A Novel Numerical Scheme for Fractional Bernoulli Equations and the Rössler Model: A Comparative Analysis using Atangana-Baleanu Caputo Fractional Derivative
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i1.5043Keywords:
Numerical solution, the Atangana-Baleanu , fractional derivative , Initial value problems, ChaosAbstract
This study aims to use a novel scheme for the Atangana-Baleanu Caputo fractional derivative (ABC-FD) to solve the fractional Bernoulli equation and the fractional R ̈ossler model. Furthermore, the suggested technique is compared to Runge-Kutta Fourth Order (RK4). The proposed method is efficacious and generates solutions that are indistinguishable from the approx-
imate solutions generated by the RK4 method. Therefore, we can adapt the approach to various systems and develop results that are more accurate. On top of that, the new technique (ABC-FD) can identify chaotic situations. Consequently, this approach can be used to enhance the performance of other systems. In the future, this technique can be employed to determine the numerical solution for a multitude of models applicable in the fields of science and engineering.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.