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On a sixth-order solver for multiple roots of nonlinear
equations

Young Hee Geum

Department of Mathematics, Dankook University, Cheonan, Korea 330-714

Abstract. A number of iterative schemes with high convergence order to solve nonlinear equations
are presented in the literature. In this paper, a sixth-order multiple-zero finder has been developed
and the dynamics of selected iterative schemes with uniparametric polynomial weight function are
investigated using Möbius conjugacy map applied to the form ((z − A)(z − B))m. The complex
dynamics on the Riemann sphere by analyzing the parameter spaces associated with the free critical
points are studied, and the numerical experiments are carried out.
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1. Introduction

The root-finding problems[1, 2] occur in various fields of artificial intelligence, science,
biology and engineering. Finding the zeros of nonlinear equation [3–5, 16] is the process
of finding the value of a variable that satisfies a given equation. A zero α of h(x) = 0 is
called a multiple root [14] with multiplicity m if h(i)(α) = 0, i = 0, 1, 2, · · · ,m − 1 and
h(m)(α) ̸= 0.

It is known that the Newton’s method is the most fundamental method for solving the
equations, given by

xn+1 = xn −m
f(xn)

f ′(xn)
, n = 0, 1, 2, · · · . (1)

Researchers [2, 7–9] are interested in solving roots of nonlinear equations[10, 13, 15,
17, 18] and investigating the dynamical analysis by exploring the relevant parameter plane
and basins of attraction [12, 18, 19].

We study the dynamics of a class of sixth-order multiple-zero solvers developed by
Geum-Kim-Neta[11] below.
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yn = xn −m · h(xn), h(xn) = f(xn)

f ′(xn)
,

wn = xn −m ·Gf (s1) · h(xn), s1 = ( f(yn)f(xn)
)

1
m ,

xn+1 = xn −m ·Kf (s1, s2) · h(xn), s2 = (f(wn)
f(xn)

)
1
m ,

(2)

where Gf : C → C is a analytic function in a small neighborhood of the origin 0 and
Kf : C2 → C is holomorphic in a small neighborhood of (0, 0).{

Gf (s1) =
1+(a1−a2−1)s1+a1s12

1+(a1−a2−2)s1+a2s12
,

Kf (s1, s2) =
1+(a1−a2−1)s1+a1s12

1+(a1−a2−2)s1+a2s12+[(1−a1+a2)s1−1]s2
,

(3)

where a1 and a2 are free parameter to be chosen. For brevity of analysis, we select
a1 = 1 and consider one parameter a2 = κ(∈ C) here.

The numerical method in (2) is written as

xn+1 = If (xn, a1, a2),

where If (xn, a1, a2) = xn −m ·Kf (s1, s2) · h(xn) is a fixed point operator.
The process of solving the nonlinear equation of f(z) = 0 is regarded as a sequence of

images of initial value x0 under If below:

{x0, If (x0), I2f (x0), · · · Inf (x0), · · · }

We investigate the conjugacy map and stability surfaces of the selected iterative scheme
in Section 2. The algorithm, related theorems and the parameter planes are shown in
Section 3. Finally, conclusions are stated in the last section.

2. Conjugacy map and analysis

Via Möbius conjugacy map [6] T (z) = (z −A)/(z −B) when applied to a polynomial
f(z) = ((z −A)(z −B))m, If is conjugated to J(z, κ) satisfying

J(z,A,B, κ) =
H(z,A,B, κ)

D(z,A,B, κ)
, (4)

where z,A,B ∈ C
⋃
{∞}, A ̸= B and H and D are polynomials whose coefficients are

dependent upon parameters A,B and κ.
Using Mathematica [20] computation with T−1(z) = (Bz − A)/(z − 1), we obtain

J(z, κ) as follows

J(z, κ) = − z6(3 + 3z + z2 − κ− zκ)H1(z)

(−1− 3z − 3z2 + zκ+ z2κ)D1(z)
, (5)

where H1(z) = (2+7z+8z2+4z3+z4−2zκ−2z2κ−z3κ) and D1(z) = (1+4z+8z2+
7z3+2z4−zκ−2z2κ−2z3κ). We find out that J is dependent only on κ but independent
of parameter A and B.
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We figure out that the fixed points of the iterative scheme J(z, κ). Let ϕ(z, κ) =
z−J(z, κ) where roots are the desired fixed points of J(z, κ). After a lengthy computation,
we find that z = 0 and z = 1 are the zeros of ϕ(z, κ) and we have the following expression
of ϕ(z, κ):

ϕ(z, κ) =
(−1 + z)z(1 + z + z2)2W (z)

w(z)
, (6)

W (z) =1 + z6 + z2(−4 + κ)2 + z4(−4 + κ)2 − 2z(−3 + κ)− 2z5(−3 + κ) + z3(22− 13κ+ 2κ2),

w(z) =− 1 + 2z6(−3 + κ) + z(−7 + 2κ) + z4(−47 + 27κ− 4κ2) + z3(−43 + 23κ− 3κ2)

+ z5(−27 + 15κ− 2κ2)− z2(23− 10κ+ κ2).

Theorem 1. (1) If κ = 0, then

ϕ(z, κ) = −(−1 + z)z(1 + z)(1 + z + z2)2(1 + 4z + 7z2 + 4z3 + z4)

1 + 6z + 17z2 + 26z3 + 21z4 + 6z5
,

and the strange fixed points z are given by z = ±1, z = −0.5± 0.866025i, z = −1.62481±
1.30024i, z = −0.375189± 0.300243i.
(2) If κ = 2, then

ϕ(z, κ) = −z(1 + z + z2)2(−1 + z − z2 + z3)

1 + z + 2z2
,

and the strange fixed points z are given by z = ±i, z = 1, z = −0.5± 0.866025i.
(3) If κ = 7

2 , then

ϕ(z, κ) =
z(1 + z + z2)2(4− 4z + z2 + 4z3 + z4 − 4z5 + 4z6)

4 + 4z + 5z2 + 2z3 + 8z4 + 4z5
,

and the strange fixed points z are given by z = −0.5± 0.866025i, z = 0.75± 0.661438i, z =
−0.84307± 0.537803i, z = 0.59307± 0.805151i.
(4) If κ = 22

5 , then

ϕ(z, κ) =
z(1 + z + z2)2(25− 70z + 4z2 + 88z3 + 4z4 − 70z5 + 25z6)

25− 20z − 61z2 − 64z3 + 77z4 + 70z5
,

and the strange fixed points z are given by z = −0.5±0.866025i, z = 0.536675, z = 1.86, z =
0.67, z = 1.48, z = −0.874796± 0.475352i.
(5) Let κ /∈ {0, 2, 72 ,

22
5 }. Then W (1z ) = z−6W (z).

Proof. (1)-(4) Suppose W (z) = 0 and w(z) = 0 for z. Eliminating κ from the two
polynomials, we have the relation F (z) = (z + 1)(z2 + z + 1) = 0. Substituting all the
roots of F into W (z) = 0 and w(z) = 0, we get the relations for κ and solving them for
κ, we have κ = 0, 2. The remaining part is straightforward. If (z − 1) is a divisor of w(z),
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then w(1) = −154 + 79κ− 10κ2 = 0, yielding κ = 7
2 ,

22
5 . Then remaining proof is trivial.

(5) By direct computation, we have W (1/z) = z−6w(z). □

(a) |ℜ(t)| ≤ 5000, |ℑ(t)| ≤ 5000 (b) |ℜ(t)| ≤ 5, |ℑ(t)| ≤ 5

(c) 1 ≤ ℜ(t) ≤ 3, − 3 ≤ ℑ(t) ≤ −1 (d) |ℜ(t)| ≤ 5000, |ℑ(t)| ≤ 50001

(e) |ℜ(t)| ≤ 5000, |ℑ(t)| ≤ 5000 (f) 0 ≤ ℜ(t) ≤ 500, − 500 ≤ ℑ(t) ≤ 0

Figure 1: Stability surfaces .

To find the stability of fixed points, we compute the derivative of J(z, κ) as follows:

J ′(z, κ) =
z5 ·Q(z)

q(z)2
, (7)

where

Q(z) =a0 + a2z + a3z
2 + a4z

3 + 2a5z
4 + a7z

5 + 2a6z
6 + a7z

7

+ 2a5z
8 + a4z

9 + a3z
10 + a2z

11 + a0z
12,

q(z) =(−1 + 2z4 + z3(7− 2κ)− z(−4 + κ)− 2z2(−4 + κ)(−1 + z(−3 + κ) + z2(−3 + κ)),

a0 =− 12(−3 + κ), a2 = 399− 235κ+ 34κ2, a3 = 2062− 1594κ+ 400κ2 − 32κ3,
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a4 =6569− 5935κ+ 1908κ2 − 249κ3 + 10κ4, a5 = 7166− 7099κ+ 2602κ2 − 415κ3 + 24κ4,

a6 =13061− 13800κ+ 5508κ2 − 986κ3 + 67κ4,

a7 =22523− 23435κ+ 9170κ2 − 1600κ3 + 105κ4.

Theorem 2. (1) If κ = −1, then

J ′(z, κ) =
z5(2 + z)2Q1(z)

(1 + 2z)4(1 + 3z + 4z2 + z3)2
,

where Q1(z) = 12 + 107z + 388z2 + 785z3 + 980z4 + 785z5 + 388z6 + 107z7 + 12z8.

(2) If κ = 0, then

J ′(z, κ) =
z5Q2(z)

(1 + 3z + 3z2)2(1 + 3z + 5z2 + 2z3)2
,

where Q2(z) = 36+327z+1372z2+3498z3+5964z4+7097z5+5964z6+3498z7+1372z8+
327z9 + 36z10.

(3) If κ = 2, then

J ′(z, κ) =
z5(12 + 17z + 30z2 + 17z3 + 12z4)

(1 + z + 2z2)2
.

(4) If κ = 7
2 , then

J ′(z, κ) =
−z5Q4(z)

(2 + z)2(2 + z + 2z2 + 4z4)2
,

where Q4(z) = (96 + 304z + 336z2 + 460z3 + 508z4 + 723z5 + 508z6 + 460z7 + 336z8 +
304z9 + 96z10).

(5) If κ = 22
5 , then

J ′(z, κ) =
z5Q5(z)

(−5 + 7z + 7z2)2(−5− 3z + z2 + 10z3)2
,

where Q5(z) = 10500 + 6475z − 39120z2 − 41690z3 + 19252z4 + 79689z5 + 19252z6 −
41690z7 − 39120z8 + 6475z9 + 10500z10.
(6) Let κ /∈ {−1, 0, 2, 72 ,

22
5 }. Then Q(1z ) = z12Q(z).

Proof. (1)-(5) Suppose that Q(z) = 0, q(z) = 0 for z. By eliminating κ from Q(z) = 0,
and q(z) = 0, we get the relation: T (z) = (z − 1)(z + 1)(1 + 2z)(1 + z + z2)(−1 − 4z −
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6z2 − 2z3 + 4z4 + 8z5 + 4z6) = 0. Substituting all the roots of T (z) into Q(z) = 0 and
q(z) = 0, we find κ = −1, 0, 2, 72 ,

22
5 . □

The stability surfaces are shown by illustrative conical surfaces in Figure 1.

3. Experiment

According to Algorithm 1, the numerical parameter spaces are constructed in Figure
2. The systematic color palette in Table 1 is utilized to paint a value according to the
orbital period of the point z of J(z, κ). The tolerance of 10−4 after up to 1000 iterations
is assigned [? ].

Algorithm 1
(1) Set i = 1
(2) Choose a region B ∈ C and select a point v = (Re(v), Im(v)) in B
(3) For the v, find the free critical point.
(4) Compute the orbit of J(z, t) within the maximal iterative number.
(5) If the orbit converges to one cycle within the given error, then color the point v ac-
cording to the color palette in Table 1.
(6) Choose the next value in B
(7) Repeat steps (2)-(6) until desired result is obtained.
(8) Set i = i+ 1 and if i ≤ w, then repeat steps (2)-(8)
(9) If i = w, then stop the process.

Table 1: Color palette for a n-periodic orbit with n ∈ N ∪ {0}
n Cn

n = 1 C1 =


magenta, for fixed point ∞
cyan, for fixed point 0

yellow, for fixed point 1

red, for other strange fixed point ,

2 ≤ n ≤ 68 C2 = orange, C3 = light green, C4 = dark red, C5 = dark blue, C6 = dark green, C7 = dark yellow,
C8 = floral white, C9 = light pink, C10 = khaki, C11 = dark orange, C12 = turquoise, C13 = lavender,
C14 = thistle, C15 = plum, C16 = orchid, C17 = medium orchid, C18 = blue violet, C19 = dark orchid,

C20 = purple, C21 = power blue, C22 = sky blue, C23 = deep sky blue, C24 = dodger blue, C25 = royal blue,
C26 = medium spring green, C27 = spring green, C28 = medium sea green, C29 = sea green, C30 = forest green,

C31 = olive drab, C32 = bisque, C33 = moccasin, C34 = light salmon, C35 = salmon, C36 = light coral,
C37 = Indian red, C38 = brown, C39 = fire brick, C40 = peach puff, C41 = wheat, C42 = sandy brown,
C43 = tomato, C44 = orange red, C45 = chocolate, C46 = pink, C47 = pale violet red, C48 = deep pink,
C49 = violet red, C50 = gainsboro, C51 = light gray, C52 = dark gray, C53 = gray, C54 = charteruse,
C55 = electric indigo, C56 = electric lime, C57 = lime, C58 = silver, C59 = teal, C60 = pale turquoise,
C61 = sandy brown, C62 = honeydew, C63 = misty rose, C64 = lemon chiffon, C65 = lavender blush,

C66 = gold, C67 = crimson, C68 = tan.

n = 0∗ or n > 69 Cn = black.

∗: n = 0 : the orbit is non-periodic but bounded.

Theorem 3. Let ψ : C2 → C be defined by ψ(κ, z) = l0(z) + l1(z)κ + l2(z)κ
2, where

li(z)(0 ≤ i ≤ 2) are complex polynomials with real coefficients. Suppose ψ(κ, z) = 0. Let z̄
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be a complex conjugate of z.
(1) κ(z̄) = κ(z).
(2) If z(κ) is a zero of ψ, then so is z̄(κ̄).

Proof. (1) Solving ψ(κ, z) = 0 for κ, we have

κ(z) =
−l1(z)±

√
l1(z)2 − 4l1(z)l2(z)

2l1(z)
. (8)

Since li(z), (0 ≤ i ≤ 2) are complex polynomials with real coefficients, we have li(z̄) =
li(z). From 8, we get

κ(z̄) =
−l1(z̄)±

√
l1(z̄)2 − 4l1(z̄)l2(z̄)

2l1(z̄)

=
−l1(z)±

√
l1(z)

2 − 4l1(z)l2(z)

2l1(z)
,

ψ(κ, z) = l0(z) + l1(z)κ̄+ l2(z)z̄
2 = 0.

Therefore κ(z) = κ(z̄).
(2) Let z(κ) be a zero of ψ(κ, z). Then

ψ(κ, z) =0 = ψ(κ, z)

=l0(z) + l1(z)κ+ l2(z)κ2

=l1(z) + l1(z)κ̄+ l2(z)κ̄
2

=l0(z̄) + l1(z̄)κ̄+ l2(z̄)κ̄
2

=ψ(κ̄, z̄),

implying z̄(κ̄) is a zero of ψ(κ, z). □

Let P = {η ∈ C : a critical orbit of z converges to a number wp ∈ C}. It is called the
parameter space. There are finite periods in the orbit if the number wp is a finite constant.
Otherwise, the orbit is not periodic however it is bounded or goes to infinity.

Theorem 4. Let z(κ) be a free critical point of J(z, κ). Then the parameter space is
symmetric with respect to its horizontal axis.

Proof. Let z(κ) is a root of ψ(κ, z). Then z̄(κ̄) is a root of Q(z) at κ̄. From conjugated
map J(z, κ), we obtain

|J(z, κ)| =|J(z(κ), κ)| = |J(z(κ), κ)|
=|J(z(κ), κ̄)| = |J(z̄(κ̄), κ̄)|.
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Then the parameter space with J(z, κ) is symmetric with respect to its horizontal axis.
□

The parameter spaces P are illustrated in Figures 2. A point ϵ ∈ P is painted using
the color palette shown in Table 1. In terms of numerical phenomena, every point of the
parameter space P whose color is none of cyan(root z = A), magenta(root z = B), red or
yellow is not a better choice of t. The complicated patterns are found and for n ∈ N−{1},
n-periodic orbit is budding at period-1 component and 4-periodic component is budding
at period-2 component.

4. Conclusion

We have investigated the complex dynamical analysis on the Riemann sphere by draw-
ing the parameter spaces associated with the free critical points for the uniparametric
family of sixth-order multiple-root finders. Such research from a viewpoint of complex
dynamics may limit us from treating the real dynamical phenomenon for real nonlinear
equations. However, this research for investigating the relevant complex dynamics lies
is finding the dynamical behavior of a family of iterative schemes via Möbius conjugacy
map by showing the parameter spaces. As the next work, we visualize different types of
higher order numerical methods by improving the current work. In addition, we draw
the convergent region and the basins of attraction of the developed multiple-root finder in
more detail.
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Figure 2: Parameter spaces .
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