Eigenvalue Interlacing of Bipartite Graphs and Construction of Expander Code using Vertex-split of a Bipartite Graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i2.5057Keywords:
expander code, vertex-split, second largest eigenvalue, bipartite graph, quotient matrixAbstract
The second largest eigenvalue of a graph is an important algebraic parameter which is related with the expansion, connectivity and randomness properties of a graph. Expanders are highly connected sparse graphs. In coding theory, Expander codes are Error Correcting codes made up of bipartite expander graphs. In this paper, first we prove the interlacing of the eigenvalues of the adjacency matrix of the bipartite graph with the eigenvalues of the bipartite quotient matrices of the corresponding graph matrices. Then we obtain bounds for the second largest and second smallest eigenvalues. Since the graph is bipartite, the results for Laplacian will also hold for Signless Laplacian matrix. We then introduce a new method called vertex-split of a bipartite graph to construct asymptotically good expander codes with expansion factor D/2 < alpha < D and epsilon < 1/2 and prove a condition for the vertex-split of a bipartite graph to be k-connected with respect to the second largest eigenvalue: Further, we prove that the vertex-split of G is a bipartite expander. Finally, we construct an asymptotically good expander code whose factor graph is a graph obtained by the vertex-split of a bipartite graph.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.