Bayesian Regression Analysis using Median Rank Set Sampling
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i1.5015Keywords:
Median Ranked Set Sampling, Bayes factor, Regression, Bayesian approachAbstract
Bayesian estimation of the linear regression parameter system is considered by deploying Median Rank Set Sampling (MRSS). The full conditional distributions and the associated posterior distribution are obtained. Therefore, based on Markov Chain Monte Carlo simulation, the Bayesian point estimates and credible intervals for the regression parameters are determined. To measure the efficiency of the obtained Bayesian estimates concerning the frequentist estimates we compute the asymptotic relative efficiency of the obtained Bayesian estimates using Markov Chain Monte Carlo simulation.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.