hyper $B N$-algebra. Let $I=\{0, a\}$. It can be shown that I is a hyper $B N$-ideal of H. However, in view of Theorem 3, I is not a hyper sub $B N$-algebra because $0, a \in I$ but $0 \circledast a=\{b\} \nsubseteq I$.

3.2. Reflexive Normal Hyper $B N$-ideals

At this point, we will give additional conditions to the underlying set of a hyper $B N$ ideals. With regards to this, we will establish the equivalency of weak hyper $B N$-ideals and hyper $\operatorname{sub} B N$-algebras. Also, these conditions will be the key to the equivalency of strong hyper $B N$-ideals and hyper $B N$-ideals.

Definition 12. A hyper $B N$-ideal I of a hyper $B N$-algebra H is called reflexive (resp. normal) hyper $B N$-ideal if it is reflexive (resp. normal). I is called a reflexive normal hyper $B N$-ideal if it is both reflexive and normal.

In the definition above, we can replace a hyper $B N$-ideal to a weak or strong hyper $B N$-ideal.

Example 18. In Example 8, we can show that I and J are hyper $B N$-ideals. Since I is reflexive, I is a reflexive hyper $B N$-ideal of H. Furthermore, we can show that I is normal. Then I is a normal hyper $B N$-ideal. Thus, I is a reflexive normal hyper $B N$-ideal of H. J is not a reflexive hyper $B N$-ideal because J is not reflexive since $2 \circledast 2=\{0,1\} \nsubseteq J$. Further, J is not a normal hyper $B N$-ideal because J is not normal since $1 \circledast 2 \subseteq J$ and $2 \circledast 1 \subseteq J$ but $(1 \circledast 2) \circledast(2 \circledast 1)=\{0,1\} \nsubseteq J$. Also, I and J are weak hyper $B N$-ideals of H. Thus, I is a reflexive normal weak hyper $B N$-ideal of H while J is not because it is not reflexive nor normal as shown above. Furthermore, I is a strong hyper $B N$-ideal of H. Hence, I is a reflexive normal strong hyper $B N$-ideal of H while J is not because it is not even a strong hyper $B N$-ideal of H since $(1 \circledast 2) \cap J \neq \varnothing$ and $2 \in J$ but $1 \notin J$.

The next result is a special case of Theorem 4.
Corollary 1. If I is a normal weak hyper $B N$-ideal of a hyper $B N$-algebra H, then I is a hyper subBN-algebra of H.

Proposition 2. Let H be a hyper $B N$-algebra and let $S \subseteq H$. Then S is a normal hyper subBN-algebra of H if and only if S is a normal weak hyper $B N$-ideal of H.

Proof. Let S be a normal hyper $\operatorname{sub} B N$-algebra of a hyper $B N$-algebra H. Thus, $0 \in S$. Now, let $x \circledast y \subseteq S$ and $y \in S$. Since S is a hyper sub $B N$-algebra, we have $0 \circledast y \subseteq S$. By normality of S, we have $\{x\}=x \circledast 0=(x \circledast 0) \circledast 0 \subseteq(x \circledast 0) \circledast(y \circledast y) \subseteq S$. Thus, $x \in S$. Hence, S is a normal weak hyper $B N$-ideal of H. The converse follows from Corollary 1.

Corollary 2. Let H be a hyper $B N$-algebra and let $S \subseteq H$. Then S is a reflexive normal hyper subBN-algebra of H if and only if S is a reflexive normal weak hyper $B N$-ideal of H.

Theorem 8. Let $\left\{A_{i} \mid i \in \mathscr{I}\right\}$ be a family of reflexive normal weak hyper $B N$-ideals of a hyper $B N$-algebra H. Then $\bigcap_{i \in \mathscr{I}} A_{i}$ is also a reflexive normal weak hyper $B N$-ideal of H.

Proof. Since reflexive normal weak hyper $B N$-ideals are reflexive normal hyper sub $B N$ algebra by Corollary 2 , the conclusion follows from Theorem 5.

Lemma 2. Let A, B, C and I be subsets of a hyper $B N$-algebra H.
(i) If $A \circledast x \ll I$ for all $x \in H$, then $a \circledast x \ll I$ for all $a \in A$.
(ii) If I is a hyper $B N$-ideal of H and if $A \circledast x \ll I$ for all $x \in I$, then $A \ll I$.

Proof. Let A, B, C and I be subsets of a hyper $B N$-algebra H.
(i) Suppose that $A \circledast x \ll I$ for all $x \in H$. Assume that there exists $a^{\prime} \in A$ with $a^{\prime} \circledast x \nless I$. Then there is an element $d \in a^{\prime} \circledast x \subseteq \bigcup_{a \in A} a \circledast x=A \circledast x$ such that $d \ll k$ for all $k \in I$, which is a contradiction. Thus, $a \circledast x \ll I$ for all $a \in A$.
(ii) Assume that I is a hyper $B N$-ideal of H and $A \circledast x \ll I$ for all $x \in I$. Then by (i), $a \circledast x \ll I$ for all $a \in A$. Since I is a hyper $B N$-ideal of $H, a \circledast x \ll I$ and $x \in I$ imply that $a \in I$. Thus, $A \subseteq I$. By Theorem $1(x i), A \ll I$.

Theorem 9. Let I be a reflexive normal hyper $B N$-ideal of a hyper $B N$-algebra H. Then $(x \circledast y) \cap I \neq \varnothing$ implies $x \circledast y \ll I$ for all $x, y \in H$.

Proof. Let $x, y \in H$ such that $(x \circledast y) \cap I \neq \varnothing$ where I is a reflexive normal hyper $B N$-ideal of H. Since I is reflexive, $x \circledast x \subseteq I$ and $y \circledast y \subseteq I$. By normality of I, $(x \circledast y) \circledast(x \circledast y) \subseteq I$. Since $(x \circledast y) \cap I \neq \varnothing$, there exists $a \in(x \circledast y) \cap I$. Now, $(x \circledast y) \circledast a \subseteq(x \circledast y) \circledast(x \circledast y) \subseteq I$. By Theorem $1(x i),(x \circledast y) \circledast a \ll I$. Note that $a \in I$ and so, by Lemma $2(i i), x \circledast y \ll I$.

Theorem 10. Let I be a reflexive normal hyper $B N$-ideal of a hyper $B N$-algebra H and let A be a subset of H. If $A \ll I$, then $A \subseteq I$.

Proof. Assume that $A \ll I$ and let $a \in A$. Then there exists $x \in I$ such that $a \ll x$, that is, $0 \in a \circledast x$. Hence, $0 \in(a \circledast x) \cap I$, and so, $(a \circledast x) \cap I \neq \varnothing$. By Theorem 9 , $a \circledast x \ll I$. Since I is a hyper $B N$-ideal of H, we have $a \in I$ so that $A \subseteq I$.

The next result follows from Theorem 9 and Theorem 10.
Corollary 3. Let I be a reflexive normal hyper $B N$-ideal of a hyper $B N$-algebra H. Then $(x \circledast y) \cap I \neq \varnothing$ implies $x \circledast y \subseteq I$ for all $x, y \in H$.

Theorem 11. Every reflexive normal hyper $B N$-ideal of a hyper $B N$-algebra H is a strong hyper $B N$-ideal of H.

Proof. Let I be a reflexive normal hyper $B N$-ideal of a hyper $B N$-algebra H and let $x, y \in H$ such that $(x \circledast y) \cap I \neq \varnothing$ and $y \in I$. Then $x \circledast y \ll I$ by Theorem 9 . I being a hyper $B N$-ideal means that $x \in I$. Hence, I is a strong hyper $B N$-ideal of H.

The converse of Theorem 11 is not true as shown in the next example.
Example 19. Consider the hyper $B N$-algebra $H=\{0, a, b\}$ in Example 1. The sets $I_{1}=\{0, a\}$ and $I_{2}=\{0, b\}$ are strong hyper $B N$-ideals in Example 12. I_{1} is normal as shown in Example 7 but not reflexive since $b \circledast b=\{0, b\} \nsubseteq I_{1}$. On the other hand, I_{2} is not normal as shown in Example 7 and is not reflexive because $a \circledast a=\{0, a\} \nsubseteq I_{2}$. Hence, both I_{1} and I_{2} are not reflexive normal hyper $B N$-ideals of H.

Since reflexivity and normality are innate in a set, we can conclude that the strong hyper $B N$-ideal in Theorem 11 is not a reflexive normal hyper $B N$-ideal. And so, together with Proposition 1 (ii), we have the following result.

Corollary 4. Let I be a reflexive normal set of a hyper BN-algebra H. I is a strong hyper $B N$-ideal of H if and only if I is a hyper $B N$-ideal of H.

4. Quotient Structure of Hyper $B N$-algebras

In this section, we will be looking at two ways of constructing the quotient structures of hyper $B N$-algebras.

4.1. Quotient Hyper $B N$-algebra via Reflexive Normal Hyper Sub $B N$ algebra

We now begin constructing the quotient structure of hyper $B N$-algebra via reflexive normal hyper sub $B N$-algebra.

Lemma 3. Let I be a normal subset of a hyper $B N$-algebra H and $x, y \in H$. Then
(i) $x \in I \Rightarrow 0 \circledast x \subseteq I$, and
(ii) $x \circledast y \subseteq I \Rightarrow y \circledast x \subseteq I$.

Proof. Let I be a normal subset of a hyper $B N$-algebra H and let $x, y \in H$.
(i) Let $x \in I$. Then $x \circledast 0=\{x\} \subseteq I$ by Theorem 1 (ii). Since I is normal, we have $0 \in I$ and so $0 \circledast 0=\{0\} \subseteq I$. By normality of I, we have $0 \circledast x=(0 \circledast x) \circledast 0=$ $(0 \circledast x) \circledast(0 \circledast 0) \subseteq I$. Thus, $0 \circledast x \subseteq I$.
(ii) Let $x \circledast y \subseteq I$. Then for all $a \in x \circledast y, a \in I$. By (i), we have $0 \circledast a \subseteq I$ for all $a \in x \circledast y$. Thus, $0 \circledast(x \circledast y) \subseteq I$. But $0 \circledast(x \circledast y)=y \circledast x$ by Theorem $1(i v)$. Therefore, $y \circledast x \subseteq I$.

Definition 13. Let $(H, \circledast, 0)$ be a hyper $B N$-algebra and S be a reflexive normal hyper $\operatorname{sub} B N$-algebra of H. We define a relation \sim_{S} on H by $x \sim_{S} y$ if and only if $x \circledast y \subseteq S$, where $x, y \in H$.

Lemma 4. \sim_{S} is an equivalence relation.
Proof. Let H be a hyper $B N$-algebra and S be a reflexive normal hyper sub $B N$ algebra of H. Since S is reflexive, for all $x \in H, x \circledast x \subseteq S$. Thus, $x \sim_{S} x$. Whence, \sim_{S} is reflexive. Let $x \sim_{S} y$. Then $x \circledast y \subseteq S$. By Lemma $3(i i), y \circledast x \subseteq S$. Thus, $y \sim_{S} x$. Hence, \sim_{S} is symmetric. Let $x, y, z \in H$ such that $x \sim_{S} y$ and $y \sim_{S} z$. Then $x \circledast y \subseteq S$ and $y \circledast z \subseteq S$. By applying Lemma $3(i i)$ again, we have $z \circledast y \subseteq S$. Now, by normality of S using $x \circledast y \subseteq S$ and $z \circledast y \subseteq S$, we have $x \circledast z=(x \circledast z) \circledast 0 \subseteq(x \circledast z) \circledast(y \circledast y) \subseteq S$. Thus, $x \circledast z \subseteq S$ implying that $x \sim_{S} z$. Thus, \sim_{S} is transitive. Therefore, \sim_{S} is an equivalence relation.

Definition 14. Let $(H, \circledast, 0)$ be a hyper $B N$-algebra, S be a reflexive normal hyper $\operatorname{sub} B N$-algebra of H, and $\varnothing \neq A, B \subseteq H$. Then $A \sim_{S} B$ if for all $a \in A$ and $b \in B$, $a \sim_{S} b$.

Lemma 5. Let $(H, \circledast, 0)$ be a hyper $B N$-algebra, S be a reflexive normal hyper subBNalgebra of H, and $\varnothing \neq A, B \subseteq H . A \sim_{S} B$ if and only if $A \circledast B \subseteq S$.

Proof. Let $A \sim_{S} B$. Then for all $a \in A$ and $b \in B, a \circledast b \subseteq S$. Thus, $A \circledast B=$ $\bigcup(a \circledast b) \subseteq S$. For the converse, suppose $A \circledast B \subseteq S$. Let $a \in A$ and $b \in B$. Then $a \in A, b \in B$
$a \circledast b \subseteq A \circledast B \subseteq S$. Hence, $A \sim_{S} B$.
Lemma 6. Let $(H, \circledast, 0)$ be a hyper $B N$-algebra, S be a reflexive normal hyper sub $B N$ algebra of H, and $\varnothing \neq A, B \subseteq H$. Then the equivalence class containing 0 is S. In other words, $[0]_{\sim_{S}}=S$.

Proof. Let $x \in[0]_{\sim_{S}}$. Then $\{x\}=x \circledast 0 \subseteq S$. Thus, $x \in S$ and hence $[0]_{\sim_{S}} \subseteq S$. For the other inclusion, let $x \in S$. Note that $0 \in S$. Since S is a hyper $\operatorname{sub} B N$-algebra, $x \circledast 0 \subseteq S$. Thus, $x \sim_{S} 0$ and $x \in[0]_{\sim_{S}}$. Hence, $S \subseteq[0]_{\sim_{S}}$. Therefore, $[0]_{\sim_{S}}=S$.

In the following result, we define $H / S=\left\{[x]_{\sim_{S}} \mid x \in H\right\}$.
Theorem 12. Let S be a reflexive normal hyper subBN-algebra of a hyper $B N$-algebra $(H, \circledast, 0)$. Then H / S is a hyper BN-algebra with hyperoperation \odot defined by $[x]_{\sim_{S}} \odot$ $[y]_{\sim_{S}}=\left\{[z]_{\sim_{S}} \mid z \in x \circledast y\right\}$ and $[x]_{\sim_{S}}<_{\sim_{\sim_{S}}}[y]_{\sim_{S}}$ if and only if $[0]_{\sim_{S}} \in[x]_{\sim_{S}} \odot[y]_{\sim_{S}}$.

Proof. If $x \sim_{S} p$ and $y \sim_{S} q$, then we have $x \circledast p \subseteq S$ and $y \circledast q \subseteq S$. By normality of $S,(x \circledast y) \circledast(p \circledast q) \subseteq S$. Thus, by Lemma $5, x \circledast y \sim_{S} p \circledast q$ and so $[x \circledast y]_{\sim_{S}}=[p \circledast q]_{\sim_{S}}$. Hence, the hyperoperation \odot is well-defined.

Now, let $x \in H$. By $\left(H B N_{1}\right), x \ll x$, that is, $0 \in x \circledast x$. Thus, $[0]_{\sim_{S}} \in\left\{[z]_{\sim_{S}} \mid z \in\right.$ $x \circledast x\}=[x]_{\sim_{S}} \odot[x]_{\sim_{S}}$ which implies $[x]_{\sim_{S}}{\ll \sim_{S}}[x]_{\sim_{S}}$. Hence, $\left(H B N_{1}\right)$ holds for H / S. For $\left(H B N_{2}\right)$, let $[x]_{\sim_{S}} \in H / S$. Then,

$$
[x]_{\sim_{S}} \odot[0]_{\sim_{S}}=\left\{[z]_{\sim_{S}} \mid z \in x \circledast 0\right\}=\left\{[z]_{\sim_{S}} \mid z=x\right\}=\left\{[x]_{\sim_{S}}\right\} .
$$

Finally, let $[w]_{\sim_{S}} \in\left([x]_{\sim_{S}} \odot[y]_{\sim_{S}}\right) \odot[z]_{\sim_{S}}$ where $[x]_{\sim_{S}},[y]_{\sim_{S}},[z]_{\sim_{S}} \in H / S$. Then there exists $u \in x \circledast y$ such that $[w]_{\sim_{S}} \in[u]_{\sim_{S}} \odot[z]_{\sim_{S}}$. Consequently, there exists $w^{\prime} \in u \circledast z$ such that $[w]_{\sim_{S}}=\left[w^{\prime}\right]_{\sim_{S}}$. Now, observe that by $\left(H B N_{3}\right)$ for H, we have $w^{\prime} \in u \circledast z \subseteq(x \circledast y) \circledast$ $z=(0 \circledast z) \circledast(y \circledast x)$. Now, $w^{\prime} \in a \circledast b$ where $a \in 0 \circledast z$ and $b \in y \circledast x$. This means that $\left[w^{\prime}\right]_{\sim_{S}} \in\left\{[k]_{\sim_{S}} \mid k \in a \circledast b\right\}=[a]_{\sim_{S}} \odot[b]_{\sim_{S}}$. Notice that $a \in 0 \circledast z$ and $b \in y \circledast x$ mean $[a]_{\sim_{S}} \in\left\{[l]_{\sim_{S}} \mid l \in 0 \circledast z\right\}=[0]_{\sim_{S}} \odot[z]_{\sim_{S}}$ and $[b]_{\sim_{S}} \in\left\{[m]_{\sim_{S}} \mid m \in y \circledast x\right\}=[y]_{\sim_{S}} \odot[x]_{\sim_{S}}$, respectively. Thus, $[w]_{\sim_{S}}=\left[w^{\prime}\right]_{\sim_{S}} \in$ $[a]_{\sim_{S}} \odot[b]_{\sim_{S}} \subseteq\left([0]_{\sim_{S}} \odot[z]_{\sim_{S}}\right) \odot\left([y]_{\sim_{S}} \odot[x]_{\sim_{S}}\right)$. Since $[w]_{\sim_{S}}$ is arbitrary, it follows that $\left([x]_{\sim_{S}} \odot[y]_{\sim_{S}}\right) \odot[z]_{\sim_{S}} \subseteq\left([0]_{\sim_{S}} \odot[z]_{\sim_{S}}\right) \odot\left([y]_{\sim_{S}} \odot[x]_{\sim_{S}}\right)$. Next, let $[v]_{\sim_{S}} \in\left([0]_{\sim_{S}} \odot\right.$ $\left.[z]_{\sim_{S}}\right) \odot\left([y]_{\sim_{S}} \odot[x]_{\sim_{S}}\right)$ where $[x]_{\sim_{S}},[y]_{\sim_{S}},[z]_{\sim_{S}} \in H / S$. Then there exist $a \in 0 \circledast z$ and $b \in y \circledast x$ such that $[v]_{\sim_{S}} \in[a]_{\sim_{S}} \odot[b]_{\sim_{S}}$. This implies that there exists $v^{\prime} \in a \circledast b$ such that $[v]_{\sim_{S}}=\left[v^{\prime}\right]_{\sim_{S}}$. Now, using $\left(H B N_{3}\right)$ for H, we have $v^{\prime} \in a \circledast b \subseteq(0 \circledast z) \circledast(y \circledast x)=(x \circledast y) \circledast z$. This means that $v^{\prime} \in d \circledast z$ where $d \in x \circledast y$. Thus, $\left[v^{\prime}\right]_{\sim_{S}} \in\left\{[n]_{\sim_{S}} \mid n \in d \circledast z\right\}=[d]_{\sim_{s}} \odot[z]_{\sim_{S}}$. But $d \in x \circledast y$ means that $[d]_{\sim_{s}} \in\left\{[t]_{\sim_{S}} \mid t \in x \circledast y\right\}=[x]_{\sim_{S}} \odot[y]_{\sim_{S}}$. Hence, $[v]_{\sim_{S}}=$ $\left[v^{\prime}\right]_{\sim_{S}} \in[d]_{\sim_{S}} \odot[z]_{\sim_{S}} \subseteq\left([x]_{\sim_{S}} \odot[y]_{\sim_{S}}\right) \odot[z]_{\sim_{S}}$. Thus, $\left([0]_{\sim_{S}} \odot[z]_{\sim_{S}}\right) \odot\left([y]_{\sim_{S}} \odot[x]_{\sim_{S}}\right) \subseteq$
$\left([x]_{\sim_{S}} \odot[y]_{\sim_{S}}\right) \odot[z]_{\sim_{S}}$. Hence, $\left([x]_{\sim_{S}} \odot[y]_{\sim_{S}}\right) \odot[z]_{\sim_{S}}=\left([0]_{\sim_{S}} \odot[z]_{\sim_{S}}\right) \odot\left([y]_{\sim_{S}} \odot[x]_{\sim_{S}}\right)$ for all $[x]_{\sim_{S}},[y]_{\sim_{S}},[z]_{\sim_{S}} \in H / S$ holding $\left(H B N_{3}\right)$. Therefore, $\left(H / S, \odot,[0]_{\sim_{S}}\right)$ is a hyper $B N$-algebra.

Let us illustrate the construction of the quotient structure of a hyper $B N$-algebra via reflexive normal hyper $\operatorname{sub} B N$-algebra.

Example 20. Let $H=\{0,1,2,3,4\}$ be the hyper $B N$-algebra in Example 9. Let $S=$ $\{0,3\}$. Then it has been shown that S is a reflexive normal hyper $\operatorname{sub} B N$-algebra of H.

Now, $[0]_{\sim_{S}}=\{0,3\}=[3]_{\sim_{S}},[1]_{\sim_{S}}=\{1,2\}=[2]_{\sim_{S}}$, and $[4]_{\sim_{S}}=\{4\}$. Hence, $H / S=\left\{[0]_{\sim_{S}},[1]_{\sim_{S}},[4]_{\sim_{S}}\right\}$ and the hyperoperation \odot is defined by the following Cayley table:

\odot	$[0]_{\sim_{S}}$	$[1]_{\sim_{S}}$	$[4]_{\sim_{S}}$
$[0]_{\sim_{S}}$	$\left\{[0]_{\sim_{S}}\right\}$	$\left\{[1]_{\sim_{S}}\right\}$	$\left\{[4]_{\sim_{S}}\right\}$
$[1]_{\sim_{S}}$	$\left\{[1]_{\sim_{S}}\right\}$	$\left\{[0]_{\sim_{S}}\right\}$	$\left\{[4]_{\sim_{S}}\right\}$
$[4]_{\sim_{S}}$	$\left\{[4]_{\sim_{S}}\right\}$	$\left\{[4]_{\sim_{S}}\right\}$	$\left\{[0]_{\sim_{S}}\right\}$

By routine calculations, $\left(H / S, \odot,[0]_{\sim_{S}}\right)$ is a hyper $B N$-algebra.

4.2. Quotient Hyper $B N$-algebra via Congruence Relation

Now, we will construct the quotient hyper $B N$-algebra via congruence relation. Also, we will show the relationship between the construction of quotient hyper $B N$-algebra in 4.1 and the construction here.

Definition 15. Let θ be an equivalence relation on a hyper $B N$-algebra H and $\varnothing \neq$ $A, B \subseteq H$. Then
(i) $A \theta B$ if there exist $a \in A$ and $b \in B$ such that $a \theta b$;
(ii) $A \bar{\theta} B$ if for every $a \in A$, there exists $b \in B$ such that $a \theta b$ and for every $b \in B$, there exists $a \in A$ such that $a \theta b$;
(iii) θ is called a congruence relation on H, if whenever $x \theta y$ and $x^{\prime} \theta y^{\prime}$, then $\left(x \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast y^{\prime}\right)$ for all $x, y, x^{\prime}, y^{\prime} \in H$.
Not all equivalence relations are congruence relations as shown in the following example.

Example 21. Consider $H=\{0,1,2,3,4\}$ and its hyperoperation given by the following Cayley table:

\circledast	0	1	2	3	4
0	$\{0\}$	$\{1\}$	$\{2\}$	$\{3\}$	$\{4\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$	$\{3\}$	$\{4\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{0,2,3\}$	$\{2,4\}$
3	$\{3\}$	$\{3\}$	$\{0,2,3\}$	$\{0,3\}$	$\{3,4\}$
4	$\{4\}$	$\{4\}$	$\{2,4\}$	$\{3,4\}$	$\{0,4\}$

By routine calculations, H is a hyper $B N$-algebra. Define a relation θ on H by $\theta=$ $\{(0,0),(0,2),(1,1),(1,3),(2,0),(2,2),(3,1),(3,3),(4,4)\}$. By inspection, θ is an equivalence relation on H. Now, observe that $1 \theta 3$ and $2 \theta 0$ but $1 \circledast 2=\{2\} \bar{\theta}\{3\}=3 \circledast 0$ because $(2,3) \notin \theta$. Thus, θ is not a congruence relation on H. Hence, if θ is an equivalence relation on H, then θ need not be a congruence relation on H.

The following lemma shows that $\bar{\theta}$ is transitive on $\mathcal{P}^{*}(H)$.
Lemma 7. Let θ be an equivalence relation on H and $\varnothing \neq A, B, C \subseteq H$. If $A \bar{\theta} B$ and $B \bar{\theta} C$, then $A \bar{\theta} C$.

Proof. Let θ be an equivalence relation on H and $\varnothing \neq A, B, C \subseteq H$. Assume that $A \bar{\theta} B$ and $B \bar{\theta} C$. By Definition $15(i i)$, for each $a \in A$ (resp. $b \in B$), there exists $b \in B$ (resp. $a \in A$) such that $a \theta b$ (resp. $b \theta a$) and for all $b \in B$ (resp. $c \in C$), there exists $c \in C$ (resp. $b \in B$) such that $b \theta c$ (resp. $c \theta b$). Since θ is an equivalence relation, $a \theta c$ (resp. $c \theta a$). Therefore, $A \bar{\theta} C$.

Lemma 8. Let θ be an equivalence relation on H. The following statements are equivalent:
(i) θ is a congruence relation on H.
(ii) If $x, y \in H$ such that $x \theta y$, then $(x \circledast a) \bar{\theta}(y \circledast a)$ and $(a \circledast x) \bar{\theta}(a \circledast y)$ for all $a \in H$.

Proof. Let θ be an equivalence relation on H.
$(i) \Rightarrow(i i)$ Let θ be a congruence relation on H and $a, x, y \in H$ such that $x \theta y$. Since $a \theta a$, $(x \circledast a) \bar{\theta}(y \circledast a)$ and $(a \circledast x) \bar{\theta}(a \circledast y)$, by Definition $15(i i i)$.
$(i i) \Rightarrow(i)$ Assume that if $x \theta y$, then $(x \circledast a) \bar{\theta}(y \circledast a)$ and $(a \circledast x) \bar{\theta}(a \circledast y)$ for all $a, x, y \in H$. Let $x, y, x^{\prime}, y^{\prime} \in H$ such that $x \theta y$ and $x^{\prime} \theta y^{\prime}$. Then, $\left(x \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast x^{\prime}\right)$ and $\left(y \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast y^{\prime}\right)$. By Lemma $7,\left(x \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast y^{\prime}\right)$. By Definition $15(i i i), \theta$ is a congruence relation.

The following proposition tells us that \sim_{S} in Definition 13 is a congruence relation.
Proposition 3. Let S be a reflexive normal hyper subBN-algebra of a hyper $B N$-algebra H. Then \sim_{S} is a congruence relation on H.

Proof. By Lemma 4, \sim_{S} is an equivalence relation. We will show that \sim_{S} is a congruence relation using Lemma 8 . Let $x, y \in H$ with $x \sim_{S} y$ and let $a \in H$. Then $x \circledast y \subseteq S$. Also, since S is reflexive, $a \circledast a \subseteq S$. By normality of $S,(x \circledast a) \circledast(y \circledast a) \subseteq S$ and $(a \circledast x) \circledast(a \circledast y) \subseteq S$. Also, by Lemma $3(i i)$, we have $y \circledast x \subseteq S$. Now, $y \circledast x \subseteq S$ and $a \circledast a \subseteq S$ imply $(y \circledast a) \circledast(x \circledast a) \subseteq S$ and $(a \circledast y) \circledast(a \circledast x) \subseteq S$. Now, $(x \circledast a) \circledast(y \circledast a) \subseteq S$ implies that $u \circledast v \subseteq S$ for all $u \in x \circledast a$ and $v \in y \circledast a$. Similarly, $(y \circledast a) \circledast(x \circledast a) \subseteq S$ implies that $v \circledast u \subseteq S$ for all $u \in x \circledast a$ and $v \in y \circledast a$. Thus, for all $u \in x \circledast a$ and $v \in y \circledast a, u \sim_{S} v$ and this means that $(x \circledast a) \overline{\sim_{S}}(y \circledast a)$ for all $a \in H$ since a is arbitrary. In similar fashion, using $(a \circledast x) \circledast(a \circledast y) \subseteq S$ and $(a \circledast y) \circledast(a \circledast x) \subseteq S$, we will obtain $(a \circledast x) \bar{\sim}(a \circledast y)$ for all $a \in H$. Therefore, \sim_{S} is a congruence relation on H.

The converse of Proposition 3 is not true in general as shown in the following example:

Example 22. Let $H=\{0,1,2,3,4,5\}$ be a set. Define a hyperoperation \circledast on H by the following Cayley table:

\circledast	0	1	2	3	4	5
0	$\{0\}$	$\{1\}$	$\{2\}$	$\{3\}$	$\{4\}$	$\{5\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$	$\{3\}$	$\{4\}$	$\{5\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$	$\{0,1\}$	$\{0,4\}$	$\{0,5\}$
3	$\{3\}$	$\{3\}$	$\{0,1\}$	$\{0,1\}$	$\{0,4\}$	$\{0,5\}$
4	$\{4\}$	$\{4\}$	$\{0,4\}$	$\{0,4\}$	$\{0,1\}$	$\{0,1\}$
5	$\{5\}$	$\{5\}$	$\{0,5\}$	$\{0,5\}$	$\{0,1\}$	$\{0,1\}$

By routine calculations, H is a hyper $B N$-algebra. Let $S=\{0,1\}$ and \sim_{S} be a relation on H defined by $x \sim_{S} y$ if and only if $x \circledast y \subseteq S$ for all $x, y \in H$. Then $\sim_{S}=\{(0,0),(0,1),(1,0),(1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)\}$. By inspection, \sim_{S} is an equivalence relation. Now, we can verify that \sim_{S} is a congruence relation using Lemma 8 . Note that S is a hyper $\operatorname{sub} B N$-algebra of H. Also, it is reflexive because for all $a \in H a \circledast a \subseteq S$. However, it is not normal because $2 \circledast 3 \subseteq S$ and $4 \circledast 4 \subseteq S$ but $(2 \circledast 4) \circledast(3 \circledast 4)=\{0,1,4\} \nsubseteq S$. Therefore, S is not a reflexive normal hyper $\operatorname{sub} B N$-algebra of H.

The following example will illustrate that the congruence class containing 0 is not necessarily reflexive. This will mean that the construction of the quotient structure via reflexive normal hyper $\operatorname{sub} B N$-algebra is just a special case of the construction of the quotient structure via congruence relation.

Example 23. Let $H=\{0,1,2,3,4\}$ be a set. Define a hyperoperation \circledast on H by the following Cayley table:

\circledast	0	1	2	3	4
0	$\{0\}$	$\{1\}$	$\{3\}$	$\{2\}$	$\{4\}$
1	$\{1\}$	$\{0,1\}$	$\{2\}$	$\{3\}$	$\{4\}$
2	$\{2\}$	$\{3\}$	$\{0,2,3\}$	$\{1,2,3\}$	$\{0,1\}$
3	$\{3\}$	$\{2\}$	$\{1,2,3\}$	$\{0,2,3\}$	$\{0,1\}$
4	$\{4\}$	$\{4\}$	$\{0,1\}$	$\{0,1\}$	$\{0,4\}$

By routine calculations, H is a hyper $B N$-algebra. Let $\theta=\{(0,0),(0,1)$, $(1,0),(1,1),(2,2),(2,3),(3,2),(3,3),(4,4)\}$. By inspection, θ is an equivalence relation. Verify that θ is a congruence relation using Lemma 8 . Note that $[0]_{\theta}=\{0,1\}$ is a hyper $\operatorname{sub} B N$-algebra of H. However, it is not reflexive because $2 \circledast 2=\{0,2,3\} \nsubseteq[0]_{\theta}$. Also, it is not normal because $4 \circledast 3 \subseteq[0]_{\theta}$ but $(4 \circledast 4) \circledast(3 \circledast 3)=\{0,1,2,3,4\} \nsubseteq[0]_{\theta}$. Therefore, $[0]_{\theta}$ is not a reflexive normal hyper $\operatorname{sub} B N$-algebra of H.

In Lemma $6,[0]_{\sim_{S}}=S$ where S is a hyper sub $B N$-algebra. The next result will tell us that in general, the congruence class containing 0 is a hyper $\operatorname{sub} B N$-algebra.

Theorem 13. Let θ be a congruence relation on a hyper $B N$-algebra H. Then $[0]_{\theta}$ is a hyper subBN-algebra of H.

Proof. Clearly, $0 \in[0]_{\theta}$. Now, let $x, y \in[0]_{\theta}$. Then $x \theta 0$ and $y \theta 0$ which imply that $y \theta x$ by symmetric and transitive properties of θ. Since $y \theta x$ and $0 \theta y$, and θ is a congruence relation, we have by Lemma $8,\{y\}=(y \circledast 0) \bar{\theta}(x \circledast y)$. This means that for all $a \in x \circledast y, a \theta y$. By transitive property of $\theta, a \theta y$ and $y \theta 0$ imply $a \theta 0$ for all $a \in x \circledast y$. Hence, $x \circledast y \subseteq[0]_{\theta}$. By Theorem 3, $[0]_{\theta}$ is a hyper $\operatorname{sub} B N$-algebra of H.

Theorem 14. Let θ be a congruence relation on a hyper $B N$-algebra H. Then $[0]_{\theta}$ is a strong hyper $B N$-ideal of H. Consequently, it is a hyper $B N$-ideal and a weak hyper $B N$-ideal of H.

Proof. Clearly, $0 \in[0]_{\theta}$. Now, let $x, y \in H$ such that $(x \circledast y) \cap[0]_{\theta}$ and $y \in[0]_{\theta}$. Then there exists $a \in x \circledast y$ such that $a \in[0]_{\theta}$ and so $a \theta 0$. Hence, $(x \circledast y) \theta 0$. Moreover, $y \theta 0$ implies $0 \theta y$ because θ is symmetric. Since $0 \theta y$ and θ is a congruence relation on H, by Lemma $8,\{x\}=(x \circledast 0) \bar{\theta}(x \circledast y)$. This means that for all $b \in x \circledast y, x \theta b$. Also, $(x \circledast y) \theta\{0\}$ means that there is an element $b^{\prime} \in x \circledast y$ such that $b^{\prime} \theta 0$. Since $b^{\prime} \in x \circledast y$, we have $x \theta b^{\prime}$. By transitive property of $\theta, x \theta 0$ and $x \in[0]_{\theta}$. Therefore, $[0]_{\theta}$ is a strong hyper $B N$-ideal of H. By Propositions $1(i i)$ and (i), $[0]_{\theta}$ is a also a hyper $B N$-ideal and a weak hyper $B N$-ideal of H.

The following example serves as our motivation in the construction of quotient structure via congruence relation.

Example 24. Consider the hyper $B N$-algebra $H=\{0,1,2,3,4\}$ in Example 23. The relation θ defined on H is a congruence relation as shown. We have $I=[0]_{\theta}=\{0,1\}$, $I_{2}=\{2,3\}=I_{3}$, and $I_{4}=\{4\}$. Let $H / I=\left\{I_{x}: x \in H\right\}=\left\{I, I_{2}, I_{4}\right\}$. Define a hyperoperation \otimes on H / I by $I_{x} \otimes I_{y}=\left\{I_{z}: z \in x \circledast y\right\}$ and the hyperoder $<_{I}$ by $I_{x}<_{I} I_{y}$ if and only if $I \in I_{x} \otimes I_{y}$. Thus, our Cayley table is as follows:

\otimes	I	I_{2}	I_{4}
I	$\{I\}$	$\left\{I_{2}\right\}$	$\left\{I_{4}\right\}$
I_{2}	$\left\{I_{2}\right\}$	$\left\{I, I_{2}\right\}$	$\{I\}$
I_{4}	$\left\{I_{4}\right\}$	$\{I\}$	$\left\{I, I_{4}\right\}$

Using routine calculations, we can show that $(H / I, \otimes, I)$ is a hyper $B N$-algebra.
We will now show that using congruence relation, the quotient structure obtained is a hyper $B N$-algebra.

Theorem 15. Let θ be a congruence relation on a hyper $B N$-algebra H such that $I=[0]_{\theta}$ and $H / I=\left\{I_{x}: x \in H\right\}$, where $I_{x}=[x]_{\theta}$ for all $x \in H$. Then H / I with the hyperoperation \otimes and hyperorder $<_{I}$ which are defined as follows:

$$
I_{x} \otimes I_{y}=\left\{I_{z}: z \in x \circledast y\right\} \text { and } I_{x}<_{I} I_{y} \text { if and only if } I \in I_{x} \otimes I_{y}
$$

is a hyper $B N$-algebra which we call the quotient hyper $B N$-algebra.

Proof. Let us show first that the hyperoperation \otimes is well-defined on H / I. Assume $x, y, x^{\prime}, y^{\prime} \in H$ with $I_{x}=I_{x^{\prime}}$ and $I_{y}=I_{y^{\prime}}$. Let $J \in I_{x} \otimes I_{y}$. Then there exists $u \in x \circledast y$ such that $J=I_{u}$. Note that $x \theta x^{\prime}$ and $y \theta y^{\prime}$. Since θ is a congruence relation on H, it follows that $(x \circledast y) \bar{\theta}\left(x^{\prime} \circledast y^{\prime}\right)$. Hence, there is an element $z^{\prime} \in x^{\prime} \circledast y^{\prime}$ such that $u \theta z^{\prime}$, and so $J=I_{u}=I_{z^{\prime}}$. Thus, $J \in I_{x^{\prime}} \otimes I_{y^{\prime}}$. So, $I_{x} \otimes I_{y} \subseteq I_{x^{\prime}} \otimes I_{y^{\prime}}$. Conversely, let $L \in I_{x^{\prime}} \otimes I_{y^{\prime}}$. Then there is an element $v^{\prime} \in x^{\prime} \circledast y^{\prime}$ such that $L=I_{v^{\prime}}$. Note that $x^{\prime} \theta x$ and $y^{\prime} \theta y$. Hence, $\left(x^{\prime} \circledast y^{\prime}\right) \bar{\theta}(x \circledast y)$. Thus, there exists $z \in x \circledast y$ such that $v^{\prime} \theta z$, so that $L=I_{v^{\prime}}=I_{z}$. It means that $L \in I_{x} \otimes I_{y}$ and $I_{x^{\prime}} \otimes I_{y^{\prime}} \subseteq I_{x} \otimes I_{y}$. Therefore, $I_{x} \otimes I_{y}=I_{x^{\prime}} \otimes I_{y^{\prime}}$ and \otimes is a well-defined hyperoperation on H / I.

Now, we will show that (i) of Definition 5 holds for H / I, that is, $I_{x}<_{I} I_{x}$ for all $I_{x} \in H / I$. Since H is a hyper $B N$-algebra, $x \ll x$, that is, $0 \in x \circledast x$. Thus, we have $I \in I_{x} \otimes I_{x}$.

For Definition $5(i i)$, we will show that $I_{x} \otimes I=\left\{I_{x}\right\}$ for all $I_{x} \in H / I$. H being a hyper $B N$-algebra means that $x \circledast 0=\{x\}$. Thus, Definition $5(i i)$ follows for H / I.

Let $I_{w} \in\left(I_{x} \otimes I_{y}\right) \otimes I_{z}$ where $I_{x}, I_{y}, I_{z} \in H / I$. Then there exists $u \in x \circledast y$ such that $I_{w} \in I_{u} \otimes I_{z}$. Since H is a hyper $B N$-algebra, we have $w^{\prime} \in u \circledast z \subseteq(x \circledast y) \circledast z=$ $(0 \circledast z) \circledast(y \circledast x)$ which implies that $I_{w}=I_{w^{\prime}} \in\left(I \otimes I_{z}\right) \otimes\left(I_{y} \otimes I_{x}\right)$. Since I_{w} is arbitrary, we have $\left(I_{x} \otimes I_{y}\right) \otimes I_{z} \subseteq\left(I \otimes I_{z}\right) \otimes\left(I_{y} \otimes I_{x}\right)$. Conversely, pick an arbitrary element $I_{v} \in\left(I \otimes I_{z}\right) \otimes\left(I_{y} \otimes I_{x}\right)$. Then there exist $s \in 0 \circledast z$ and $t \in y \circledast x$ such that $I_{s} \in I \otimes I_{z}$ and $I_{t} \in I_{y} \otimes I_{x}$. And so, $I_{v} \in I_{s} \otimes I_{t}$. This means that there is an element $v^{\prime} \in s \circledast t$ such that $I_{v}=I_{v^{\prime}}$. Since H is a hyper $B N$-algebra, $v^{\prime} \in s \circledast t \subseteq(0 \circledast z) \circledast(y \circledast x)=(x \circledast y) \circledast z$. Thus, $I_{v}=I_{v^{\prime}} \in\left(I_{x} \otimes I_{y}\right) \otimes I_{z}$. Since I_{v} is arbitrary, we have $\left(I \otimes I_{z}\right) \circledast\left(I_{y} \otimes I_{x}\right) \subseteq\left(I_{x} \otimes I_{y}\right) \otimes I_{z}$. Hence, $\left(I_{x} \otimes I_{y}\right) \otimes I_{z}=\left(I \otimes I_{z}\right) \otimes\left(I_{y} \otimes I_{x}\right)$ and Definition 5(iii) holds for H / I.

Therefore, $(H / I, \otimes, I)$ is a hyper $B N$-algebra.
Theorem 16. Let θ be a congruence relation on a hyper $B N$-algebra H such that $I=[0]_{\theta}$ and $H / I=\left\{I_{x}: x \in H\right\}$, where $I_{x}=[x]_{\theta}$ for all $x \in H$. If H is commutative, then so is H / I.

Proof. Suppose H is commutative. Then for all $x, y \in H, x \circledast y=y \circledast x$. Let $I_{x}, I_{y} \in H / I$. Then $I_{x} \otimes I_{y}=\left\{I_{z}: z \in x \circledast y=y \circledast x\right\}=I_{y} \otimes I_{x}$. Hence, H / I is commutative.

The converse of Theorem 16 is not necessarily true. H / I in Example 24 is commutative but H is not because $0 \circledast 3=\{2\} \neq\{3\}=3 \circledast 0$.

Lemma 9. Let H be a hyper $B N$-algebra, θ be a congruence relation on H and $x, y \in H$. If $(x \circledast y) \theta\{0\}$, then $(y \circledast x) \theta\{0\}$.

Proof. Let H be a hyper $B N$-algebra and θ be a congruence relation on H. Let $x, y \in H$ such that $(x \circledast y) \theta\{0\}$. Then there exists $a \in x \circledast y$ such that $a \theta 0$. Since $0 \in H$ and θ is a congruence relation, we have $(0 \circledast a) \bar{\theta}(0 \circledast 0)=\{0\}$. This means that for all $s \in 0 \circledast a, s \theta 0$. But $s \in 0 \circledast a \subseteq 0 \circledast(x \circledast y)=y \circledast x$ by Theorem $1(i i i)$. Thus, $s \in y \circledast x$ with $s \theta 0$. Therefore, $(y \circledast x) \theta\{0\}$.

Lemma 9 serves as our motivation in defining regularity of an equivalence relation on a hyper $B N$-algebra.

Definition 16. Let H be a hyper $B N$-algebra and θ be an equivalence relation on H. Then θ is called a regular congruence relation on H, if θ is a congruence relation on H and whenever $(x \circledast y) \theta\{0\}$, then $x \theta y$ for all $x, y \in H$.
Theorem 17. Let θ and θ^{\prime} be regular congruence relations on H with $[0]_{\theta}=[0]_{\theta^{\prime}}$. Then $\theta=\theta^{\prime}$.

Proof. Let θ and θ^{\prime} be regular congruence relations on H with $[0]_{\theta}=[0]_{\theta^{\prime}}$. Since θ and θ^{\prime} are both relations on H, we just need to show that $x \theta y$ if and only if $x \theta^{\prime} y$ for all $x, y \in H$. Let $x \theta y$. Since θ is a congruence relation on H, by Lemma $8,(x \circledast x) \bar{\theta}(x \circledast y)$. Since $0 \in x \circledast x$, there exists an element $s \in x \circledast y$ such that $0 \theta s$. It follows that $s \in[0]_{\theta}=[0]_{\theta^{\prime}}$. Thus, $(x \circledast y) \theta^{\prime}\{0\}$. Now, since θ^{\prime} is a regular congruence relation on H, we have $x \theta^{\prime} y$. Conversely, let $x \theta^{\prime} y$. Then $(x \circledast x) \overline{\theta^{\prime}}(x \circledast y)$. Since $0 \in x \circledast x$, there exists an element $s \in x \circledast y$ such that $0 \theta^{\prime} s$. It follows that $s \in[0]_{\theta^{\prime}}=[0]_{\theta}$. Thus, $(x \circledast y) \theta\{0\}$. Since θ is a regular congruence relation on H, we have $x \theta y$.

Definition 17. A hyper $B N$-algebra H that satisfies the condition: if $x \ll y$, then $x=y$ for all $x, y \in H$, is called a hyper $B N_{1}$-algebra.
Example 25. Consider the hyper $B N$-algebra $H=\{0, a, b\}$ in Example 1. Then H is a hyper $B N_{1}$-algebra. Also, the hyper $B N$-algebra $H=\{0,1,2,3\}$ in Example 15 is a hyper $B N_{1}$-algebra.

Example 26. The hyper $B N$-algebra $H^{\prime}=\{0,1,2\}$ in Example 2 is not a hyper $B N_{1}$ algebra because $1 \ll 2$ but $1 \neq 2$. Also, the hyper $B N$-algebra $H^{\prime}=\{0,1,2,3\}$ in Example 3 is not a hyper $B N_{1}$-algebra because $2 \ll 3$ but $2 \neq 3$.

Notice that θ in Example 23 is not regular since $(2 \circledast 4) \theta\{0\}$ but $(2,4) \notin \theta$. The resulting quotient structure which is given in Example 24 is not a hyper $B N_{1}$-algebra. To support it further, $I_{4}<_{I} I_{2}$ but $I_{4} \neq I_{2}$.
Example 27. If we consider $\theta=\{(0,0),(0,1),(1,0),(1,1),(2,2),(2,3),(2,4),(3,2),(3,3)$, $(3,4),(4,2),(4,3),(4,4)\}$ in Example 23. We can show that θ is a regular congruence relation. Now, $I=[0]_{\theta}=\{0,1\}=I_{1}$ and $I_{2}=[2]_{\theta}=\{2,3,4\}=I_{3}=I_{4}$. Thus, $H / I=\left\{I, I_{2}\right\}$ and the hyperoperation \otimes is defined by the following Cayley table:

\otimes	I	I_{2}
I	$\{I\}$	$\left\{I_{2}\right\}$
I_{2}	$\left\{I_{2}\right\}$	$\left\{I, I_{2}\right\}$

Using routine calculations, we can show that $(H / I, \otimes, I)$ is a hyper $B N_{1}$-algebra.
We can deduce from Example 27 that if θ is a regular congruence relation on a hyper $B N$-algebra H, then the resulting structure would be a hyper $B N_{1}$-algebra. The following result generalizes this observation.

Theorem 18. Let H be a hyper $B N$-algebra, θ be a regular congruence relation on H and $I=[0]_{\theta}$. Then H / I is a hyper $B N_{1}$-algebra.

Proof. By Theorem 15, H/I is a hyper $B N$-algebra. Now, let $I_{x} \ll I_{y}$ where $I_{x}, I_{y} \in$ H / I. Then $I \in I_{x} \otimes I_{y}$. Hence, there exists $u \in x \circledast y$ such that $I_{u}=I$ and so, $u \theta 0$. Hence, $(x \circledast y) \theta\{0\}$. Since θ is regular, $x \theta y$. Thus, $I_{x}=I_{y}$. Therefore, H / I is a hyper $B N_{1}$-algebra.

5. Conclusion

We have defined various types of ideals for hyper $B N$-algebras. We also obtained some properties. We showed the general relationship among various types of ideals and hyper $\operatorname{sub} B N$-algebras. We established the equivalency of weak hyper $B N$-ideals and hyper sub $B N$-algebras. We also found a condition such that a strong hyper $B N$-ideal become a hyper $B N$-ideal. Finally, we were able to construct quotient hyper $B N$-algebras via reflexive normal hyper $\operatorname{sub} B N$-algebra and via congruence relation. We likewise showed that the construction via reflexive normal hyper $\operatorname{sub} B N$-algebra is just a special case of the construction via congruence relation. Furthermore, we have introduced the notion of hyper $B N_{1}$-algebra by giving additional axiom on the definition of hyper $B N$-algebra. Construction of quotient hyper $B N$-algebras will result to hyper $B N_{1}$-algebras if the congruence relation is regular. For future work, we have currently looked at homomorphisms and isomorphisms on hyper $B N$-algebras.

Acknowledgements

The authors thank the Department of Science and Technology (DOST) of the Philippines through the Accelerated Science and Technology Human Resource Development Program (ASTHRDP) for the financial support. Also, the authors would like to extend their gratitude to the anonymous referees for giving some comments for the improvement of this paper.

References

[1] R.A. Borzooei, W.A. Dudek, and N. Koohestani. On Hyper BCC-algebras. International Journal of Mathematics and Mathematical Sciences, 2006.
[2] L.R. Cabardo and G. Petalcorin. On Weak Decomposable Hyper BCI-algebras and Some Notes on Weak and Strong Hyper BCI-ideals. Journal of Algebra and Applied Mathematics, 16:45-62, 2018.
[3] L.R. Cabardo and G. Petalcorin. Hyper $B N$-algebras: Hyperstructure Theory Applied to $B N$-algebras. Italian Journal of Pure and Applied Mathematics, 48:406-422, 2022.
[4] B. Davvaz and S. Omidi. Ordered Krasner Hyperrings. Iranian Journal of Mathematics, Sciences, and Informatics, 16:35-49, 2017.
[5] J. Endam. On Hyper B-algebras. PhD thesis, Mindanao State University - Iligan Institute of Technology, 2019.
[6] T.W. Hungerford. Algebra. Springer-Verlag, New York, 1974.
[7] R.A. Indangan and G. Petalcorin. On Hyper GR-algebra. Journal of Algebra and Applied Mathematics, 14:101-120, 2016.
[8] C.B. Kim and H.S. Kim. On $B N$-algebras. Kyungpook Mathematical Journal, 53:175184, 2013.
[9] F. Marty. Sur une generalization de la notion de group. In 8 th Congres de Mathematiciens Scandinave., pages 45-49, Stockholm, Sweden, 1934.
[10] X.L. Xin. Hyper BCI-algebras. Discuss. Math. Gen. Algebra Appl., 26:5-19, 2006.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.5003
 Email addresses: lysterrey.cabardo@g.msuiit.edu.ph (L.R. Cabardo), gaudencio.petalcorin@g.msuiit.edu.ph (G. Petalcorin)

