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Abstract. In this paper, we introduce and investigate a class of bi-univalent functions, denoted
by F(n, α, β), that depends on the Ruscheweyh operator and defined by the use of Gegenbauer
Polynomials. For functions in this class, we derive the estimations for the initial Taylor-Maclaurin
coefficients |a2| and |a3|. Moreover, we obtain the classical Fekete-Szegö inequality of functions
belonging to this class.
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1. Introduction

Let A be the family of all analytic functions f that are defined on the open unit disk
D = {z ∈ C : |z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1. Any
function f ∈ A has the following Taylor-Maclarin series expansion:

f(z) = z +

∞∑
n=2

anz
n, where z ∈ D. (1)

Let S denote the class of all functions f ∈ A that are univalent in D. Let the functions
f and g be analytic in D, we say the function f is subordinate by the function g in D,
denoted by f(z) ≺ g(z) for all z ∈ D, if there exists a Schwartz function w, with w(0) = 0
and |w(z)| < 1 for all z ∈ D, such that f(z) = g(w(z)) for all z ∈ D. In particular, if the
function g is univalent over D then f(z) ≺ g(z) equivalent to f(0) = g(0) and f(D) ⊂ g(D.
For more information about the Subordination Principle we refer the readers to to the
monographs [9], [23] and [24].
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As known univalent functions are injective (one-to-one) functions. Hence, they are
invertible and the inverse functions may not be defined on the entire unit disk D. In fact,
the Koebe one-quarter Theorem tells us that the image of D under any function f ∈ S
contains the disk D(0, 1/4) of center 0 and radius 1/4. Accordingly, every function f ∈ S
has an inverse f−1 = g which is defined as

g(f(z)) = z, z ∈ D

f(g(w)) = w, |w| < r(f); r(f) ≥ 1/4.

Moreover, the inverse function is given by

g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · ·· (2)

For this reason, we define the class Σ as follows. A function f ∈ A is said to be
bi-univalent if both f and f−1 are univalent in D. Therefore, let Σ denote the class of all
bi-univalent functions in A which are given by equation (1). For example, the following
functions belong to the class Σ:

z

1− z
, − log(1− z), log

√
1 + z

1− z
.

However, Koebe function,
2z − z2

2
and

z

1− z2
do not belong to the class Σ. For more

information about univalent and bi-univalent functions we refer the readers to the articles
[19], [22], [25], the monograph [10], [12] and the references therein.

In the year 1784, Legendre [18] introduced and studied the orthogonal polynomials.
Traditionally, orthogonal polynomials are crucial in approximation theory where are used
in polynomial interpolation. Moreover, under specific restrictions, orthogonal polynomials
are frequently used in the study of differential equations. In particular in some special
cases of Sturm-Liouville differential equation. An example of orthogonal polynomials is a
Gegenbauer polynomial. Special cases of Gegenbauer polynomials are Legendre polyno-
mials and the Chebyshev polynomials of the first and second kind. For more information
about orthogonal polynomials we refer the readers to the monograph [8]. We define Gegen-
bauer polynomials in the next section.

The subject of the geometric function theory in complex analysis has been investi-
gated by many researchers in recent years, the typical problem in this field is studying
a functional made up of combinations of the initial coefficients of the functions f ∈ A.
For a function in the class S, it is well-known that |an| is bounded by n. Moreover, the
coefficient bounds give information about the geometric properties of those functions. For
instance, the bound for the second coefficients of the class S gives the growth and distor-
tion bounds for the class. In addition, the Fekete-Szegö functional arises naturally in the
investigation of univalency of analytic functions. In the year 1933, Fekete and Szegö [11]
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found the maximum value of |a3−λa22|, as a function of the real parameter 0 ≤ λ ≤ 1 for a
univalent function f . Since then, the problem of dealing with the Fekete-Szegö functional
for f ∈ A with any complex λ is known as the classical Fekete-Szegö problem. There
are many researchers investigated the Fekete-Szegö functional and the other coefficient
estimates problems, for example see the articles [20], [15], [21], [17], [11], [22], [14] and the
references therein.

2. Preliminaries

In this section we present some information that are curial for the main results of this
paper. we start by defining our subclass. In the year 1994, Szynal [28] introduced and
studied a subclass F(α) of the class A consisting of functions of the form

f(z) =

∫ 1

−1
K(z, x) dσ(x), (3)

where K(z, x) =
z

(z2 − 2xz + 1)α
, α ≥ 0, −1 ≤ x ≤ 1, and σ is the probability measure on

[−1, 1]. Moreover, the functionK(z, x) has the following Taylor-Maclaurin series expansion

K(z, x) = z + Cα
1 (x)z

2 + Cα
2 (x)z

3 + Cα
3 (x)z

4 + · · ·,

where Cα
n (x) denotes the Gegenbauer polynomials of order α and degree n in x. Fur-

thermore, for any real numbers α, x ∈ R ,with α ≥ 0 and −1 ≤ x ≤ 1, and z ∈ D the
generating function of Gegenbauer polynomials is given by

Hα(z, x) = (z2 − 2xz + 1)−α.

Moreover, for any fixed x the function Hα is analytic on the unit disk D and its
Taylor-Maclaurin series is given by

Hα(z, x) =

∞∑
n=0

Cα
n (x)z

n.

In addition, if f ∈ F(α) that is given by (3), the nth coefficient can be written as

an =

∫ 1

−1
Cα
n−1(x) dσ(x).

In addition, Gegenbauer polynomials can be defined in terms of the following recurrence
relation:

Cα
n (x) =

2x(n+ α− 1)Cα
n−1(x)− (n+ 2α− 2)Cα

n−1(x)

n
, (4)

with initial values

Cα
0 (x) = 1, Cα

1 (x) = 2αx, and Cα
2 (x) = 2α(α+ 1)x2 − α.



W. Al-Rawashdeh / Eur. J. Pure Appl. Math, 17 (1) (2024), 105-115 108

It is well-known that the Gegenbauer polynomials and their special cases such as
Legendre polynomials Ln(x) and the Chebyshev polynomials of the second kind Tn(x),
are orthogonal polynomials, where the values of α are α = 1/2 and α = 1 respectively,
more precisely

Ln(x) = C1/2
n (x), and Tn(x) = C1

n(x).

For more information about the Gegenbauer polynomials and their special cases, we refer
the readers to the articles [4], [3], [7], [6], [5], [21], [16], [22], [13], [14], the monograph [10],
[12], [27], and the references therein.

In the year 1975, Ruscheweyh [26] introduced the operator R which defined, using the
Hadamard product, as follows

Rλf(z) = f(z) ∗ z

(1− z)1−λ
,

where f ∈ A, z ∈ D and real number λ ≥ −1. For λ = n ∈ N0 = N ∪ {0}, we get the
Rscheweyh derivative Rn of order n of the function f :

Rnf(z) = z

(
zn−1f(z)

)(n)
n!

.

Moreover, the Taylor-Maclaurin series of Rnf is given by

Rnf(z) = z +
∞∑
k=2

σ(n, k)akz
k,

σ(n, k) =
Γ(n+ k)

(k − 1)!Γ(n+ 1)
. (5)

We say that a function f ∈ Σ in the subclass F(n, α, β) if it satisfies the following
subordination conditions, associated with the Gegenbauer Polynomials, for all z, w ∈ D:

(Rnf(z))′ + βz(Rnf(z))′′ ≺ Hα(z, x) (6)

and
(Rng(w))′ + βw(Rng(w))′′ ≺ Hα(w, x), (7)

where α > 0, β > 0, n ∈ N0, x ∈ (12 , 1] and g(w) is defined by equation (2).

The following lemma (see[17]) is a well-known fact, so we omit its proof.

Lemma 1. Let K, L ∈ R and p, q ∈ C. If |p| < R and |q| < R,

|(K + L)p+ (K − L)q| ≤

{
2|K|R, if |K| ≥ |L|
2|L|R, if |K| ≤ |L|
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Our investigation in this paper is motivated by the work of the researchers presented
in the papers [1], [2], and [14]. In this presenting paper, we investigate a subclass of bi-
univalent functions Σ in the open unit disk D, which we denote by F(n, α, β) with α > 0,
β > 0 and n ∈ N0. For functions in this subclass, we obtain the estimates for the initial
Taylor-Maclarin coefficients |a2| and |a3|. Furthermore, we examine the corresponding
Fekete-Szegö functional problem for functions in this subclass.

3. Initial Coefficient estimates for the function class F(n, α, β)

In this section, we provide bounds for the initial Taylor-Maclaurin coefficients for the
functions belong to the class F(n, α, β) which are given by equation (1).

Theorem 1. Let the function f given by (1) be in the class F(n, α, β). Then

|a2| ≤
2αx

√
x(n!)√

|(3α(n+ 2)!(1 + 2β)x2 − 4(1 + β)2(n+ 1)(n+ 1)!{(2 + 2α)x2 − 1}|
(8)

and

|a3| ≤
4αx(n!)

3(1 + 2β)(n+ 2)!
+

α2x2

(1 + β)2(n+ 1)2
(9)

Proof. Let f belong to the class F(n, α, β). Then Using (6) and (7) we can find two
analytic functions p and q on the unit disk D such that

(Rnf(z))′ + βz(Rnf(z))′′ ≺ Hα(x, p(z)), (10)

and
(Rng(w))′ + βw(Rng(w))′′ ≺ Hα(x, q(w)). (11)

where the analytic functions p and q are given by

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · where z ∈ D,

and
q(w) = 1 + q1w + q2w

2 + q3w
3 + · · · where w ∈ D

Such that
p(0) = q(0) = 0,

and for all z, w ∈ D
|p(z)| < 1 and |q(z)| < 1.

Moreover, it is well-known that (see, for details [10]) for all j ∈ N

|pj | ≤ 1 and |qj | ≤ 1.
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Now, upon comparing the coefficients in both sides of (10) and (11) we obtain the
following

2(1 + β)σ(n, 2)a2 = Cα
1 (x)p1, (12)

3(1 + 2β)σ(n, 3)a3 = Cα
1 (x)p2 + Cα

2 (x)p
2
1, (13)

−2(1 + β)σ(n, 2)a2 = Cα
1 (x)q1, (14)

and
3(1 + 2β)σ(n, 3)(2a22 − a3) = Cα

1 (x)q2 + Cα
2 (x)q

2
1 (15)

Using equations (12) and (14) we get

p1 = −q1 (16)

Moreover, adding the square of equations (12) and (14) we get

8(1 + β)2[σ(n, 2)]2a22 = [Cα
1 (x)]

2(p21 + q21) (17)

By adding equations (13) and (15) we get

6(1 + 2β)σ(n, 3)a22 = [Cα
1 (x)](p2 + q2) + [Cα

2 (x)](p
2
1 + q21) (18)

In view of equation (17), equation (18) can be written as

(
6(1 + 2β)σ(n, 3)[Cα

1 (x)]
2 − 8(1 + β)2[Cα

2 (x)][σ(n, 2)]
2
)
a22 = [Cα

1 (x)]
3(p2 + q2) (19)

Using equation (5), equation (19) becomes

a22 =
4α2x3(p2 + q2)

3(1 + 2β)(n+ 1)(n+ 2)αx2 − 4(1 + β)2(n+ 1)2[2(α+ 1)x2 − 1]
.

Using the facts |p2| ≤ 1 and |q2| ≤ 1, we get the desired estimate of a2:

|a2| ≤
2αx

√
x(n+ 1)√

(n+ 1)2|(3α(1 + 2β)(n+ 2)x2 − 4(1 + β)2(n+ 1){(2 + 2α)x2 − 1}|
.

Next, we look for the bound of |a3|. Subtracting equation (15) from equation (13) and
using equation (16), we get

a3 =
Cα
1 (x)(p2 − q2)

6(1 + 2β)σ(n, 3)
+ a22. (20)
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In view of equation (17), we obtain

a3 =
Cα
1 (x)(p2 − q2)

6(1 + 2β)σ(n, 3)
+

[Cα
1 (x)]

2p21
4(1 + β)2[σ(n, 2)]2

.

Hence, Using Equation (5) and the facts |p2| ≤ 1 and |q2| ≤ 1, we get the desired
estimate of a3:

|a3| ≤
4αx

3(1 + 2β)(n+ 2)(n+ 1)
+

α2x2

(1 + β)2(n+ 1)2
.

This completes the proof of Theorem 1.

Taking α = 1, we get the following interesting corollary of Theorem 1. These initial
coefficient estimates are related to Chebyshev polynomials of the second kind. The prove
is similar to the proof of previous theorem, so we omit the proof’s details.

Corollary 1. Let the function f given by (1) be in the class F(n, 1, β). Then

|a2| ≤
2x

√
x(n!)√

|(3(n+ 2)!(1 + 2β)x2 − 4(1 + β)2(n+ 1)(n+ 1)!(4x2 − 1)|
,

and

|a3| ≤
4x(n!)

3(1 + 2β)(n+ 2)!
+

x2

(1 + β)2(n+ 1)2
.

On the other hand, taking β = 1, we get the following corollary.

Corollary 2. Let the function f given by (1) be in the class F(n, α, 0). Then

|a2| ≤
2αx

√
x(n!)√

|(9α(n+ 2)!x2 − 16(n+ 1)(n+ 1)!{(2 + 2α)x2 − 1}|
,

and

|a3| ≤
4αx(n!)

9(n+ 2)!
+

α2x2

4(n+ 1)2
.

4. Fekete-Szegö problem for the function class F(n, α, β)

In this section, we consider the classical Fekete-Szegö problem for our presenting class
F(n, α, β).

Theorem 2. Let the function f given by (1) be in the class F(n, α, β). Then for some
ζ ∈ R,

|a3 − ζa22| ≤

{
4αx
B , if |1− ζ| ≤ ∆(α,n,β)

4Bα2x2

16α3x3|1−ζ|
∆(α,n,β) , if |1− ζ| ≥ ∆(α,n,β)

4Bα2x2 ,
(21)

where

∆(α, n, β) = 4α[B − 4(1 + β)2(n+ 1)2(α+ 1)]x2 − 8α(1 + β)2(n+ 1)2,
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and
B = 3(1 + 2β)(n+ 2)(n+ 1)

Proof. For some real number ζ, using equation (20) we have

a3 − ζa22 =
Cα
1 (x)(p2 − q2)

6(1 + 2β)σ(n, 3)
+ (1− ζ)a22.

In view of equation (19), we obtain

a3 − ζa22 =
Cα
1 (x)(p2 − q2)

6(1 + 2β)σ(n, 3)
+

(1− ζ)[Cα
1 (x)]

3(p2 + q2)

6(1 + 2β)σ(n, 3)[Cα
1 (x)]

2 − 8(1 + β)2[Cα
2 (x)][σ(n, 2)]

2
.

The last expression can be written as:

a3 − ζa22 = Cα
1 (x)[(K − L)p2 + (K + L)q2],

where

K =
1

6(1 + aβ)σ(n, 3)
,

and

L =
(1− ζ)[Cα

1 (x)]
2

△(α, n, β)
.

Using Lemma 1, we get the following

|a3 − ζa22| ≤

{
2| Cα

1 (x)
6(1+aβ)σ(n,3) |, if |K| ≥ |L|

2| (1−ζ)[Cα
1 (x)]3

△(α,n,β) |, if |K| ≤ |L|
.

Using the initial values (4) and equation (5), we get the desired inequality (21). This
completes the proof of Theorem 2.

The following corollaries are just consequences of Theorem 2. Taking α = 1, we get
the Fekete-Szegö inequality that is related to Chebyshev polynomials of the second kind.

Corollary 3. Let the function f given by (1) be in the class F(n, 1, β). Then for some
ζ ∈ R,

|a3 − ζa22| ≤

{
4x
B , if |1− ζ| ≤ G

16x3|1−ζ|
4B(n+2)(n+1)x2−8(1+β)(n+1)2(4x2−1)

, if |1− ζ| ≥ G,
(22)

where

G =
4B(n+ 2)(n+ 1)x2 − 8(1 + β)(n+ 1)2(4x2 − 1)

2Bx2
.

Taking β = 1, we get the following corollary.

Corollary 4. Let the function f given by (1) be in the class F(n, α, 0). Then for some
ζ ∈ R,

|a3 − ζa22| ≤

{
4(n!)αx
9(n+2)! , if |1− ζ| ≤ (n!)H(n,α)

36(n+2)!α2x2

16α3x3|1−ζ|
H(n,α) , if |1− ζ| ≥ (n!)H(n,α)

36(n+2)!α2x2 ,
(23)

where
H(n, α) = 4αx2(n+ 1) (9(n+ 2)− 16(n+ 1)(α+ 1))− 32α(n+ 1)2.
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5. Conclusion

This research paper has investigated a new subclass of bi-univalent functions, defined
in terms of the Ruscheweyh derivative Rn of order n, by the means of Gegenbauer polyno-
mials. For functions belong to this function class, the author has derived estimates for the
Taylor-Maclaurin initial coefficients and Fekete-Szegö functional problem. The work pre-
sented in this paper will lead to many different results for subclasses defined by the means

of Legendre polynomials Ln(x) = C
1/2
n (x) and the Chebyshev polynomials of the second

kind Tn(x) = C1
n(x). Moreover, the presented work in this paper will inspire researchers

to extend its concepts to harmonic functions and symmetric q-calculus.
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