A Spectral Collocation Method for Solving Caputo-Liouville Fractional Order Fredholm Integro-differential Equations
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i1.5049Keywords:
fractional, Caputo type, fractional derivative, MSC 2010: 65N20; 41A30.Abstract
In this paper, a numerical method for solving the fractional order Fredholm integro-differential equations via the Caputo-Liouville derivative is presented. The method uses the well-known shifted Chebyshev expansion and a truncated series to represent the unknown function. It also incorporates numerical integration techniques like the Trapezoidal, Simpson’s 1/3, and Simpson’s 8/3 methods. The paper also provides an approximation for the derivative of an integer. The procedure converts the provided problem into a system of algebraic equations using shifted Chebyshev coefficients and collocation points. The coefficients are found by solving this system using well-known techniques like Newton’s method. Numerical results are presented graphycally to illustrate the applicability, efficacy, and accuracy of the approach presented in this work. All calculations in this study were performed using the MATHEMATICA software program.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.