Utilization of the Modified Adomian Decomposition Method on the Bagley-Torvik Equation Amidst Dirichlet Boundary Conditions
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i1.5050Keywords:
Fractional calculus; Bagley-Torvik equation; Dirichlet boundary condition; Modified Adomian decomposition method; Boundary-value probleFractional Calculus; Modified Adomian decomposition method; Boundary value problem.Abstract
The Bagley-Torvik equation is an imperative differential equation that considerably arises in various branches of mathematical physics and mechanics. However, very few methods exist for the treatment of the model analytically; in fact, researchers frequently shop for semi-analytical and numerical methods in their studies. Therefore, the main goal of this research is to find the
exact analytical solution for the fractional Bagley-Torvik equation fitted with Dirichlet boundary data, as well as a system of fractional Bagley-Torvik equations. Thus, this research aims to show that the modified Adomian decomposition method (MADM) via the proposed two algorithms is a very effective method for treating a class of Bagley-Torvik equations endowed with Dirichlet
boundary data. Certainly, MADM is a very powerful approach for solving dissimilar functional equations without the need for either linearization, discretization, perturbation, or even unnecessary restraining postulations. Additionally, the method reveals exact analytical solutions whenever obtainable or closed-form series solutions whenever exact solutions are not feasible. Lastly, some illustrative test problems of the governing model are examined to demonstrate the superiority of the proposed algorithms.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.