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Abstract. We introduce a novel framework for assessing the centrality of idempotents within a
ring by presenting a general concept that assigns a degree of centrality. This approach aligns with
the previously established notions of semicentral and q-central idempotents by Birkenmeier and
Lam. Specifically, we define an idempotent e in a ring R to be n-central, where n is a positive
integer, if [e,R]ne = 0, where [x, y] represents the additive commutator xy−yx. If every idempotent
in a ring R is n-central, we refer to R as n-Abelian. Our study lays the groundwork by presenting
foundational results that support this concept and examines key features of n-central idempotents
essential for appropriately categorizing n-Abelian rings among various generalizations of Abelian
rings introduced in prior literature. We provide examples of n-central idempotents that do not
fall under the categories of semicentral or q-central. Furthermore, we demonstrate that the ring of
upper matrices Tn(R), where R is Abelian, is an n-abelian. We also prove that a ring where all of
its idempotents are n-central is an exchange ring if and only if the ring is clean.

2020 Mathematics Subject Classifications: 16U60, 16U70, 16U80, 16E50, 16U80

Key Words and Phrases: Idempotent, semicentral; q-central, n-central, n-Abelian

1. Introduction

By the term “ring”, we mean an associative ring with nonzero identity. Further, Z(R),
I(R), U(R), and N (R) are used for the set central elements, the set of idempotents (that
is e2 = e), the set of invertible (unit) elements, and the set of nilpotent elements of a ring
R. An idempotent e of a ring R is called central if e ∈ Z(R). The set B(R) denotes the
set of all central idempotents of R. A ring R is called Abelian if all idempotents of R are
central; that I(R) = B(R). Throughout this paper, we will always notate the ring of n×n
upper triangular matrices over a ring R by Tn(R).

The concept of semicentrality of idempotents was first introduced by Birkenmeier in
1983 [1] as a form of one-sided centrality to generalize some results on von Neumann
regular rings. The semicentral idempotent has since been used in extensions of rings and
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modules by Birkenmeier and others. An idempotent e of a ring R is considered left (resp.
right) semicentral if ae = eae (resp., ea = eae) for all a ∈ R. The sets of left and right
semicentral idempotents are denoted Sl(R) and Sr(R), respectively. Those interested in
delving deeper into semicentral idempotents and q-central properties can find valuable
insights in modern references, such as [2, 3, 7, 13, 17, 26]. An idempotent of a ring R is
considered central if it is both left and right semicentral, and the set of central idempotents
is denoted B(R) = Sl(R)∩Sr(R). An idempotent is called semicentral if it is either left or
right semicentral. A ring R is called semi-Abelian if all idempotents of R are semicentral.

The notion of idempotent centrality, which generalizes that of semicentral idempotents,
was introduced by Lam in [11] as q-central idempotents. An idempotent e of a ring R is
called q-central if eR(1−e)Re = 0, and the set of all q-central idempotents of R is denoted
q-idem(R). If every idempotent of a ring R is q-central, then R is called q-Abelian. This
condition has been introduced in several works, such as [22, 24], but Lam was the first to
name and study this property as an elemental property. A ring R is called q-Abelian if
every element of R is q-central, which is referred to as a quasi-normal ring and defined
in [23]. It is worth noting that every semicentral idempotent is q-central; therefore, every
semi-Abelian ring is q-Abelian.

This paper is structured into three primary sections. The initial segment is dedi-
cated to a comprehensive elucidation of the concept of n-central idempotents. Within this
section, we undertake a rigorous exploration to establish the existence of n-central idempo-
tents distinct from semicentral and q-central idempotents, as substantiated by illustrative
examples referenced as 1. Furthermore, Proposition 4 rigorously establishes that every
n-central idempotent within a semiprime ring unequivocally assumes a central position.
The culmination of this section lies in the proof establishing that if idempotents e and f
are conjugate, then e assumes centrality if and only if f does so.

The subsequent section of the paper is dedicated to defining n-Abelian rings. Propo-
sition 9 rigorously demonstrates that every n-central idempotent enjoys a state of direct
finiteness. Drawing from Lam’s seminal work [12], where he established the semiabelian
nature of 2 × 2 upper triangular matrices denoted as T2(R), we further extend this un-
derstanding. Specifically, Theorem 4 posited within this section firmly establishes the
n-Abelian property for the set Tn across all values of n.

2. n-central idempotents

This section introduces the concept of n-central idempotents for a ring R. The def-
inition of n-central idempotents involves a recursive sequence of sets of R. Let e be an
idempotent of R. We define a collection of right ideals [e]n of R, for n ≥ 0, recursively as
follows:

[e]0 = eR, [e]1 = (1− e)ReR, and for i ≥ 2, [e]i = [e]i−2(1− e)ReR.

Using the notation introduced earlier, if there exists some k such that [e]k = [e]k+1, then
for every i ≥ k, we have [e]i = 0. Therefore, the sequence ([e]k) is eventually-zero, as shown
in Example 1. On the other hand, if there exists some k such that [e]k = [e]k+2, then we
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have [e]i+2 = [e]i for every i ≥ k, as in Example 2. Note that every two consecutive sets
in the sequence ([e]n) have zero intersection. We shall refer to [e]n as the right centralizer
of e with degree n.

The additive commutator of elements x and y in a ringR is denoted by [x, y] and defined
as xy − yx. For an idempotent e and a subset S of a ring R, we use the notation [e, S] to
represent the subset {es − se|s ∈ S} of R. The following lemma provides an alternative
definition for the centralizer [e]n introduced earlier, using additive commutators. This
definition allows for the centralizers to be extended to rings without identity. However,
our focus in this research is still on unital rings.

Lemma 1. For every idempotent e of R and non-negative integer n, we have [e]n =
[e,R]neR.

Proof.
We will prove the relation using the mathematical induction on n.

Claim 1. [e]1 = [e,R]eR.
For every, r, s ∈ R, we have [e, r]es = (er − re)es = eres− res = (1− e)(−r)es ∈ [e]1

and [e,R]eR ⊆ [e]1. Conversely, for every a ∈ [e]1, there exist x, y ∈ R such that a =
(1 − e)xey. Hence, a = xey − exey = (xe − ex)ey = [e, x]e(−y) ∈ [e,R]eR. Therefore,
[e]1 = [e,R]eR.

Claim 2. e[e,R] = [e,R](1− e) and [e,R]e = (1− e)[e,R].
For every r ∈ R, we have e[e, r] = e(er − re) = er − ere = er(1 − e) = er(1 −

e) − re(1 − e) = (er − re)(1 − e) = [e, r](1 − e) and e[e,R] = [e,R](1 − e). Similarly,
[e,R]e = (1− e)[e,R].

Claim 3. [e,R]2e = eR(1− e)Re and [e,R]2(1− e) = eR(1− e)R(1− e).
For every r, s ∈ R, we have [e, r][e, s]e = (er − re)(es − se)e = (er − re)(ese − se) =

(er − re)(1− e)(−se) = er(1− e)(−s)e ∈ eR(1− e)Re. Also, er(1− e)se = er(1− e)se =
(er − re)(1− e)se = [e, r](se− ese) = [e, r](se− es)e = [e, r][e,−s]e ∈ eR(1− e)Re. Thus
[e,R]2e = eR(1− e)Re and similarly one can prove that [e,R]2(1− e) = eR(1− e)R(1− e)

Indeed, [e]n = [e,R]neR, for n = 0 and n = 1 from Claim 1. Assume that [e]k =
[e,R]keR, for some integer k ≥ 0. If k is even, then

[e,R]k+2eR = [e,R]2[e,R]keR = [e,R]2e[e,R]keR = eR(1− e)Re[e]k = [e]k+2,

using the result of Claims 2 and 3. If k is odd, then

[e,R]k+2eR = [e,R]2[e,R]keR = [e,R]2(1− e)[e,R]keR = (1− e)ReR(1− e)[e]k = [e]k+2.

The next definition uses our notation to give a generalized centrality for the idempo-
tents of a ring.

Definition 1. An idempotent e of a ring R is said to be n-central, for some positive
integer n, if [e]n = 0. Moreover, e is called complementary n-central if 1 − e is n-central
and dual n-central if it is both n-central and complementary n-central.
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The following examples serve to showcase idempotents which possess the characteristic
of being n-central, yet they do not fall within the categories of semicentral or q-central.

Example 1. Let R = T3(F ) for some field F . For the idempotent e = diag(1, 0, 1), we
have

([e]n) =

 F F F
0 0 0
0 0 F

 ,

 0 0 0
0 0 F
0 0 0

 ,

 0 0 F
0 0 0
0 0 0

 , 0, 0, 0, · · ·

 ;

which means that e is 3-central. Note that straightforward calculations can show that e is
neither semicentral nor q-central.

The example below illustrates that there are idempotents that cannot be classified as
n-central for any n.

Example 2. In the ring S = M4(F ) of 4 × 4 matrices over the filed F , the idempotent

f =


1 0 0 0
0 0 0 0
0 0 1

2
1
2

0 0 1
2

1
2

 has the chain ([f ]n) = (A,B,C,B,C,B,C, · · · ), where

A =




a1 a2 a3 a4
0 0 0 0
a5 a6 a7 a8
a5 a6 a7 a8

 | ai ∈ F

 ,

B =




0 0 0 0
a1 a2 a3 a4
a5 a6 a7 a8
−a5 −a6 −a7 −a8

 | ai ∈ F

 ,

C =




a1 a2 a3 a4
0 0 0 0
a5 a6 a7 a8
−a5 −a6 −a7 −a8

 | ai ∈ F

 .

We make Cn(R), Cn(R), and Ĉ(R) denote, respectively, the sets of n-central, com-
plementary n-central, and dual n-central idempotents of a ring R. The definitions show
that left semicentral, right semicentral, central, and quarter-central idempotents coincide
with 1-central, complement 1-central, dual 1-central, and 2-central, respectively. In other
words, Sl(R) = C1(R), Sr(R) = Cr(R), B(R) = Ĉ1(R), and q-idem(R) = C2(R), of every
ring R. Notice that every n-central is m-central if n ≤ m.

Observe that Lemma 1 provides an alternative definition for the n-centralizer of an
idempotent e in a ring R, which is independent of the existence of identity in R. This
definition allows us to extend the notion of n-central idempotents to rings without unity
or near-rings. Nevertheless, for the purpose of this paper, we restrict our attention to
associative and unital rings.
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The following proposition presents several equivalent characterizations of n-central
idempotents.

Proposition 1. For a ring R and idempotent e of R, the following statements are equiv-
alent.

(i) e ∈ Cn(R).

(ii) [e]n−1 is an ideal of R.

(iii) [e,R]ne = 0.

(iv) e[e,R]n = 0 if n is even, (1− e)[e,R]n = 0 if n is odd.

Proof. (i)⇒(ii): If n is odd, then (1 − e)R[e]n−1 = 0 and R[e]n−1 = eR[e]n−1 =
eReR[e]n−2 ⊆ eR[e]n−2 = [e]n−1 and [e]n−1 is a two-sided ideal of R. Similarly, for the
even case.

(ii)⇒(i): If [e]n−1 is an ideal of R and assume that n is odd. So that [e]n = (1 −
e)R[e]n−1 ⊆ (1− e)[e]n−1 = 0 and e is n-central. Similarity, for the even case.

(i)⇔(iii): It is direct by Lemma 1.
(i)⇔(iv) is clear from Claim 2.

Corollary 1. For a ring R and idempotent e of R, e ∈ Ĉn(R) if and only if [e,R]n = 0.

Corollary 2 ( [4], Proposition 1.2.2). For an idempotent e of a ring R, the following
conditions are equivalent:

(i) e ∈ Sl(R);

(ii) eR is an ideal of R;

(iii) 1− e ∈ Sr(R);

(iv) R(1− e) is an ideal of R;

(v) (1− e)Re = 0;

The following proposition provides a generalization of [7, Proposition 2.1.] and [11,
Proposition 2.1], which presents sufficient conditions for verifying the n-centrality of an
idempotent. In this context, 1+N (R) and N2(R) respectively denote the sets of unipotent
elements of R (i.e., the elements of the form 1 + a for a nilpotent element a ∈ R) and the
set of all square-zero elements of R (i.e., the nilpotent elements of index 2). Note that
although Lemma 1 provides an equivalent definition of the n-centralizer of an idempotent
e in a ring R that is independent of the identity element of R, this paper considers only
associative and unital rings.

Proposition 2. For an idempotent e of a ring R the following statements are equivalent:

(i) e ∈ Cn(R);
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(ii) [e,U(R)]ne = 0;

(iii) [e, 1 +N (R)]ne = 0;

(iv) [e,N (R)]ne = 0;

(v) [e,N2(R)]ne = 0;

(vi) [e, I(R)]ne = 0;

Proof. (i)⇒(ii) is obvious from Proposition 1.
(ii)⇒(iii) and (iv)⇒(v) are obvious.
(iii)⇒(iv): It is direct since [a, 1 + b] = [a, b], for every a, b ∈ R
(v)⇒(vi): For all fi ∈ I(R) (for i = 1, · · · , n), the elements efi(1−e) and (1−e)fie are

square-zero. But [e, efi(1− e)] = efi(1− e) = [e, fi](1− e) and similarity [e, (1− e)fie] =
−[e, fi]e. So that

[e, f1] · · · [e, fn−2][e, fn−1][e, fn]e = [e, f1] · · · [e, fn−2][e, fn−1][e, fn]e
2

= [e, f1] · · · [e, fn−2][e, fn−1](1− e)[e, fn]e

= −[e, f1] · · · [e, fn−2][e, fn−1](1− e)[e, (1− e)fne]

= −[e, f1] · · · [e, fn−2]e[e, fn−1](1− e)[e, (1− e)fne]

= −[e, f1] · · · [e, fn−2]e[e, (1− e)fn−1e][e, (1− e)fne].

Continuing, we get [e, f1] · · · [e, fn]e = (−1)
n
2 e[e, (1 − e)f1e] · · · [e, (1 − e)fne] if n is even,

and [e, f1] · · · [e, fn]e = (−1)
n+1
2 (1− e)[e, ef1(1− e)] · · · [e, (1− e)fne] if n is odd. Using the

Claim 2 to e and 1 − e in the left of the previous two equations to transfer them to the
right as e in both cases, we get [e, I(R)]ne ⊆ [e,N (R)]ne = 0 and the result follows.

(vi)⇒(i): For every r ∈ R, the element e+(1−e)re is idempotent and [e, e+(1−e)re] =
−[e, r]e. Applying the same technique of proving (v)⇒(vi), we get [e,R]ne = 0 and e is
n-central.

A ring R is called 2-primal if N (R) = P(R) where P(R) the prime radical of R. Hence,
we have the next corollary.

Corollary 3. For a 2-primal ring R and e ∈ I(R), e is n-central if and only if [e,P(R)]ne =
0.

The argument presented below, which connects the n-centrality of idempotents with
consecutive degrees by utilizing the minimality of some centralizer as a one-sided ideal, is
inspired by the work of Lam in [11, Proposition 2.10].

Proposition 3. If e ∈ Cn(R) (for n ≥ 2) and [e]n−2 is a minimal right ideal in R, then
e ∈ Cn−1(R) ∪ Cn−2(R). (Here, C0(R) = {0})

Proof. For e ∈ Cn(R), we have [1 − e]n−1 = [e]n−2(1 − e)R ⊆ [e]n−2. So either
[1− e]n−1 = 0 (and e ∈ Cn−1(R)) or [1− e]n−1 = [e]n−2, from the minimality of [1− e]n−1.
If [1− e]n−1 = [e]n−2, then 0 = [e]n = [1− e]n−1eR = [e]n−2eR = [e]n−2 and e ∈ Cn−2(R).
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Corollary 4 ( [11], Proposition 2.10). If e ∈ q-idem(R) and eR is a minimal right ideal
in R, then e is right semicentral.

Every idempotent element that is central is n-central for all n. Nevertheless, there exist
n-central idempotents that are not central, such as the idempotent e in Example 1, which
is 2-central but not central. The subsequent proposition provides a sufficient condition for
a ring R to have the sets Cn(R) coincide with B(R) for all n.

Proposition 4. Every n-central idempotent of a semiprime ring is central, for every n.

Proof. Let e be an n-central idempotent of a semiprime ring R for some odd n (that

does not loss of generality of n), then [e]n = 0 and ((1− e)ReR)
n+1
2 = 0. So, (1−e)Re = 0

and e ∈ Sl(R). Also, ReR(1−e)R is a nilpotent ideal. Hence eR(1−e) = 0 and e ∈ Sl(R);
that e is central.

As per Theorem [10, Example 10.17], both R/P (R) and R/J(R) are semiprime rings,
where J (R) denotes the Jacobson radical of R. Therefore, we can derive the following
corollary.

Corollary 5. Every e ∈ Cn(R) maps onto a central idempotent in R/P (R) and R/J (R).
Therefore, if R is a n-Abelian ring, then every idempotent of R maps onto a central
idempotent in R/P(R) and R/rad (R).

Indeed, indecomposable rings have no nontrivial idempotents. So, we have the next
corollary

Corollary 6. If R is an indecomposable semiprime ring, then Cn(R) = {0, 1}, for every
n.

Here, we have a necessary and sufficient condition making B(R) = Cn(R) for some n.

Proposition 5. An idempotent e of a ring R is central if e ∈ Cn(R), for some n, and
Cn(R) is commutating.

Proof. Let e ∈ Cn(R) and define the idempotent element f = e+er(1−e), for arbitrary
r ∈ R. But f ∈ eR and 1− f ∈ R(1− e). Hence, [f ]n ⊆ [e]n = 0 and f ∈ Cn(R). So that e
and f are commutating from the assumption and f = ef = fe = e. Therefore, eR(1− e)
and e ∈ Sr(R). Similarly, one can show that e ∈ Sl(R) and hence e is central.

Here, we give the same result of [11, Proposition 2.6] with a generalized condition.

Proposition 6. Let e ∈ Cn(R), for some n, such that ReR = R, then e = 1.

Proof. Indeed, e ∈ Cn(R) and [e]n = 0. So ((1 − e)R)m = 0 where m = ⌈n2 ⌉. So that
1− e = 0 and e = 1.

In the context of a ring R, recall that two idempotents e and f are said to be isomorphic
if eR and fR are isomorphic as right R-modules. Equivalently, e and f are isomorphic
if there exist a, b ∈ R such that e = ab and f = ba. Idempotents e and f are said to be
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isomorphic complements if 1− e and 1− f are isomorphic. Additionally, e and f are said
to be conjugate (resp. right associate, left associate) if there exists a unit u ∈ R such that
uf = eu (resp. f = eu, f = ue).

The following proposition establishes that if two idempotents are isomorphic, isomor-
phic complements, or conjugate, right associate, or left associate, then their n-centrality
for some n is equivalent.

Proposition 7. Let R be a ring and e, f ∈ I(R). Then we have the following identities.

(i) If e and f are conjugate, then e ∈ Cn(R) if and only if f ∈ Cn(R).

(ii) If e and f are right associate, then e ∈ Cn(R) if and only if f ∈ Cn(R).

(iii) If e and f are left associate, then e ∈ Cn(R) if and only if f ∈ Cn(R).

(iv) If e and f are isomorphic and isomorphic complements, then e ∈ Cn(R) if and only
if f ∈ Cn(R).

Proof. (i) If e and f are conjugate, then f = u−1fu for some unit u in R. By simple
calculations, one can find that [e, r] = u[f, u−1ru] and [f, r] = u[f, uru−1], for every r ∈ R.
By Proposition 1, the result follows.

(ii) If e and f are right associate, then ef = f and fe = e, by [5, Lemma 6.2]. So,
(1 − e)(1 − f) = 1 − e and (1 − f)(1 − e) = 1 − f . Therefore, [e]n ⊆ (1 − e)[f ]n and
[f ]n ⊆ (1− f)[f ]n, for every odd n, while [e]n = [f ]n, for every even n.

(iii) is proved as in (ii).
(iv) is clear from (i) [5, Lemma 6.2].

It is important to note that the isomorphism of two idempotents is not always enough
to transfer the n-centrality of one to the other. For instance, consider a non-directly finite
ring R (i.e., ab = 1 does not imply ba = 1 for some a, b ∈ R). Such a ring can have an
n-central idempotent, for any n, while its isomorphic idempotent may not be n-central.
To see why, suppose ab = 1 for a, b ∈ R with R not directly finite. Then, ba is a non-trivial
idempotent, and for any m, ([ba, a][ba, b])m = (−1)m(1 − ba) ̸= 0. Hence, ba cannot be
k-central for any k.

3. n-Abelian Rings

This section presents a generalization of idempotent centrality, with the introduction
of a ring that contains only idempotents which are n-central for some n. The following
definition serves as an introduction to this ring. It states that the idempotents in a ring
R are all n-central if and only if they are all complementary n-central if and only if they
are all dual n-central.

Definition 2. A ring R is called n-Abelian if every idempotent of R is n-central; that
I(R) = Cn(R).
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Based on the definition, it can be observed that an n-Abelian ring is also an m-Abelian
ring if n ≤ m. Furthermore, the classes of Abelian rings and q-Abelian rings are equivalent
to the classes of 1-Abelian and 2-Abelian rings, respectively. It is worth noting that every
Abelian ring is n-Abelian for all values of n. However, the ring in Example 2 cannot
be n-Abelian for any n. The following proposition provides an alternative definition for
n-Abelian rings.

Proposition 8. The following conditions are equivalent for a ring R and positive integer
n.

(i) R is n-Abelian.

(ii) [e,R]n = 0, for every e ∈ I(R).

(iii) [e]n−1 is an ideal of R, for every e ∈ I(R).

Proof. The proof is straightforward from the definition and Proposition 1.

Recall, an idempotent e of a ring R is said to be directly finite if the eRe is directly
finite. The next proposition shows that every n-central idempotent for any n is directly
finite, and therefore every n-Abelian ring for any n is directly finite.

Proposition 9. If e is an n-central idempotent of a ring for some n, then e is directly
finite.

Proof. Let R be a ring e an n-central idempotent of a ring R, for some n. Assume that
ab = e, for some a, b ∈ eRe. Hence, ba is an idempotent in eRe and [ba, a][ba, b] = ba− e.

Without loss of generality we assume that n is even, then 0 = ([ba, a][ba, b])
n
2 = (−1)

n
2 (e−

ba) and ba = e. Thus, eRe is differently finite.

Corollary 7. Every n-Abelian ring is directly finite, for every n.

Corollary 8 ( [22],Theorem 2.4). Quasi-normal rings are directly finite.

According to to [21], an element a of a ring R is called left minimal if Ra is a minimal
left ideal of R and R is called left min-Abel if each left minimal idempotent left semicentral.
The next proposition states that a ring R is left min-Abel whenever it is n-Abelian for
some n.

Proposition 10. If R is n-Abelian for some n, then R is left min-Abel.

Proof. Let e be a nonzero left minimal idempotent element of an n-Abelian ring R. If
e is not left semicentral, then (1 − e)ae ̸= 0 for some a ∈ R and 0 ̸= R(1 − e)ae ⊆ Re.
Hence R(1−e)ae = Re because Re is minimal left ideal of R. So (Re)m = (R(1−e)ae)m ⊆
R[e]2m−1, for every m > 0. Choosing m ≥ n+1

2 , we get e = 0, which is a contradiction.
Hence (1− e)ae = 0 for all a ∈ R and R is left min-Abel.

Corollary 9 ([23],Theorem 2.5). Every quasi-normal ring is left min-Abel.
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The previous corollary presented in [23] has a counterexample, which also serves as
a counterexample for Proposition 10. In accordance with [25], a ring R is referred to as
weakly normal if ae = 0 implies Rera is a nil left ideal of R, where a, r ∈ R and e ∈ I(R).
It is worth noting that every quasi-normal (or q-Abelian) ring is weakly normal, as shown
in [25, Corollary 2.3 (1)]. The following proposition extends this result to a broader scope.

Proposition 11. If R is an n-Abelian ring for some n, then R is weakly normal.

Proof. It is direct by [25, Theorem 2.2].

In [8], a ring R is called left (resp. right) idempotent-reflexive if aRe = 0 (resp.
eRa = 0) implies eRa = 0 (resp, aRe = 0) for every a ∈ R and e ∈ I(R). The following
proposition shows that the sets of n-central idempotents and complementary n-central
idempotents of a ring one-sided idempotent-reflexive ring R coincide.

Proposition 12. For every left (or right) idempotent-reflexive ring R, we have Cn(R) =
Ĉn(R) if n is odd and Cn(R) = Ĉn−1(R) if n is even.

Proof. If e ∈ Cn(R) for some odd n, then ((1 − e)ReR)
n+1
2 = 0 and therefore(

((1− e)ReR)
n−1
2 (1− e)

)
Re = 0. IfR is left idempotent-reflexive, then (eR(1−e)R)

n+1
2 =

0 and e ∈ Cn(R). In case of n is even, we have eR((1 − e)ReR)
n−2
2 = 0 and 0 =

(R(1 − e)Re)
n−2
2 Re = (R(1 − e)Re)

n−2
2 . Therefore, e ∈ Cn−1(R). But n − 1 is odd

and consequently Cn(R) = Ĉn−1, from the previous result.

Every subring S (which is not necessarily with identity) of an n-Abelian ring R is also
n-Abelian since for every e ∈ In(S), we have e ∈ Cn(R) and [e, S]ne ⊆ [e,R]ne = 0 and
e ∈ Cn(S). However, the n-Abelianity of a subring is not necessarily extended to the ring
itself.

Example 3. In the ring R of Example 1, the element e = diag(1, 0, 1) is not 1-central in

R. However, e is an idempotent of subring S =

 F 0 F
0 0 0
0 0 F

 ∼= T2(F ) and it is 1-central.

Also, F is a subring of R which is commutative and in particular, is 1-Abelian while R is
not 1-Abelian.

Proposition 13. Every subdirect product of a family n-Abelian rings is also n-Abelian,
for every n.

Proof. Let Ri = R/Ai, for some ideals {Ai}i∈Λ of a ring R with
⋂

i∈ΛAi = 0. For
every e ∈ I(R), we have ei = e + Ai ∈ I(Ai) where i ∈ Λ. If each Ri is n-Abelian
for some n, then [ei, R]neiR = 0 for every i ∈ Λ. So 0 = [ei, R]neiR = [e + Ai, R]neiR ⊆
[e,R]n(e+Ai)R+[Ai, R]n(e+Ai)R ⊆ [e,R]ne+[e,R]nAi+[Ai, R]n(e+Ai)R ⊆ [e,R]ne+Ai

and [e,R]ne for every i ∈ Λ. Therefore, [e,R]ne ∈
⋂

i∈ΛAi = 0 and e is n-central.

Motivated by [11, Section 3], which discusses how the Abelianity and q-Abelianity of
rings can be determined by their upper triangular matrices, we present a generalization
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of [11, Theorem 3.4]. Our approach combines the order of the upper triangular matrix
with the order of Abelianity. We begin by establishing the following lemma, which will be
used in the proof of our main result.

Lemma 2. Let the ring T =

[
R M
0 S

]
, for any rings R, and S, and a unital (R,S)-

bimodule M , be n-Abelian, for some n. If R and S are respectively n1-Abelian and n2-
Abelian rings, then the ring T is (n1 + n2)-Abelian. While, if T is n-Abelian, then both R
and S are (n− 1)-Abelian.

Proof. First, assume that R and S are n1-Abelian and n2-Abelian, for some n1 and n2,

respectively. For an arbitrary idempotent ε =

[
e s
0 f

]
of T , e, f ∈ I(R) and es+sf = s.

Indeed, [ε, T ] ⊆
[
[e,R] M
0 [f, S]

]
and [ε, T ]n1+n2 ⊆

[
0 M
0 [f, S]n1

] [
[e,R]n2 M

0 0

]
= 0

and ε ∈ C(n1+n2)(T ). Since ε ∈ I(T ) is arbitrary, this shows that T is (n1 + n2)-Abelian.
Secondly, if T is n-Abelian and e2 = e, r, r1, r2, · · · , rn−1 ∈ R, define the elements

ϵ =

[
e 0
0 1

]
, t =

[
0 1
0 0

]
, and tk =

[
rk 0
0 0

]
, for k = 1, 2, · · · , n − 1 in T . If T is n-

Abelian, then 0 = [ϵ, t1] · · · [ϵ, tn−1][ϵ, t] =

[
[e, r1] 0
0 0

]
· · ·

[
[e, rn−1] 0

0 0

] [
0 e− 1
0 0

]
=[

0 [e, r1] · · · [e, rn−1](e− 1)
0 0

]
. So, [e, r1] · · · [e, rn−1](e− 1) = 0 and [e,R]n−1(1− e) = 0.

Therefore, e ∈ Cn−1(R) and R is (n − 1)-Abelian since e is arbitrary in I(R). Similarly,
one can verify that S is also (n− 1)-Abelian.

In Example 4.7 of Lam’s work [12], it is demonstrated that T3(R) fails to exhibit semi-
abelian characteristics. Expanding upon the findings elucidated in Lam’s prior works,
specifically Theorem 3.4 in [11] and Theorem 2.4 in [12], we have undertaken a compre-
hensive exploration leading to a noteworthy generalization, which we present in the sub-
sequent theorem. Our derived result establishes a fundamental link between the Abelian
nature of a ring and the Abelianity observed within its corresponding upper triangular
matrix extension.

Theorem 4. For a ring R, the following conditions are equivalent.

(i) R is Abelian.

(ii) Tn(R) is n-Abelian, for every n.

(iii) Tn(R) is n-Abelian, for some n.

Proof. (i)⇒(ii): Assume that R is Abelian. Hence, T2(R) is 2-Abelian, by the previous

lemma. Also, T3(R) =

[
R R2

0 T2(R)

]
, where R2 is a unital (R,T2(R))-bimodule. Again,

T3(R) is 3-Abelian form the previous lemma. Continuing, we have Tn(R) is n-Abelian,
for every n.
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(ii)⇒(iii) is direct.

(iii)⇒(i): Let Tn(R) be n-Abelian, for some n. Tn(R) =

[
R Rn−1

0 Tn−1(R)

]
. So, R and

Tn−1(R) are (n− 1)-Abelian. Inducting on n gives R is 1-Abelian,

Corollary 10 ([11], Theorem 3.4). A ring R is Abelian if and only if T2(R) is q-Abelian.

4. Applications

In ring theory, several types of regularity are defined for elements in a ring. An element
a in a ring R is called regular (in the sense of von Neumann) if there exists an element
b ∈ R such that a = aba. Here, the element b is called an inner inverse of a, and I(a)
denotes the set of all inner inverses of a in R. We can also define the left regularity and
right regularity of an element a in a similar manner. If an element is both left and right
regular, it is called strongly regular. A ring R is called regular (resp. strongly regular)
if all its elements are regular (resp. strongly regular). It is well-known that a ring R is
strongly regular if and only if it is regular and Abelian.

In addition to regularity, we can define π-regularity for elements in a ring. An element
a ∈ R is called π-regular if a ∈ anRn for some positive integer n depending on a. If an
element a is both π-regular and strongly regular, it is called strongly π-regular. A ring R is
called π-regular (resp. strongly π-regular) if all its elements are π-regular (resp. strongly
π-regular). It is worth noting that a ring R is strongly π-regular if and only if it is Abelian
and π-regular.

Previous research by Wei and Li in [23] showed that for a regular (resp. π-regular)
ring, being quasi-Abelian (2-Abelian) is enough to become strongly regular (strongly π-
regular). Moreover, Lam in [10] showed that if the idempotent ba of a regular element
a = aba is q-central (2-central), then a is strongly regular. In the following, we present a
weak condition that guarantees a regular element to be strongly regular.

Theorem 5. Let a be a regular element of a ring R. Then the following statements are
satisfied.

(i) If ab is n-central for some n and b ∈ I(a), then ac is n-central for every c ∈ I(a)

(ii) If ba is n-central for some n and b ∈ I(a), then ca is n-central for every c ∈ I(a)

(iii) If ab is n-central for some n and b ∈ I(a), then a is right regular

(iv) If ba is n-central for some n and b ∈ I(a), then a is left regular

(v) If both ab1 and b2a are n-central for some n and b1, b2 ∈ I(a), then a is strongly
regular.

Proof. (i) Easy calculations show that the idempotents of aI(a) are isomorphic and
isomorphic complements. So, Therefore, ac is n-central for every c ∈ I(a).
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(ii) Similarly as (i).
(iii) Write e = ab and consider n is even which does not lose the geniality of n.

Write n = 2k, for integer k ≥ 1 and eR((1 − e)ReR)k = 0. So, 0 = e(a(1 − e)be)k =
e(abe− aebe)k = e(e− aebe)k = (e− aebe)k. Expanding and using the fact ea = a, we get
e ∈ aeRe. So that a = ea ∈ aeRa = a2bRa ⊆ a2R and a is left regular.

(iv) Similar as (iii).
(iii) Let a be a regular element a of R with a = aba, for some b ∈ R. We prove the case

of the idempotent e = ba is n-central for some n. The case of n = 2 has been shown in [11,
Theorem C.] and considering n is even does not lose the geniality of n. Write n = 2k+ 2,
for integer k ≥ 0 and ((1−e)ReR)k = 0 from the n-centrality of e. So, eR((1−e)ReR)k = 0
and (eb(1 − e)a)k = 0, since ae = a. But eb(1 − e)a = eba − ebea = e − ebea. Hence,
(e − ebea)k = 0 and the expanding gives e ∈ eRea. So that a = ae ∈ e ∈ aeRea ⊆ Ra2

and a is right regular.
(iv) can be proved similarly as in (iii).
(v) is direct from (iii) and (iv).

Corollary 11. A ring R is strongly regular if and only if R is regular and n-Abelian for
some n.

Corollary 12. Let R be a regular ring. Then the following statements are equivalent:

(i) R is reduced.

(ii) R is Abelian.

(iii) R is n-Abelian for every n.

(iv) R is n-Abelian for some n.

Proposition 14. Let R be an n-Abelian ring, for some n. If R is π-regular, then R is
Abelian (consequently R is strongly π-regular).

Proof. Straightforward.

By the previous proposition, we can get the results [23, Theorems 3.8 and 3.10] using
the n-centrality with any degree.

In [20], Warfield called a ring R an exchange ring if RR has the finite exchange property.
An equivalent idempotent-wise definition of exchange rings was introduced in [6, 14]; that
a ring R is exchange if and only if for every a ∈ R, there exists an idempotent e of R such
that e ∈ aR and 1− e ∈ (1− a)R. According to [14], a ring R is said to be clean if every
element a ∈ R can be written as a sum of a unit and an idempotent.

The next theorem gives an equivalent definition of n-Abelian exchange rings, drawing
inspiration from [11, Theorem 5.10.] and extending it to a more general context.

Theorem 6. The following statements are equivalent for any ring R and positive integer
n:
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(i) R is a n-Abelian exchange ring.

(ii) R is a n-Abelian clean ring.

(iii) Every element in R is the sum of a unit and an n-central idempotent.

(iv) For any a ∈ R, there exists e ∈ Cn(R) such that e ∈ aR and 1− e ∈ (1− a)R.

Proof. (i)⇒ (ii): By utilizing the exchange property of R, any idempotent e ∈ R/J (R)
can be raised to an idempotent in R. Using Corollary 5 leads to the conclusion that e must
be central in R/J (R). Consequently, RJ (R) is demonstrated to be an Abelian exchange
ring. By [14, Proposition 1.8], R/J(R) is a clean ring and we can find e ∈ I(R) such
that a− e is a unit in R/J (R), for every a ∈ R. So, a-e must also be a unit in R since
e ∈ Cn(R) is a n-central idempotent according to the given assumption.

(ii)⇒ (iii) is direct from the definitions.
(iii)⇒ (iv): If a ∈ R, then 1 − a = e + u, for some e ∈ Cn(R) and u ∈ U(R) for the

assumption. Define the idempotent f = ueu−1 which is conjugate to e and consequently
f ∈ Cn(R), by Proposition 7. Now, f = ueu−1 = (1 − a − e)eu−1 = −aeu−1 ∈ aR and
1− f = 1−ueu−1 = uu−1−ueu−1 = u(1− e)u−1 = u(1− e)u−1 = (1−a− e)(1− e)u−1 =
(1− a)(1− e)u−1 ∈ (1− a)R; it follows.

(iv)⇒ (i): The condition shows that R is exchange and it is enough to show that R is
n-Abelian. For every e ∈ I(R), the assumption yields that there exist f ∈ Cn(R) such that
f ∈ eR and 1− f ∈ (1− e)R. So f = ef and 1− f = (1− e)(1− f) = 1− e− f + ef = 1−.
Hence, e = f ∈∈ Cn(R) and R is n-Abelian.

Vaserstein [19] defines a ring R to have stable range 1 if for any a, b ∈ R with aR+bR =
R, there exists y ∈ R such that a+ by is right invertible. R has stable range 1 if and only
if R/J (R) has stable range 1. The next corollary demonstrates that exchange rings with
n-central idempotents, for some n have stable range 1.

Corollary 13. Every n-Abelain exchange rings, for some n, has stable range 1.

Proof. Corollary 5 and [27, Theorem 6] jointly yield the result.

The inherent generality of hyperrings as an extension of rings prompts a pertinent
consideration: the exploration of the concepts of n-central idempotents and n-Abelian
rings within the domain of hyperrings. This avenue of inquiry holds promise in further
elucidating the structural properties and algebraic characteristics inherent in hyperring
theory.

For readers intrigued by the realm of hyperrings and desiring a deeper understanding,
an extensive exploration can be found in the following scholarly sources: [9, 15, 16, 18].
These references offer comprehensive insights into hyperrings, serving as valuable resources
for those engaged in advanced studies or research endeavors within this domain.
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5. Conclusion

Within this paper, we present a series of comprehensive findings. Initially, we establish
that every n-central idempotent within a semiprime ring is central. Additionally, we
demonstrate that a full idempotent e is an n-central idempotent if and only if e equals
zero. Moreover, we showcase that if e and f represent isomorphic idempotents with
isomorphic complements, then e being n-central is equivalent to f being n-central.

Furthermore, we provide proof indicating that if e denotes an n-central idempotent
within a ring R, then the left ideal eR is directly finite. Additionally, we illustrate that the
condition mandating all idempotents to be n-central extends to upper triangular matrix
rings, thereby compelling a von Neumann ring to attain the status of strong regularity.

Lastly, we conclude our findings by demonstrating that a ring wherein all idempotents
are n-central achieves the status of an exchange ring if and only the ring is clean.
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