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Abstract. The Bagley-Torvik equation is an imperative differential equation that considerably
arises in various branches of mathematical physics and mechanics. However, very few methods exist
for the treatment of the model analytically; in fact, researchers frequently shop for semi-analytical
and numerical methods in their studies. Therefore, the main goal of this research is to find the
exact analytical solution for the fractional Bagley-Torvik equation fitted with Dirichlet boundary
data, as well as a system of fractional Bagley-Torvik equations. Thus, this research aims to show
that the modified Adomian decomposition method (MADM) via the proposed two algorithms is
a very effective method for treating a class of Bagley-Torvik equations endowed with Dirichlet
boundary data. Certainly, MADM is a very powerful approach for solving dissimilar functional
equations without the need for either linearization, discretization, perturbation, or even unneces-
sary restraining postulations. Additionally, the method reveals exact analytical solutions whenever
obtainable or closed-form series solutions whenever exact solutions are not feasible. Lastly, some
illustrative test problems of the governing model are examined to demonstrate the superiority of
the proposed algorithms.
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1. Introduction

Fractional calculus is an aged area of research that recently reemerged more strongly
with burning applications that cuts across all aspects of life. Indeed, the area started
off by the ignition put forward by Leibniz (1695) and Euler (1730) [28, 30], and since
then keeps propelling to date. Notably, various real-life models are discovered to be
perfectly captured through the application of fractional differential equations (FDEs).
These FDEs have, in recent times gained considerable relevance in modeling different
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emerging problems arising in, for instance, electrical networks, electromagnetic theory,
fractals theory, viscoelasticity, control theory, material science, chemistry, potential theory,
fluid flow, biology, and statistics to mention but a few [5, 6, 10, 11, 24, 26, 27, 33, 34, 39, 41].
In light of this, different researchers have in the past and recent times proposed a variety of
methods, including analytical, semi-analytical, and computational to deal with FDEs. In
this regard, the present paper shops for an elegant semi-analytical method that is founded
on the utilization of the famous Adomian decomposition method (ADM) [1, 3, 4, 15–
17, 32, 38, 47, 49].

On the other hand, the boundary-value problems (BVPs) featuring fractional-order
derivatives have - in recent years - fascinated or rather shaped the thoughts of various
theoreticians and experimentalists in diverse stems of applied and pure sciences. In par-
ticular, we make mention of the Bagley-Torvik equation, being an imperative differential
equation that arises in various branches of mathematical physics and mechanics [46]. This
equation is, however, used in modeling various processes, including viscoelasticity, the sub-
mergence of solid structures in fluids, and the interaction of solid media with fluids among
others; for more on the uniqueness and existence results of the model when prescribed
with Dirichlet boundary data, an interested reader can consult [8, 25] and the references
therewith. Moreover, as it is always thorny to tackle FDEs analytically, many mathemati-
cians have introduced several efficient computational schemes based on various concepts
to computationally treat the class of Bagley-Torvik equations. Here, we make mention of
such approaches that are applied on the Bagley-Torvik equation in recent years to com-
prise the quadratic spline solution [50], the cubic spline polynomials [51], the Chebyshev
wavelet method [35], the shifted Legendre polynomials [45], the Taylor’s method [40],
the exponential spline technique [7], the Chelyshkov-Tau approach [20], the Chebyshev
collocation method [44], the quintic B-spline polynomial [23], the exponential spline ap-
proximation [21], the Green’s function iterative approach [22] and the shifted Chebyshev
operational matrix [29] to review but just a few; yet, read [14] for a mesmerizing study on
the Bagley-Torvik equation with the aid of the differential transform approach.

However, we, in the current paper aim to make use of the modified Adomian decom-
position method (MADM) [2, 9, 12, 36, 37, 42, 48] by proposing two different algorithms
to treat the Bagley-Torvik equation with Dirichlet boundary condition. MADM is a semi-
analytical approach that was improved upon the classical ADM [3]-[38] to easily reveal
exact analytical solutions whenever obtainable or closed-form series solutions whenever
exact solutions are not feasible. In fact, the approach is very powerful in solving dis-
similar functional equations without the need for either of linearization, discretization,
perturbation, or even unnecessary restraining postulations. Besides, the method has been
successfully used in the literature to solve various real-life models. In addition, we orga-
nize the paper in the following pattern: Section 2 gives certain fundamental definitions of
features with regard to fractional calculus, Section 3 gives the procedures of the devised
MADM algorithms on BVP for the Bagley-Torvik equation, while Section 4 demonstrates
the applicability of the devised algorithms, and Section 5 provides some concluding points.
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2. Fractional calculus

The current section introduces certain fundamental definitions and features for frac-
tional calculus, consisting mainly of the fractional derivatives and fractional integrals that
were put forward based on the Riemann-Liouville fractional (RLF) and the Caputo frac-
tional (CF) integrals/derivatives. For more on some basics related to this work; an inter-
ested reader can further read the famous book by Kilbas et al. [13].

2.1. Preliminaries

Here, we review some definitions of the fractional-order derivatives and integrals based
on the definitions put forward by Riemann-Liouville and Caputo, respectively. Certainly,
we will be considering the set χ = [a, b] ∈ R, such that a < b, a finite closed interval on R,
the set of real numbers.

Definition 1. (RLF integrals): The RLF right-sided Iαb−y and left-sided Iαa+y integrals
of order α ∈ R are respectively defined as follows

(Iαb−y)(x) :=
1

Γ(α)

∫ b

x

y(t)

(t− x)−α+1
dt, (x < b; α > 0),

and

(Iαa+y)(x) :=
1

Γ(α)

∫ x

a

y(t)

(x− t)−α+1
dt, (x > a; α > 0).

Definition 2. (RLF derivatives): The RLF right-sided Dα
b−y and left-sided Dα

a+y
derivatives of order α ∈ R are respectively defined as follows

Dα
b−y(x) :=

−dn

dxn
(In−α

b− y)(x),

:=
1

Γ(n− α)

−dn

dxn

∫ b

x

y(t)

(t− x)α+1−n
dt, (x > b; α ≥ 0; n = [α] + 1),

and

Dα
a+y(x) :=

dn

dxn
(In−α

a+
y)(x),

:=
1

Γ(n− α)

dn

dxn

∫ x

a

y(t)

(x− t)α+1−n
dt, (x > a; α ≥ 0; n = [α] + 1),

with [α] representing the integer part of the fractional-order α.

Definition 3. (CF derivatives): The CF right-sided cDα
b−y(x) and left-sided cDα

a+y(x)
derivatives of order α ∈ R+ on [a, b] are respectively defined via the RLF derivatives as
follows

cDα
b−y(x) :=

(
Dα

b−

[
y(t)−

n−1∑
k=0

y(k)(b)

k!
(b− t)k

])
(x), (1)
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and

cDα
a+y(x) :=

(
Dα

a+

[
y(t)−

n−1∑
k=0

y(k)(a)

k!
(t− a)k

])
(x), (2)

with n = [α] + 1, when α /∈ N, and n = α, for α ∈ N; with N denoting the set of positive
whole numbers.

Note that, as a peculiar case, when 0 < α < 1, the formulae given in (2) and (1) could
be re-expressed as follows

cDα
b−y(x) = (Dα

b− [y(t)− y(b)])(x),

and
cDα

a+y(x) = (Dα
a+ [y(t)− y(a)])(x).

2.2. Some useful properties

This subsection recalls some useful properties of the aforementioned RLF integrals/derivatives
and CF derivatives that will be greatly utilized in the course of the governing model.

Lemma 1. Assume α > 0, and further assume n = [α] + 1, when α /∈ N, and n = α,
when α ∈ N. Then, if y(x) ∈ Cn[a, b] or y(x) ∈ ACn[a, b], we accordingly have as follows

(Iαb−
cDα

b−y)(x) = y(x)−
n−1∑
k=0

(−)ky(k)(b)

k!
(b− x)k, (3)

and

(Iαa+
cDα

a+y)(x) = y(x)−
n−1∑
k=0

y(k)(a)

k!
(x− a)k. (4)

Consequently, when 0 < α ≦ 1 and y(x) ∈ C[a, b] or y(x) ∈ AC[a, b], the above results
respectively reduce to

(Iαb−
cDα

b−y)(x) = y(x)− y(b),

and
(Iαa+

cDα
a+y)(x) = y(x)− y(a).

Lemma 2. The following results for the fractional integral/derivative hold [45]

(i)

Iα[c] =
cxα

Γ(α+ 1)
, if c is constant, (5)

(ii)

Dαxn =
Γ(n+ 1)xn−α

Γ(n+ 1− α)
. (6)

(iii)

Iα[xn] =
Γ(n+ 1)xα+n

Γ(α+ n+ 1)
, (7)
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3. Treatment of Bagley-Torvik BVPs via MADM

The current section mainly makes use of MADM [2, 9, 12, 36, 37, 42, 48] to acquire the
exact analytical solution of the Bagley-Torvik BVP where possible; moreover, when the
acquisition of such an exact analytical solution is not feasible, a closed-form series solution
of the governing model will be acquired. In fact, we will be making consideration to the
BVP of the nonhomogeneous Bagley-Torvik equation endowed with Dirichlet boundary
conditions as follows [51]-[29]

D2y(x) +D3/2y(x) + y(x) = g(x), a < x < b, a, b ∈ R+,

y(a) = λ1, y(b) = λ2,

(8)

with g(x) denoting the nonhomogeneous/source term, λ1 and λ2 are constants; while
the function y(x) is the solution that we intend to determine. Certainly, the differential
equation in (8) is a fractional-order differential equation defined in CF derivative sense with
the highest integer-order of 2, and then followed by the CF-order of 3/2. In addition, this
fractional-order model arises in many physical processes, and further has vast relevance
in the study of fluid flows and viscoelastic materials [14], among others; more so, the
highest-order of the equation remains 2, the integer-order, then follows by the fractional-
order derivative of 3/2.

Further, the Bagley-Torvik equation expressed above can equally be expressed in an
operator notation upon making use of the differential operator notation D as follows

Ly = D2y = g(x)−D3/2y(x)− y(x), (9)

where L = D2 = d2

dx2 .
Furthermore, to determine the explicit exact analytical solution of the Bagley-Torvik

BVP expressed in (8) - using the version expressed in (9) through the differential operator
- the MADM [36]-[42] will be utilized. In fact, two algorithms based on MADM will be
proposed in this section for the governing model in what follows.

3.1. Algorithm 1

The first algorithm can be summed up in the following bulleted lists:

• Applying the inverse operator

L−1(.) =

∫ x

a

∫ x

a
(.)dxdx,

on (9), one gets

y(x) = y(a) + xy′(a) + L−1[g(x)]− L−1[D3/2y(x)]− L−1[y(x)]. (10)

Remarkably, we will further put y′(a) = c1; because we do not have the value of
this condition at the present, thereafter, the prescribed boundary data will help in
getting a hold of the real value of c1.
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• Application of MADM requires that the term

−pL−1
[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]

(11)

should be added to (10), with p as a synthetic parameter, and ai, i ≥ 0 are obscure
coefficients. Moreover, recall that the classical ADM [3]-[38] expresses the solution
function y(x) as y(x) =

∑∞
n=0 yn(x). Consequently, one gets

∑∞
n=0 yn(x) = λ1 + c1x− pL−1

[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]
+ L−1[g(x)]

− L−1
[
D3/2

∞∑
n=0

yn(x)
]
− L−1

[ ∞∑
n=0

yn(x)
]
.

(12)

• As a result, one may deduce the resulting recursive scheme from (12) as follows

y0(x) = λ1 + c1x+ L−1
[ ∞∑
n=0

anx
n
]
,

y1(x) = L−1[g(x)]− pL−1
[ ∞∑
n=0

anx
n
]
− L−1[D3/2y0(x)]− L−1[y0(x)],

...

yn+1(x) = −L−1[D3/2yn(x)]− L−1[yn(x)], n ⩾ 0.

(13)

• Computation of the coefficients ai, for i ≥ 0 by taking y1 = 0 and subsequently
fixing p = 1 reveals the solution of (8) in form y(x) = y0(x).

• Lastly, substituting the values of ai into y0(x), and further upon utilizing the second
boundary condition y(1) = λ2, the constant c1 is thus revealed.

3.2. Algorithm 2

Algorithm 2 is equally based on MADM, which possesses the following steps:

• We begin by implementing the inverse operator L−1(.) that takes following repre-
sentation [19, 31]

L−1(.) =

∫ x

a
dx′

∫ x′′

a
(.)dx′′ − x− a

b− a

∫ b

a
dx

∫ x′′

a
(.)dx′′, (14)

on (9), which reveals

y(x)− y(a)− xy(b) + xy(a) = L−1[g(x)]− L−1[D3/2y(x)]− L−1[y(x)]. (15)
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• MADM requires the addition of the expression given in (11) to (15) to yield the
following equation

∑∞
n=0 yn(x) = λ1 + λ2x− λ1x− pL−1

[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]
+ L−1[g(x)]

− L−1
[
D3/2

∞∑
n=0

yn(x)
]
− L−1

[ ∞∑
n=0

yn(x)
]
.

(16)

• Then, the formal recursive relation of the governing model is thus determined in this
regard as follows

y0(x) = λ1 + (λ2 − λ1)x+ L−1
[ ∞∑
n=0

anx
n
]
,

y1(x) = L−1[g(x)]− pL−1
[ ∞∑
n=0

anx
n
]
− L−1[D3/2y0(x)]− L−1[y0(x)],

...

yn+1(x) = −L−1[D3/2yn(x)]− L−1[yn(x)], n ⩾ 0.

(17)

Therefore, the values of the coefficients ai, for i ≥ 0 are then calculated by taking
y1 = 0 and setting p = 1. Moreover, these values are then substituted into y0(x) to
obtain y(x) = y0(x).

4. Applications

This section applies the proposed MADM on several test models, featuring various
forms of BVP of the Bagley-Torvik equation. Precisely, the proposed MADM through
the devised algorithms 1 and 2 will be applied to the governing model and its variant,
including the coupled system of the fractional differential equation, which emanates from
the Bagley-Torvik equation. Moreover, the test models of interest will be considered from
the open literature in order to draw a firm conclusion with well-known exact solutions.

Example 1. Consider the BVP for the nonhomogeneous Bagley-Torvik equation as follows
[43]

D2y(x) +D3/2y(x) + y(x) = x3 + 5x+
8√
π
x3/2, y(0) = 0, y(1) = 0. (18)

The exact analytical solution of the above BVP is thus found to be y(x) = x3 − x.
Algorithm 1:

Write (18) in an operator form as follows

Ly = D2y = x3 + 5x+
8√
π
x3/2 −D3/2y(x)− y(x). (19)
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Here, we define L−1(.) =
∫ x
0

∫ x
0 (.)dxdx to be the inverse operator. Therefore, applying

L−1 on both sides of (19) such that y′(0) = c1 gives

y(x) = c1x− L−1[D3/2y(x)]− L−1[y(x)] + L−1[x3 + 5x+
8√
π
x3/2].

Then, on using MADM as explained in the procedure, we write

∞∑
n=0

yn(x) = c1x− pL−1
[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]
− L−1

[
D3/2

∞∑
n=0

yn(x)
]

− L−1
[ ∞∑
n=0

yn(x)
]
+ L−1[x3 + 5x+

8√
π
x3/2],

thereby taking
y0(x) = c1x+ L−1[a0 + a1x+ a2x

2 + ...], (20)

and

y1(x) = −pL−1[a0+a1x+a2x
2+...]+L−1[x3+5x+

8√
π
x3/2]−L−1[D3/2y0(x)]−L−1[y0(x)].

(21)
Computing the values of y0(x) and y1(x) from (20) and (21), respectively by using L−1

and (6), one gets

y0(x) = c1x+
1

2
a0x

2 +
1

6
a1x

3 +
1

12
a2x

4 + ...

y1(x) = −p[
1

2
a0x

2 +
1

6
a1x

3 +
1

12
a2x

4 + ...] +
1

20
x5 +

5

6
x3 +

32

35
√
π
x7/2 − 4c

3
√
π
x3/2

− 8a0
15
√
π
x5/2 − 16a1

105
√
π
x7/2 − 64a2

945
√
π
x9/2 − c

6
x3 − a0

24
x4 − a1

120
x5 − a2

360
x6 + ....

Now, put y1(x) = 0 and collecting the like terms, we have

y1(x) = −p
1

2
a0x

2 + [−p
1

6
a1 +

5

6
− c

6
]x3 + [−p

1

12
a2 −

a0
24

]x4 + ...

= 0.

Then, on considering p = 1 and equating the coefficients of xn from the both sides of the
above equation, one gains a0 = a2 = 0, and a1 = 5 − c1. Next, on substituting the values
of a0, a1 and a2 in y0(x), where yn(x) = 0, for n ⩾ 1, we obtain

y(x) = y0(x) = c1x+
1

6
(5− c1)x

3 + ...

Lastly, with the aid of the second boundary prescription, that is, y(1) = 0, we have c1 = −1,
which finally yields

y(x) = x3 − x,
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that exactly matches the exact analytical solution for (18).
Algorithm 2:

Applying the inverse operator (14) on the left-hand side of (19), one gets

L−1Ly(x) =

∫ x

0
dx′

∫ x′

0

d2y

dx2
dx′′ − x

∫ 1

0
dx

∫ x′

0

d2y

dx2
dx′′,

= y(x)− y(0)− xy(1) + xy(0),

= y(x).

So,

y(x) = L−1[x3 + 5x+
8√
π
x3/2]− L−1[D3/2y(x)]− L−1[y(x)].

Therefore, upon deploying the MADM procedure, we have

∞∑
n=0

yn(x) = L−1[x3 + 5x+
8√
π
x3/2]− pL−1

[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]

− L−1
[
D3/2

∞∑
n=0

yn(x)
]
− L−1

[ ∞∑
n=0

yn(x)
]
,

which leads to the recurrent scheme as follows

y0(x) = L−1
[ ∞∑
n=0

anx
n
]
,

and

y1(x) = L−1
[
x3 + 5x+

8√
π
x3/2

]
− pL−1

[ ∞∑
n=0

anx
n
]
− L−1[D3/2y0(x)]− L−1[y0(x)].

In fact, explicit expression for y0(x) is found to be

y0(x) =
a0
2
x2 +

a1
6
x3 +

a2
12

x4 − x
(a0
2

+
a1
6

+
a2
12

)
.

Also, on computing the component of y1(x) using the inverse operator (14), one explicitly
gets

y1(x) =
32

35
√
π
x7/2 +

1

20
x5 +

5

6
x3 −

(53
60

+
32

35
√
π

)
x− p

[a0
2
x2 +

a1
6
x3 +

a2
12

x4

− x
(a0
2

+
a1
6

+
a2
12

)]
− 1

945
√
π

[
64a2x

9/2 + 144a1x
7/2 + 504a0x

5/2 −
(
105a2

+ 210a1 + 630a0

)
x3/2

]
− 1

210
√
π

[82
9
a2 +

44

3
a1 + 28a0

]
x− a2

360
x6 − a1

120
x5
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− a0
24

x4 +
(a2
72

+
a1
36

+
a0
12

)
x3 −

(a2
90

+
7a1
360

+
a0
24

)
x.

More so, upon collecting the related terms of y1(x) from the above equation at p = 1, we
get

y1(x) = − 64a2
945

√
π
x9/2 +

( 32

35
√
π
− 16a1

105
√
π

)
x7/2 − 8a0

15
√
π
x5/2 +

1

945
√
π

(
105a2

+ 210a1 + 630a0

)
x3/2 − a2

360
x6 +

( 1

20
− a1

120

)
x5 −

(a2
12

+
a0
24

)
x4

+
(5
6
+

a2
72

− 5a1
36

+
a0
12

)
x3 − a0

2
x2 +

[13a2
180

+
53a1
360

+
11a0
24

− 1

210
√
π

(82a2
9

+
44a1
3

+ 28a0

)
− 32

35
√
π
+

53

60

]
x.

Indeed, on taking y1(x) = 0, and thereafter equating the coefficients of xn, we find a0 =
0, a1 = 6, and a2 = 0. Hence, substituting these values into y0(x), gives y(x) = y0(x) =
x3 − x, which matches the exact analytical solution of (18).

Example 2. Consider the BVP for the nonhomogeneous Bagley-Torvik equation [29]

D3/2y(x) + y(x) =
2x1/2

Γ(3/2)
+ x2 − x, y(0) = 0, y(1) = 0, (22)

which admits the exact analytical solution as follows y(x) = x2 − x.
To begin with, we write (22) in an operator form as follows

D3/2y(x) =
2x1/2

Γ(3/2)
+ x2 − x− y(x). (23)

Next, upon deploying the inverse operator I3/2 on both sides of (23) using the property
(4) on the left-hand side with y′(0) = c1, one gets

I3/2[D3/2y(x)] = I3/2
[ 2x1/2

Γ(3/2)
+ x2 − x

]
− I3/2[y(x)],

y(x)−
1∑

k=0

yk(0)
xk

Γ(k + 1)
= I3/2

[ 2x1/2

Γ(3/2)
+ x2 − x

]
− I3/2[y(x)],

y(x) = c1x+ I3/2
[ 2x1/2

Γ(3/2)
+ x2 − x

]
− I3/2[y(x)].

Using MADM and the properties mentioned in (5) and (7), we write

∞∑
n=0

yn(x) = c1x−pI3/2
[ ∞∑
n=0

anx
n
]
+I3/2

[ ∞∑
n=0

anx
n
]
+I3/2

[ 2x1/2

Γ(3/2)
+x2−x

]
−I3/2[yn(x)],
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upon which we iteratively consider

y0(x) = c1x+ I3/2
[ 2x1/2

Γ(3/2)
+ x2 − x

]
+ I3/2

[ ∞∑
n=0

anx
n
]
,

= c1x+ x2 +
32

105
√
π
x7/2 − 8

15
√
π
x5/2 +

4a0
3
√
π
x3/2 +

8a1
15
√
π
x5/2

+
32a2
105

√
π
x7/2 +

64a3
315

√
π
x9/2 + ...

and

y1(x) = −pI3/2
[ ∞∑
n=0

anx
n
]
− I3/2[y0(x)],

= −p
[ 4a0
3
√
π
x3/2 +

8a1
15
√
π
x5/2 +

32a2
105

√
π
x7/2 +

64a3
315

√
π
x9/2 + ...

]
− 8c1

15
√
π
x5/2

− 32

105
√
π
x7/2 − 1

60
x5 +

1

24
x4 − a0

6
x3 − a1

24
x4 − a2

60
x5 − 3a3

360
x6 + ...

Now, setting y1(x) = 0 with p = 1 and collecting the related terms while equating the
coefficients of xn in both sides of the above expression, one obtains

y1(x) = −a0
6
x3 +

( 1

24
− a1

24

)
x4 −

( 1

60
+

a2
60

)
x5 − 3a3

360
x6 + ...

= 0.

Hence, we acquire a0 = a3 = 0, a1 = 1, and a2 = −1, which when these values of
a0, a1, a2 and a3 are substituted in y0(x), where yn(x) = 0, for n ⩾ 1 reveals

y(x) = y0(x) = c1x+ x2 +
32

105
√
π
x7/2 − 8

15
√
π
x5/2 +

8

15
√
π
x5/2 − 32

105
√
π
x7/2 + ...

= c1x+ x2 + ...

Lastly, when cancelling the noise terms, alongside using the second boundary prescription
of y(1) = 0, one obtains c1 = −1, so that

y(x) = x2 − x,

which matches the exact analytical solution for (22).

Example 3. We make consideration to the BVP for the nonhomogeneous Bagley-Torvik
[40]

D2y(x) +D3/2y(x) + y(x) = x+ 1, y(0) = 1, y(1) = 2, (24)

that admits y(x) = x+ 1 as its exact analytical solution.
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Algorithm 1:
We re-write (24) using operator notation as follows

Ly(x) = x+ 1−D3/2y(x)− y(x). (25)

Applying inverse operator L−1(.) =
∫ x
0

∫ x
0 (.)dxdx on both sides of (25) such that y′(0) = c1

gives
y(x) = 1 + c1x− L−1[D3/2y(x)]− L−1[y(x)] + L−1[x+ 1].

Further, using the MADM procedure along with (6), we gain

∞∑
n=0

yn(x) = 1 + c1x− pL−1
[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]
− L−1

[
D3/2

∞∑
n=0

yn(x)
]

− L−1
[ ∞∑
n=0

yn(x)
]
+ L−1[x+ 1],

upon which the related iterates y0(x) and y1(x) are considered from the latter equation as
follows

y0(x) = 1 + c1x+ L−1
[ ∞∑
n=0

anx
n
]
,

= 1 + c1x+
1

2
a0x

2 +
1

6
a1x

3 +
1

12
a2x

4 + ...

and

y1(x) = L−1[1 + x]− pL−1
[ ∞∑
n=0

anx
n
]
− L−1

[
D3/2y0(x)

]
− L−1[y0(x)],

=
1

2
x2 +

1

6
x3 − p

[1
2
a0x

2 +
1

6
a1x

3 +
1

12
a2x

4 + ...
]
− 4c1

3
√
π
x3/2 − 8a0

15
√
π
x5/2,

− 16a1
105

√
π
x7/2 − 64a2

945
√
π
x9/2 − 1

2
x2 − c1

6
x3 − a0

24
x4 − a1

120
x5 − a2

360
x6 + ...

Next, collecting the like terms, and thereafter equating the coefficients of xn in both sides
of the above expression, where y1(x) = 0 with p = 1 gives

y1(x) =
1

6
x3 − 1

2
a0x

2 − 1

6
a1x

3 − 1

12
a2x

4 − 4c1
3
√
π
x3/2 − 8a0

15
√
π
x5/2

− 16a1
105

√
π
x7/2 − 64a2

945
√
π
x9/2 − c1

6
x3 − a0

24
x4 − a1

120
x5 − a2

360
x6 + ...

= 0.
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Therefore, we obtain a0 = 0, a1 = 1−c1, and a2 = 0. In addition, substituting these values
in y0(x), where yn(x) = 0, for n ⩾ 1 yields

y(x) = y0(x) = 1 + c1x+
1

6
(1− c)x3.

Moreover, on using the subsequent boundary condition y(1) = 2, one acquires c1 = 1, so
that

y(x) = x+ 1,

which is indeed the reported exact analytical solution for BVP (24).
Algorithm 2:

Here, we make use of the equation represented in an operator notation (25), and further
define L−1 as given in (14). Thus, implementing the inverse operator on equation (25)
reveals

y(x) = x+ 1 + L−1[x+ 1]− L−1[D3/2y(x)]− L−1[y(x)].

Using MADM and (6)

∞∑
n=0

yn(x) = x+ 1 + L−1[x+ 1]− pL−1
[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]

− L−1
[
D3/2

∞∑
n=0

yn(x)
]
− L−1

[ ∞∑
n=0

yn(x)
]
.

Now, let

y0(x) = x+ 1 + L−1
[ ∞∑
n=0

anx
n
]
,

and

y1(x) = L−1[x+ 1]− pL−1
[ ∞∑
n=0

anx
n
]
− L−1[D3/2y0(x)]− L−1[y0(x)],

then, we precisely compute the expressions for y0(x) and y1(x) via the inverse operator
(14) as follows

y0(x) = x+ 1 +
a0
2
x2 +

a1
6
x3 +

a2
12

x4 − x
(a0
2

+
a1
6

+
a2
12

)
,

and

y1(x) =
1

2
x2 +

1

6
x3 − 2

3
x− p

[a0
2
x2 +

a1
6
x3 +

a2
12

x4 − x
(a0
2

+
a1
6

+
a2
12

)]
− 1

945
√
π

[
504a0x

5/2 + 144a1x
7/2 + 64a2x

9/2 −
(
630a0 + 210a1

+ 105a2 − 1260
)
x3/2

]
− 1

210
√
π

[
28a0 +

44

3
a1 +

82

9
a2 − 280

]
x
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− a0
24

x4 − a1
120

x5 − a2
360

x6 +
(a0
12

+
a1
36

+
a2
72

− 1

6

)
x3 − 1

2
x2

−
(a0
24

+
7a1
360

+
a2
90

− 2

3

)
x.

In fact, the explicit expression for y1(x) will be found after collecting the like terms from
the equation at p = 1 as follows

y1(x) = − 64a2
945

√
π
x9/2 − 16a1

105
√
π
x7/2 − 8a0

15
√
π
x5/2 +

1

945
√
π

(
630a0 + 210a1 + 105a2

− 1260
)
x3/2 − a2

360
x6 − a1

120
x5 −

(a2
12

+
a0
24

)
x4 +

(a2
72

− 5a1
36

+
a0
12

)
x3 − a0

2
x2

+
[13a2
180

+
53a1
360

+
11a0
24

− 1

210
√
π

(82a2
9

+
44a1
3

+ 28a0 − 280
)]

x.

Finally, setting y1(x) = 0, and thereafter equating the coefficients of xn, we obtain a0 =
a1 = 0 = a2 = 0. We, therefore, obtain y(x) = y0(x) = x+1 as the aiming solution, which
is indeed the reported exact analytical solution for (24).

Example 4. We consider the BVP for the nonhomogeneous Bagley-Torvik equation as
follows [35]

D2y(x) +D3/2y(x) + y(x) = x2 + 2 + 4

√
x

π
, y(0) = 0, y(5) = 25, (26)

that admits y(x) = x2 as its exact analytical solution.
Algorithm 1:

Illustrating (26) via operator notation, one writes

Ly(x) = x2 + 2 + 4

√
x

π
−D3/2y(x)− y(x). (27)

Next, on enforcing the inverse operator L−1(.) =
∫ x
0

∫ x
0 (.)dxdx on both sides of (27) such

that y′(0) = c1, we get

y(x) = c1x− L−1[D3/2y(x)]− L−1[y(x)] + L−1
[
x2 + 2 + 4

√
x

π

]
.

Using MADM with (6), we further get

∞∑
n=0

yn(x) = c1x− pL−1
[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]
+ L−1

[
x2 + 2 + 4

√
x

π

]

− L−1
[
D3/2

∞∑
n=0

yn(x)
]
− L−1

[ ∞∑
n=0

yn(x)
]
,
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and thereafter take into account y0(x) and y1(x) as follows

y0(x) = c1x+ L−1
[ ∞∑
n=0

anx
n
]
,

= c1x+
1

2
a0x

2 +
1

6
a1x

3 +
1

12
a2x

4 + ...

and

y1(x) = −pL−1
[ ∞∑
n=0

anx
n
]
+ L−1

[
x2 + 2 + 4

√
x

π

]
− L−1

[
D3/2y0(x)

]
− L−1[y0(x)],

= −p
[1
2
a0x

2 +
1

6
a1x

3 +
1

12
a2x

4 + ...
]
+

1

12
x4 + x2 +

16

15
√
π
x5/2 − 4c1

3
√
π
x3/2

− 8a0
15
√
π
x5/2 − 16a1

105
√
π
x7/2 − 64a2

945
√
π
x9/2 − c1

6
x3 − a0

24
x4 − a1

120
x5 − a2

360
x6 + ...

More so, collecting the related terms, and subsequently the equating coefficients of xn in
both sides of the above expression, where y1(x) = 0 with p = 1, one gets

y1(x) =
(
− 1

2
a0 + 1

)
x2 −

(1
6
a1 +

c1
6

)
x3 +

( 1

12
− 1

12
a2 −

a0
24

)
x4

+
16

15
√
π
x5/2 − 4c1

3
√
π
x3/2 − 8a0

15
√
π
x5/2 − 16a1

105
√
π
x7/2 − 64a2

945
√
π
x9/2 + ...

= 0.

Therefore, we get a0 = 2, a1 = −c1, and a2 = 0. More so, putting these values in y0(x),
where yn(x) = 0, for n ⩾ 1, we get

y(x) = y0(x) = c1x+ x2 − 1

6
c1x

3.

Finally, deploying the second boundary condition y(5) = 25, we get c1 = 0, which leads to
the acquisition of y(x) = x2, as the reported exact analytical solution.

Algorithm 2:
As represented in (27), we define the inverse operator L−1 in (14). Further, we deploy

L−1(.) =
∫ x
0 dx′

∫ x′′

0 (.)dx′′ − x
5

∫ 5
0 dx

∫ x′′

0 (.)dx′′, on both sides of (27) to get

y(x) = 5x+ L−1
[
x2 + 2 + 4

√
x

π

]
− L−1[D3/2y(x)]− L−1[y(x)]

Using MADM and (6)

∞∑
n=0

yn(x) = 5x+ L−1
[
x2 + 2 + 4

√
x

π

]
− pL−1

[ ∞∑
n=0

anx
n
]
+ L−1

[ ∞∑
n=0

anx
n
]
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− L−1
[
D3/2

∞∑
n=0

yn(x)
]
− L−1

[ ∞∑
n=0

yn(x)
]
.

In addition, the latter equation further results in

y0(x) = 5x+ L−1
[ ∞∑
n=0

anx
n
]
,

and

y1(x) = L−1
[
x2 + 2 + 4

√
x

π

]
− pL−1

[ ∞∑
n=0

anx
n
]
− L−1[D3/2y0(x)]− L−1[y0(x)],

then, evaluating y0(x) using the inverse operator (14) yields

y0(x) = 5x+
a0
2
x2 +

a1
6
x3 +

a2
12

x4 +
a3
20

x5 − x
(5a0

2
+

25a1
6

+
125a2
12

+
125a3
4

)
,

while y1(x) is found by collecting out the like terms by using the inverse operator (14) and
setting p = 1 as follows

y1(x) = − a3
840

x7 − a2
360

x6 −
( a1
120

+
a3
20

)
x5 +

( 1

12
− a2

12
− a0

24

)
x4

+
(125a3

24
+

125a2
72

− 19a1
36

+
5a0
12

− 25

6

)
x3 +

(
1− a0

2

)
x2 −

[185
12

+
80
√
5

15
√
π

+
1125a3
14

+
875a2
36

+
575a1
72

+
65a0
24

− 652

6
+

1

3150
√
π

(
2100

√
5a0 + 5500

√
5a1

+
51250

√
5

3
a2 +

643750
√
5

11
a3 − 105000

√
5
)]

x− 128a3
3465

√
π
x11/2 − 64a2

945
√
π
x9/2

− 16a1
105

√
π
x7/2 +

( 16

15
√
π
− 8a0

15
√
π

)
x5/2 +

1

10395
√
π

(
433125a3 + 144375a2

+ 57750a1 + 34650a0 − 346500
)
x3/2.

Moreover, setting y1(x) = 0 while equating the coefficients of xn, we acquire a0 = 2, and
a1 = a2 = a3 = 0. Hence, y(x) = y0(x) = x2, which happens to be the reported exact
analytical solution of (26).

Example 5. Consider the BVP (24) after being transformed into a coupled system via
[18] as follows {

D1.5y1 = y2, y1(0) = 1, y1(1) = 2,

D0.5y2 = −y2 − y1 + 1 + x, y2(0) = 0.
(28)

Here, we apply the inverse operator on both sides of the equations in (28) to get{
I1.5[D1.5y1] = I1.5[y2],

I0.5[D0.5y2] = I0.5[−y2 − y1 + 1 + x].
(29)
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More so, applying the property of the fractional derivative mentioned in (4) on the left-
hand sides of the latter equations with y′1(0) = c1, we get{

y1(x) = 1 + c1x+ I1.5[y2],

y2(x) = −I0.5[y2]− I0.5[y1] + I0.5[1 + x].

Next, upon using MADM, one gets

∞∑
n=0

y1,n(x) = 1 + c1x+ I1.5[
∞∑
n=0

y2,n]− pI1.5[
∞∑
n=0

anx
n] + I1.5[

∞∑
n=0

anx
n],

∞∑
n=0

y2,n(x) = −I0.5[

∞∑
n=0

y2,n]− I0.5[

∞∑
n=0

y1,n] + I0.5[1 + x]− pI0.5[

∞∑
n=0

anx
n]

+ I0.5[
∞∑
n=0

anx
n],

that expands to 

y1,0(x) = 1 + c1x+ I1.5[
∑∞

n=0 anx
n],

y1,1(x) = −pI1.5[
∑∞

n=0 anx
n] + I1.5[y2,0],

y2,0(x) = I0.5[1 + x] + I0.5[
∑∞

n=0 anx
n],

y2,1(x) = −pI0.5[
∑∞

n=0 anx
n]− I0.5[y2,0]− I0.5[y1].

(30)

Additionally, upon deploying (7), one can iteratively solve the equations in (30) concur-
rently as follows

y1,0(x) = 1 + c1x+
4a0
3
√
π
x3/2 +

8a1
15
√
π
x5/2 +

32a2
105

√
π
x7/2 +

64a3
315

√
π
x9/2 + ...

y1,1(x) = −p
[ 4a0
3
√
π
x3/2 +

8a1
15
√
π
x5/2 +

32a2
105

√
π
x7/2 +

64a3
315

√
π
x9/2 + ...

]
+

1

2
x2

+
1

6
x3 +

a0
2
x2 +

a1
6
x3 +

a2
12

x4 +
a3
20

x5 + ...

and

y2,0(x) =
2√
π
x1/2 +

4

3
√
π
x3/2 +

2a0√
π
x1/2 +

4a1
3
√
π
x3/2 +

16a2
15
√
π
x5/2 +

32a3
35
√
π
x7/2 + ...

y2,1(x) = −p
[2a0√

π
x1/2 +

4a1
3
√
π
x3/2 +

16a2
15
√
π
x5/2 +

32a3
35
√
π
x7/2 + ...

]
− x− 1

2
x2

− a0x− a1
2
x2 − a2

3
x3 − a3

12
x4 − I0.5[y1].
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Now, to compute the expression for the term I0.5[y1] in the last equation, we have to
find y1(x) first. So, let y1,1(x) = 0 with p = 1, and equating coefficients of xn/2, we get
a0 = a1 = a2 = a3 = 0. Then,

y1(x) = y1,0(x) = 1 + c1x = 1 + x, (31)

after using the second boundary condition y1(1) = 2. Further, we get

I0.5[y1] = I0.5[1 + x] =
2√
π
x1/2 +

4

3
√
π
x3/2.

Next, substituting I0.5[y1] in y2,1(x), and further letting y2,1(x) = 0 with p = 1, the re-
sulting coefficients of xn/2 are equated to obtain a0 = a1 = −1, and a2 = a3 = 0. Hence,
substituting these values in y2,0(x), one gets

y2(x) = y2,0(x) =
2√
π
x1/2 +

4

3
√
π
x3/2 − 2√

π
x1/2 − 4

3
√
π
x3/2 + 0,

= 0.

(32)

We, therefore, conclude from (31) and (32) that the coupled system expressed in (28)
admits the following solution

y1(x) = 1 + x,

y2(x) = 0,
(33)

which is indeed the exact analytical solution for (24).

5. Conclusion

In conclusion, we obtained the exact analytical solution of the fractional Bagley-Torvik
equation, as well as a system of fractional Bagley-Torvik equations fitted with Dirichlet
boundary data. we introduced two algorithms based on MADM to semi-analytically treat
the class of fractional Bagley-Torvik equation endowed with Dirichlet boundary data. The
algorithms were founded by the inverse linear operator theorems and infused in MADM
to calculate only the first and second components y0 and y1; indeed, this is one of the
advantages of MADM over the classical ADM, which computes several components most
at times to arrive as the optimal solution. Further, to demonstrate the effectiveness and
application of the new algorithms, Maple software 2023 has been used for the computa-
tional simulation of different nonhomogeneous BVP for Bagley-Torvik equations, which
are indeed more complex than their homogeneous counterparts. Additionally, based on
the results obtained with regard to the examined examples, one can easily infer that
the devised algorithms are efficient and reliable methods for solving BVPs with Dirich-
let boundary conditions in particular, and in general, they can be extended to tackling
different types of BVPs, such as fractional PDEs and fractional integral IDEs.



REFERENCES 564

6. Declaration

• Authors’ contribution
The authors collectively worked on the manuscript, and they read and approved the
final draft.

• Availability of data and materials
Not applicable.

• Competing interests
The authors declare that they have no competing interests.

• Funding
There is no funding for this work.

References

[1] K Abbaoui and Y Cherruault. Convergence of adomian’s method applied to differen-
tial equations. Computers & Mathematics with Applications, 28(5):103–109, 1994.

[2] Aisha Abdullah Alderremy, Tarig M Elzaki, and Mourad Chamekh. Modified adomian
decomposition method to solve generalized emden–fowler systems for singular ivp.
Mathematical problems in Engineering, 2019:1–6, 2019.

[3] G Adomian and R Rach. Modified adomian polynomials. Mathematical and computer
modelling, 24(11):39–46, 1996.

[4] George Adomian. Solving frontier problems of physics: the decomposition method,
volume 60. Springer Science & Business Media, 2013.

[5] El-Mesiry AEM, El-Sayed AMA, and El-Saka HAA. Numerical methods for multi-
term fractional (arbitrary) orders differential equations. Applied Mathematics and
Computation, 160(3):683–699, 2005.

[6] El-Sayed Ahmed. Abstract differential equations of arbitrary (fractional) orders. Pro-
ceedings of Equadiff 9, pages 93–99, 1998.

[7] Ghazala Akram and Hira Tariq. An exponential spline technique for solving fractional
boundary value problem. Calcolo, 53:545–558, 2016.

[8] Qasem M Al-Mdallal, Muhammed I Syam, and MN Anwar. A collocation-shooting
method for solving fractional boundary value problems. Communications in Nonlinear
Science and Numerical Simulation, 15(12):3814–3822, 2010.

[9] Awad T Alabdala, Saleh S Redhwan, Tariq A Aljaaidi, et al. Existence and ap-
proximate solution for the fractional volterra fredholm integro-differential equation
involving ζ-hilfer fractional derivative. Nonlinear Functional Analysis and Applica-
tions, pages 989–1004, 2023.



REFERENCES 565

[10] Carpinteri Alberto and Mainardi Francesco. Fractals and fractional calculus in con-
tinuum mechanics, volume 378. Springer, 2014.

[11] El-Sayed AMA, El-Mesiry AEM, and El-Saka HAA. Numerical solution for multi-
term fractional (arbitrary) orders differential equations. Computational & Applied
Mathematics, 23:33–54, 2004.

[12] Hossein Aminikhah and Jafar Biazar. A new hpm for ordinary differential equa-
tions. Numerical Methods for Partial Differential Equations: An International Jour-
nal, 26(2):480–489, 2010.

[13] Kilbas Anatoli, Srivastava Hari M, and Trujillo Juan J. Theory and applications of
fractional differential equations, volume 204. elsevier, 2006.

[14] Geeta Arora and Pratiksha Pratiksha. Solution of the bagley torvik equation by
fractional dtm. In AIP conference proceedings, volume 1860. AIP Publishing, 2017.

[15] HO Bakodah, MA Banaja, BA Alrigi, A Ebaid, and R Rach. An efficient modification
of the decomposition method with a convergence parameter for solving korteweg de
vries equations. Journal of King Saud University-Science, 31(4):1424–1430, 2019.

[16] Y Cherruault, G Adomian, K Abbaoui, and R Rach. Further remarks on convergence
of decomposition method. International Journal of Bio-Medical Computing, 38(1):89–
93, 1995.

[17] Varsha Daftardar-Gejji and Azizollah Babakhani. Analysis of a system of frac-
tional differential equations. Journal of Mathematical Analysis and Applications,
293(2):511–522, 2004.

[18] Varsha Daftardar-Gejji and Hossein Jafari. Solving a multi-order fractional differen-
tial equation using adomian decomposition. Applied Mathematics and Computation,
189(1):541–548, 2007.

[19] Abdelhalim Ebaid. A new analytical and numerical treatment for singular two-point
boundary value problems via the adomian decomposition method. Journal of com-
putational and applied mathematics, 235(8):1914–1924, 2011.

[20] Mohamed El-Gamel, Mahmoud Abd-El-Hady, Magdy El-Azab, et al. Chelyshkov-tau
approach for solving bagley-torvik equation. Applied Mathematics, 8(12):1795, 2017.

[21] Homan Emadifar and Reza Jalilian. An exponential spline approximation for frac-
tional bagley–torvik equation. Boundary Value Problems, 2020:1–20, 2020.

[22] S Hadid, SA Khuri, and A Sayfy. A green’s function iterative approach for the
solution of a class of fractional bvps arising in physical models. International Journal
of Applied and Computational Mathematics, 6:1–13, 2020.



REFERENCES 566

[23] Faraidun K Hamasalh and Karzan Abdulrahman Hamzah. Quintic b-spline polyno-
mial for solving bagely-torvik fractional differential problems. 2020.

[24] Ahmad Hijaz, Akgül Ali, Khan Tufail A, Stanimirović Predrag S, and Chu Yu-Ming.
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