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Abstract. The present study investigates the relation between derivations and hyperideals on
ordered hyperrings with no zero divisors. Also, we identify some results for the ordered hyperrings
induced by the homomorphism of the ordered hyperrings by derivations. The present work explores
some aspects of derivations in ordered hyperrings. Also, we establish some results in connection
with homomorphisms and hyperideals. Furthermore, we describe prime hyperideals associated to
a derivation d on an ordered hyperring T and derive several results about homomorphisms and
derivations on ordered hyperrings.
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1. Introduction

Marty presented the hypergroup ideas in 1934 [1]. Krasner originally considered
hyperring, which is a development of ring, in [2].

The study of hyperideals have been made by Heidari and Davvaz in the context of
ordered semihypergroups in [3]. The study also demonstrated that the direct product of
ordered hyperstructures are ordered hyperstructures. Later on, Davvaz et al. [4] utilized
pseudoorders to construct strongly regular relations in ordered semihypergroups and ex-
amined the relationships between ordered hyperstructures and ordered structures. Also,
see [5, 6]. Al-Tahan and Davvaz [7] use the ordered hyperstructure to communicate with
biological inheritance and genetics to do research, and to access applications.
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Derivation in rings was first explored by Posner [8] and later on hyperrings by Asokku-
mar [9] and Kamali and Davvaz [10]. Derivation on ordered semihyperring was presented
by Rao et al. in [11]. Omidi and Davvaz considered ordered hyperring, which is a devel-
opment of ordered ring, in [12]. Also, see [13–16].

The present work explores some aspects of derivations in ordered hyperrings. Also, we
establish some results in connection with homomorphisms and hyperideals.

2. Preliminaries

We set that

OKH: the set of all ordered Krasner hyperrings (E,⊕,⊙,≤),

Der(E): the set of all derivations of E.

Definition 1. [2] (E,⊕,⊙) is a Krasner hyperring if:

(1) (E,⊕) is a canonical hypergroup;

(2) (E,⊙) is a semigroup and z ⊙ 0 = 0⊙ z = {0}, ∀z ∈ E;

(3) ⊙ is distributive with respect to the hyperaddition ⊕.

Definition 2. [12] Let (E,⊕,⊙) be a Krasner hyperring. (E,⊕,⊙,≤) ∈ OKH if

(1) (E,≤) is a partially ordered set;

(2) (l, l′) ∈≤⇒ l ⊕ t ⪯ l′ ⊕ t,∀l, l′, t ∈ E;

(3) (l, l′) ∈≤ and (0, t) ∈≤⇒ (l ⊙ t, l′ ⊙ t) ∈≤ and (t⊙ l, t⊙ l′) ∈≤.

Note that for every ∅ ≠ L,L′ ⊆ E,

L ⪯ L′ ⇔ ∀l ∈ L,∃l′ ∈ L′ such that (l, l′) ∈≤.

Definition 3. [12] Let (E,⊕,⊙,≤) and (E′,⊕′,⊙′,≤′) ∈ OKH. A function Λ : E → E′

is a homomorphism if ∀l, l′ ∈ E,

(1) Λ(l ⊕ l′) ⊆ Λ(l)⊕′ Λ(l′);

(2) Λ(l ⊙ l′) = Λ(l)⊙′ Λ(l′);

(3) (l, l′) ∈≤⇒ (Λ(l),Λ(l′)) ∈≤′.

Definition 4. [3] Let (E,⊕,⊙,≤) ∈ OKH. ∅ ≠ X ⊆ E is a hyperideal of E if

(1) (X,⊕) is a canonical subhypergroup of (E,⊕);

(2) l ⊙ x, x⊙ l ∈ X,∀l ∈ E,∀x ∈ X;
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(3) (X] := {l ∈ E | l ≤ x, for some x ∈ X} ⊆ X.

Definition 5. [11] Let (E,⊕,⊙,≤) ∈ OKH. d ∈ Der(E) if for all l, l′ ∈ E,

(1) d(l ⊕ l′) ⊆ d(l)⊕ d(l′);

(2) d(l ⊙ l′) ∈ d(l)⊙ l′ ⊕ l ⊙ d(l′);

(3) (l, l′) ∈≤⇒ (d(l), d(l′)) ∈≤.

3. Main Results

Let (E,⊕,⊙,≤) ∈ OKH. Then, 0 ̸= z ∈ E is a zero divisor if

∃ 0 ̸= v ∈ E such that z ⊙ v = 0 = v ⊙ z.

Theorem 1. Let (E,⊕,⊙,≤) ∈ OKH with no zero divisors and 0 ̸= d ∈ Der(E). If Y
is a proper hyperideal of E, then d is nonzero on Y .

Proof. Let

d(m) = 0, ∀ 0 ̸= m ∈ Y .

As Y is a hyperideal of E, m⊙ g ∈ Y , ∀ g ∈ E. Thus,

d(m⊙ g) = 0.

So,
d(m⊙ g) ∈ d(m)⊙ g ⊕m⊙ d(g)

= 0⊙ g ⊕m⊙ d(g)

= 0⊕m⊙ d(g)

= m⊙ d(g).

Hence,

m⊙ d(g) = d(m⊙ g) = 0.

By hypothesis, E has no zero divisors. Thus,

d(g) = 0, ∀ g ∈ E

a contradiction. Therefore, d is nonzero on Y .

Theorem 2. Let (E,⊕,⊙,≤) ∈ OKH and

g ∈ g ⊕ g,∀g ∈ E.
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IdE(g) = g for any g ∈ E, is a homomorphism iff IdE ∈ Der(E).

Proof. Let IdE be a homomorphism and g, g′ ∈ E. Then,

IdE(g ⊙ g′) = IdE(g)⊙ IdE(g
′)

= g ⊙ g′

∈ (g ⊙ g′)⊕ (g ⊙ g′)

= IdE(g)⊙ g′ ⊕ g ⊙ IdE(g
′).

Hence, IdE ∈ Der(E).
Conversely, let g, g′ ∈ E. Then

IdE(g ⊙ g′) = g ⊙ g′ = IdE(g)⊙ IdE(g
′).

So, IdE is a homomorphism.

Theorem 3. Let (E,⊕,⊙,≤) ∈ OKH be commutative and and

g ∈ g ⊕ g,∀g ∈ E.

For a given t ∈ E, we set

dt(g) = t⊙ g, ∀g ∈ E.

Then dt ∈ Der(E).

Proof. Let g, g′ ∈ E. For a given t ∈ E, we have

dt(g ⊕ g′) = t⊙ (g ⊕ g′)

= t⊙ g ⊕ t⊙ g′

= dt(g)⊕ dt(g
′),

and
dt(g ⊙ g′) = t⊙ (g ⊙ g′)

∈ t⊙ (g ⊙ g′)⊕ t⊙ (g ⊙ g′)

= (t⊙ g)⊙ g′ ⊕ (t⊙ g)⊙ g′

= (t⊙ g)⊙ g′ ⊕ (g ⊙ t)⊙ g′

= (t⊙ g)⊙ g′ ⊕ g ⊙ (t⊙ g′)

= dt(g)⊙ g′ ⊕ g ⊙ dt(g
′).

Let g, g′ ∈ E and (g, g′) ∈≤. Then
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dt(g) = t⊙ g ≤ t⊙ g′ = dt(g
′)

by Definition 2, and hence dt ∈ Der(E).

Corollary 1. Let (E,⊕,⊙,≤) ∈ OKH be commutative and

g ∈ g ⊕ g,∀g ∈ E.

Then, the identity function IdE defined by IdE(g) = g for any g ∈ E, is a homomorphism.

Proof. We have

d1(g) = 1⊙ g = g = IdE(g).

By Theorem 3, IdE = d1 ∈ Der(E). Now, by Theorem 2, IdE is a homomorphism.

Corollary 2. Let (E,⊕,⊙,≤) ∈ OKH be commutative and

g ∈ g ⊕ g,∀g ∈ E.

If d = dt, where t ∈ E, satisfies the following condition

(g′, g) ∈≤ and d(g) = g ⇒ d(g′) = g′,

then

Fixd(E) = {x ∈ E | d(x) = x}

is a hyperideal of E.

Proof. By Theorem 3, d(g) = dt(g) = t⊙ g, for any g ∈ E. Let g, g′ ∈ Fixd(E). Then
d(g) = g and d(g′) = g′. We have

d(g ⊖ g′) = dt(g ⊖ g′)

= t⊙ (g ⊖ g′)

= t⊙ g ⊖ t⊙ g′

= dt(g)⊖ dt(g
′)

= d(g)⊖ d(g′)

= g ⊖ g′.

So, g ⊖ g′ ⊆ Fixd(E).
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Now, let g ∈ Fixd(E) and q ∈ E. Then,

d(g ⊙ q) = dt(g ⊙ q)

= t⊙ (g ⊙ q)

= (t⊙ g)⊙ q

= dt(g)⊙ q

= d(g)⊙ q

= g ⊙ q.

So, g ⊙ q ∈ Fixd(E).
Let g ∈ Fixd(E), q ∈ E and q ≤ g. Then,

d(q) = dt(q) ≤ dt(g) = d(g) = g.

By hypothesis, d(q) = q. So, q ∈ Fixd(E). Hence, Fixd(E) is a hyperideal of E.

Example 1. Let E = {0, 1, f, f ′} and

⊕ 0 1 f f ′

0 0 1 f f ′

1 1 {0, f} {1, f ′} f
f f {1, f ′} {0, f} 1
f ′ f ′ f 1 0

⊙ 0 1 f f ′

0 0 0 0 0
1 0 1 f f ′

f 0 f f 0
f ′ 0 f ′ 0 f ′

≤:= {(z, z) | z ∈ E} ∪ {(0, f), (f ′, 1)}.

Then (E,⊕,⊙,≤) ∈ OKH. We set

d(z) = df (z) =


0, z = 0, f ′

f, z = 1, f.

Then, d = df ∈ Der(E). Indeed:

df (0) = f ⊙ 0 = 0,
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df (1) = f ⊙ 1 = f ,

df (f) = f ⊙ f = f ,

df (f
′) = f ⊙ f ′ = 0.

Clearly, Fixd(E) = {0, f} is a hyperideal of E.

Theorem 4. Let (E,⊕,⊙,≤) ∈ OKH and d ∈ Der(E) with

d(g) = d(1)⊙ g; ∀g ∈ E.

If d is a homomorphism, then d is idempotent.

Proof. Let g ∈ E. We have

d2(g) = d(d(g))

= d(1⊙ d(g))

= d(1)⊙ (1⊙ d(g))

= (d(1)⊙ 1)⊙ d(g)

= d(1)⊙ d(g)

= d(1⊙ g)

= d(g).

Hence, d2 = d.

Example 2. In Example 1,

d(1⊙ 1) = d(1) = f = f ⊙ f = d(1)⊙ d(1),

d(1⊙ f) = d(f) = f = f ⊙ f = d(1)⊙ d(f),

d(1⊙ f ′) = d(f ′) = 0 = f ⊙ 0 = d(1)⊙ d(f ′),

d(f ⊙ f) = d(f) = f = f ⊙ f = d(f)⊙ d(f),

d(f ⊙ f ′) = d(0) = 0 = f ⊙ 0 = d(f)⊙ d(f ′).

Hence, d is a homomorphism of E. Also,

d(g) = d(1)⊙ g; ∀g ∈ E.
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Now, by Theorem 4, d is idempotent.

Definition 6. Let (E,⊕,⊙,≤) ∈ OKH and d ∈ Der(E) be a homomorphism. A proper
hyperideal W of E is said to be a prime hyperideal associated to d if

g ⊙ g′ ∈ W ⇒ g ∈ W or d(g′) ∈ W, ∀g, g′ ∈ E.

Theorem 5. Let (E,⊕,⊙,≤) ∈ OKH and d ∈ Der(E) be a homomorphism. Then Y is
a prime hyperideal of E associated to d iff for any hyperideals G and G′ of E, we have

G⊙G′ ⊆ Y ⇒ G ⊆ Y or d(G′) ⊆ Y .

Proof. (⇒): Let Y be a prime hyperideal of E associated to d, G⊙G′ ⊆ Y and G ⊈ Y ,
where G,G′ are hyperideals of E. As G ⊈ Y ,

∃g ∈ G such that g /∈ Y .

Take any g′ ∈ G′. Then,

g ⊙ g′ ∈ G⊙G′ ⊆ Y .

Since Y is a prime hyperideal associated to d and g /∈ Y , we get

d(g′) ∈ Y .

Hence, d(G′) ⊆ Y .
(⇐): Suppose that g ⊙ g′ ∈ Y for some g, g′ ∈ E. Then < g ⊙ g′ >⊆ Y . So,

< g > ⊙ < g′ >⊆< g ⊙ g′ >⊆ Y .

Hence, < g >⊆ Y or d(< g′ >) ⊆ Y . Thus, g ∈ Y or d(g′) ∈ Y . Therefore, Y is a prime
hyperideal associated to d.

Example 3. In Example 1, Y = {0, f} is a prime hyperideal associated to d.

Theorem 6. Let (E,⊕,⊙,≤) ∈ OKH and d ∈ Der(E) be a homomorphism. If W is a
prime hyperideal associated to d, then

√
W := {t ∈ E | ∃n ∈ N such that tn ∈ W}

is a prime hyperideal of E associated to d.

Proof. Let z, z′ ∈
√
W . By the proof of Lemma 3.19 in [17],

z ⊕ z′ ⊆
√
W and ⊖z ∈

√
W .

Also, for any t ∈ E, t⊙ z, z ⊙ t ∈
√
W .

Now, let q ∈ (
√
W ]. Then q ≤ z for some z ∈

√
W . As z ∈

√
W ,

∃n ∈ N such that zn ∈ W .
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Since q ≤ z, we get

qn ≤ zn ∈ W .

Thus, qn ∈ W . So, q ∈
√
W and hence (

√
W ] ⊆

√
W .

Let g ⊙ g′ ∈
√
W and g /∈

√
W for g, g′ ∈ E.

Claim: d(g′) ∈
√
W .

As g ⊙ g′ ∈
√
W ,

∃n ∈ N such that (g ⊙ g′)n ∈ W .

So, gn ⊙ g′n ∈ W . As W is a prime hyperideal associated to d and gn /∈ W , d(g′n) ∈ W .
Since d is a homomorphism of T , we obtain

(d(g′))n = d(g′n) ∈ W .

Thus, d(g′) ∈
√
W . So,

√
W is a prime hyperideal associated to d.

Let Ω be an index set and (Ti,⊕i,⊙i,≤i) ∈ OKH, for all i ∈ Ω. Then,∏
i∈Ω

Ti = {(ti)i∈Ω | ti ∈ Ti} ∈ OKH.

Indeed: for any (wi)i∈Ω, (w
′
i)i∈Ω ∈

∏
i∈Ω

Ti,

(i) (wi)i∈Ω ⊕ (w′
i)i∈Ω = {(ti)i∈Ω | ti ∈ wi ⊕i w

′
i};

(ii) (wi)i∈Ω ⊙ (w′
i)i∈Ω = (wi ⊙i w

′
i)i∈Ω;

(iii) (wi)i∈Ω ≤ (w′
i)i∈Ω ⇔ wi ≤i w

′
i, ∀i ∈ Ω.

Define the map πi :
∏
i∈Ω

Ti → Ti by πi((wi)i∈Ω) = wi, for each (wi)i∈Ω ∈
∏
i∈Ω

Ti and

i ∈ Ω and define the map ρi : Ti →
∏
i∈Ω

Ti by

(ρi(t))(j) =


t, if i = j

0j , otherwise

for each t ∈ Ti.

Theorem 7. Let Ω be an index set and (Ti,⊕i,⊙i,≤i) ∈ OKH, for all i ∈ Ω. If d ∈
Der(

∏
i∈Ω

Ti), then di = πidρi ∈ Der(Ti), for all i ∈ Ω.
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Proof. Let d ∈ Der(
∏
i∈Ω

Ti) and z, z′ ∈ Ti, for all i ∈ Ω. Then,

di(z ⊕i z
′) = πidρi(z ⊕i z

′)

= πid(ρi(z ⊕i z
′))

= πi(d(ρi(z)⊕i ρi(z
′)))

⊆ πi(d(ρi(z))⊕i d(ρi(z
′)))

= πidρi(z)⊕i πidρi(z
′)

= di(z)⊕i di(z
′),

and
di(z ⊙i z

′) = πidρi(z ⊙i z
′)

= πid(ρi(z ⊙i z
′))

= πi(d(ρi(z)⊙i ρi(z
′)))

∈ πi((d(ρi(z))⊙i ρi(z
′))⊕i (ρi(z)⊙i d(ρi(z

′)))

= (πidρi(z)⊙i πiρi(z
′))⊕i (πiρi(z)⊙i πidρi(z

′))

= (πidρi(z)⊙i z
′)⊕i (z ⊙i πidρi(z

′))

= (di(z)⊙i z
′)⊕i (z ⊙i di(z

′)).

Since d ∈ Der(
∏
i∈Ω

Ti), it follows that d is isotone. Also, since πi and ρi are isotone, we

get πidρi is isotone. Therefore, di ∈ Der(Ti), for all i ∈ Ω.

Let Ω be an index set, (Ti,⊕i,⊙i,≤i) ∈ OKH and di ∈ Der(Ti), for all i ∈ Ω. Define∏
i∈Ω

di :
∏
i∈Ω

Ti →
∏
i∈Ω

Ti by (
∏
i∈Ω

di)((wi)i∈Ω) = (di(wi))i∈Ω, for each (wi)i∈Ω ∈
∏
i∈Ω

Ti.

Corollary 3. Let Ω be an index set and (Ti,⊕i,⊙i,≤i) ∈ OKH, for all i ∈ Ω. If
d ∈ Der(

∏
i∈Ω

Ti), then d =
∏
i∈Ω

πidρi iff d ∈
∏
i∈Ω

Der(Ti).

Proof. (⇒): Let d ∈ Der(
∏
i∈Ω

Ti) and d =
∏
i∈Ω

πidρi. By Theorem 7, we have

πidρi ∈ Der(Ti), ∀i ∈ Ω.

Thus, d ∈
∏
i∈Ω

Der(Ti).
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(⇐): Let d ∈
∏
i∈Ω

Der(Ti) and w ∈ Ti. Then (πi(
∏
i∈Ω

di)ρi)(w) = di(w), where di ∈

Der(Ti). So, (πi(
∏
i∈Ω

di)ρi) = di. Thus, d =
∏
i∈Ω

di for some di ∈ Der(Ti). Hence,

d =
∏
i∈Ω

πidρi.

4. Conclusions

This study was conducted to investigate the significant relationship between homo-
morphisms and derivations in ordered hyperrings. Moreover, we investigated the relation
between derivations and hyperideals on ordered hyperrings with no zero divisors. Fur-
thermore, we described prime hyperideals associated to derivations on ordered hyperrings
and derive several results about homomorphisms and derivations on ordered hyperrings.
One can further apply these notions on fuzzy prime hyperideals associated to derivations
in ordered hyperrings.
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