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Exploring lung cancer protein network: Understanding
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Abstract. Lung cancer remains a significant health threat with high mortality rates. Using graph
theory, we modeled the protein-protein interaction (PPI) network in lung cancer to explore its com-
plex structure. This approach allows for the analysis of network properties and the identification
of key proteins driving biological processes. Our analysis revealed RPS27A as a central protein
within the network, associated with diverse functions related to ribosome biogenesis, translation,
cell growth, apoptosis, and cancer progression. This suggests that RPS27A may have multiple
functions in cancer development and progression, including in MAPK signaling pathways. Im-
portantly, our study uniquely identifies RPS27A as a central hub in lung cancer PPI networks,
shedding light on its pivotal role in disease pathogenesis. Additionally, we identified a central net-
work zone enriched with proteins involved in key signaling pathways, presenting novel insights into
potential therapeutic targets for lung cancer treatment. Pathway enrichment analysis further high-
lighted functional specialization across network zones, providing a comprehensive understanding
of the intricate interplay between biological pathways in lung cancer progression. This study un-
derscores the multifaceted roles of central proteins like RPS27A within lung cancer’s PPI network
and the network’s potential for pinpointing therapeutic targets, presenting a novel perspective on
the intricate network of molecular interactions driving lung cancer pathogenesis.
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1. Introduction

Lung cancer remains one of the most prevalent and lethal malignancies worldwide,
posing a significant public health challenge [30]. Despite advancements in understanding
its intricate molecular mechanisms [22], identifying effective therapeutic targets remains
crucial. While PPI networks are invaluable in uncovering potential targets [1] [46] [12]
[24] [8]. PPI networks have emerged as a valuable tool. These networks map the intricate
web of interactions between proteins within a cell, providing insights into key signaling
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pathways and potential therapeutic targets. Their construction, facilitated by both exper-
imental and computational methods, allows researchers to visualize the complex interplay
of proteins that dictate cellular activities [27].

The application of PPI networks in lung cancer research has yielded remarkable in-
sights. These networks have aided in identifying pivotal ”hub proteins” like EGFR and
TP53, known to play critical roles in tumorigenesis and disease progression [46]. Addi-
tionally, PPI networks have proven instrumental in discovering novel biomarkers for early
diagnosis and improved patient prognosis [12] [24]. Furthermore, it is vital to identify
crucial proteins through PPI analysis to gain a comprehensive understanding of cellular
processes, disease mechanisms, and potential targets for therapeutic [7]. Current ap-
proaches often lack a unified framework, hindering their full potential. Additionally, while
graph theory finds broad application in modeling molecular structures [44] [32] [10] [45]
[33], its integration with PPI network analysis in lung cancer research is limited [31].

Exploring PPIs in the context of lung cancer research has become a cornerstone in
deciphering the intricate molecular mechanisms of this deadly disease. By revealing key
interaction partners and providing insights into both structural and functional aspects,
PPI networks offer a multifaceted approach to advancing our understanding of lung can-
cer biology. This study focuses on the PPI network in lung cancer, aiming to identify
key proteins and pathways that could serve as potential therapeutic targets. We estab-
lished and modeled the lung cancer protein-protein interaction network (LCPIN) as a
metric space. This approach leverages the well-defined properties of topological spaces,
drawing upon a rich history and extensive theoretical foundation [9] [4]. This strategic
framework enables a comprehensive spatial perspective on PPIs, utilizing distance as the
primary metric. While protein weighting is not employed, the method precisely pinpoints
the relative positions of nodes, even in vast networks containing hundreds of thousands of
proteins and numerous interactions. We formally defined the network’s center(s) as ”the
protein(s) with the minimal maximal distance to others” and subsequently categorized all
proteins into zones based on their distance from the center. This allows us to pinpoint the
exact location of any protein relative to the centre and its neighboring proteins within the
network swiftly. This effort aims to provide valuable insights into both network structure
and function. Through the elucidation of complex protein interactions and the identifica-
tion of key players in tumorigenesis,these networks provide valuable insights into disease
mechanisms and potential therapeutic targets.

2. Materials and Methods

2.1. Generation of cancer graphs

Our method to constructing a crossover network of proteins associated with cancer
involves the mapping proteins expressed in tumors onto the human interactome. We ac-
complish this by leveraging interactions within the human protein network, and employing
the subsequent algorithm.

(i) Construct a graph G over the binary PPI list of human protein network.
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(ii) Identify tumor proteins that are consistently expressed in cancers in list L;

(iii) If the proteins are included in list L, construct the induced interaction data from G.

(iv) Output-induced cancer graph G′ Figure 1.

Figure 1: Diagram illustrating the analysis of the giant component of lung cancer for the induced zone.

2.2. Evaluation of lung cancer PPI as metric spaces

In this work, we model PPI networks through the lens of graph theory. A graph,
denoted G = (V,E), consists of a set of nodes (V ) and a set of edges (E) connecting
these nodes. Importantly, the relation E is not reflexive (no self-loops) and symmetric (if
x and y are connected, then y and x are connected as well). Nodes represent proteins,
and edges represent interactions between them. We interchangeably use ”protein” and
”node” for clarity. Within the context of the organisms studied, we disregard reflexivity
(proteins interacting with themselves) to avoid redundancy. Notably, reflexivity does not
influence distance-related concepts. The order of a graph signifies the number of nodes,
while the size represents the total number of interactions. A graph is considered complete
if every node is connected to all others. When a node x is connected to y, we say y
is adjacent to x, denoted by xy. The neighborhood of x encompasses all nodes directly
connected to it. The degree of a node (protein) reflects the number of proteins it interacts
with in the network. A subgraph of G is a graph where the set of nodes is a subset
of V , and the edges are a subset of E. An induced subgraph H of G inherits all
edges present in G between its nodes. Conversely, if H lacks any edges defined in G,
it is not induced. Notably, induced subgraphs are crucial in PINs for defining pathways
and processes. A path in a graph refers to a sequence of distinct nodes (v0, v1, ..., vk)
where consecutive nodes are connected by edges. The length of a path is defined as k.
A graph is considered connected if a path exists between any two nodes. Otherwise, it
is disconnected. Furthermore, components are maximally connected subgraphs. A giant
component comprises a majority of the nodes within the entire graph. The distance
between two nodes represents the length of the shortest path connecting them. Together,
the graph and its corresponding distances define a metric space. The eccentricity of
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a node v signifies the length of the longest path connecting it to all other nodes. The
diameter of the graph is the highest eccentricity among all nodes, while the nodes with
the lowest eccentricity are considered the centre of the graph. To evaluate the LCPIN,
we conceptualized it as metric spaces and examined the node distances through graph
theory. A distinctive strategy to achieve this was by utilizing a Python wrapper for the
C++ Boost Graph Library (http://www.boost.org/) and executing the Dijkstra algorithm.
This algorithm was applied to compute the shortest distances among protein pairs within
the network. The proteins showing the least maximum distance to adjacent nodes were
recognized as the network‘s central point or points. Through this approach, the nodes
were classified and divided into zones based on their distance to the central point Figure
2.

Figure 2: Diagram illustrating the analysis of Protein-Protein Interactions (PPIs) as metric spaces, including:
(i) Representation of interactions as a graph model; (ii) Identification of central proteins; (iii) Categorization
of proteins into zones; (iv) Highly connected proteins; (v) Less connected proteins; (vi) Proteins of critical
importance, often associated with housekeeping functions; and (vii) Proteins exhibiting a diverse range of
routine metabolic functions.

2.3. PPI data sources

We consider an interaction network of human functional proteins composed of 9448
nodes and 181706 connections [41].

2.4. Datasets pertaining to gene expression in cancer

The lung cancer dataset we analyzed was obtained from the Gene Expression Bar-code.
We utilized the database available at (https://www.hsls.pitt.edu). To ensure consistency,
we specifically chose the ”unified tissue” selection and set the threshold to 0.99. For our
analysis, we employed the Human HGU133 platforms.

2.5. Enrichment analysis for pathways and functions

To identify the biological relevance of zones in the LCPIN, proteins were classified
into groups according to their closeness to the centre. An over-representation pathway
analysis was performed on the groups of proteins linked with each zone, to identify if any
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specific functions were attributed to those zones. To perform an enrichment analysis of
zones, we used the gene set enricher web service in comparative toxigenomics databases
(http://ctdbase.org/tools/enricher.go), (https://david.ncifcrf.gov/) as well as enrichment
analysis of gene ontology terms (http://www.geneontology.org/GO.tools) and a signifi-
cance level of 0.01 was selected as the threshold for statistical significance. Finally, to
determine whether zones exhibit functional specialization, we computed the ratio of pro-
teins participating in each enriched pathway.

2.6. Evaluation of the score and core pathways of proteins are oncogene
and tumor suppressor

We evaluated the score (the interactions that received high scores are enriched in genes
that have been proven to cause cancer through mutations) of proteins that expressed in
oncogene and suppressor and their core pathways from Genome-wide sequencing studies
of cancer [34].

3. Results

3.1. LCPIN is analyzed using a metric space with a dense core and sparse
surrounding structure

To build the network, we modeled LCPIN as a metric space. The goal is to categorize
proteins into different zones using their graph-based measure of distance from the central
protein while identifying the topological centre. For example, the first zone is the connec-
tion with the protein one distance away from the centre of the topology; the second zone
is two distances away; and so on Figure 3. The LCPIN we examined has 409 proteins
and 4473 interactions. Through modeling, we found that the RPS27A protein is at the
centre, which has demonstrated involvement in cancer. Several studies have indicated
that RPS27A is overexpressed in different forms of cancer and is involved in regulating
cell proliferation, apoptosis, and tumor growth. It has also been associated with drug
resistance and a poor prognosis in certain cancers [19] [37] [47].

Figure 3: Model capturing the spatial arrangement of PINs based on their distance from a central point.
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A summary of the distribution of nodes and the average degree from the centre of
LCPIN is shown in Table 1.

Table 1: Summary of the distribution of nodes and average degree from the centre of LCPIN.

Zone Number of proteins Average degree Highest degree Lowest degree

Centre 1 100% 105 0
1 105 60.9% 84 1
2 123 12.5% 41 1
3 111 4.5% 15 1
4 28 4.9% 20 1
5 21 10.9% 17 1

3.2. Distribution of crucial, signalling, growth-related, cell cycle-regulating,
tumor suppressor, oncogenic and therapeutic target proteins within
BCPIN.

Table 2 shows the distribution of essential proteins in the LCPIN zone. To assess
the LCPIN zone, we selected a list of human proteins that may be more important for
orthologous knockout in mice [5]. As shown below, we find that the highest proportion of
these proteins is found near the centre. Zones 1-4 have the highest percentage of essential
proteins, with 10.48%, 32.52%, 24.32%, 25, and 0% of the proteins in zones 1, 2, 3, 4, and
5, in order.

Table 2: Distribution of essential proteins in zones of BCPIN.

Zone Number of proteins Essential Total

1 1 11(10.48%)
2 105 40(32.52%)
3 123 27(24.32%) 85
4 111 7(25%)
5 28 0(0%)

Table 3 shows the distribution of signaling proteins in the LCPIN zone. Again, the
same observation was made for signaling proteins. They account for 20.95%, 32.52%,
46.84%, 25%, and 9.52% of the proteins present in zones 1, 2, 3, 4, and 5, respectively.
In addition, the centre was also determined as a protein that functions in signaling. The
signaling pathway has long been considered an attractive avenue for cancer therapy. The
authors of [3] showed that protein kinases are a class of enzymes that contribute signif-
icantly to regulating cell functions and controlling cell proliferation. Furthermore, this
protein kinase cascade has been shown to have particular utility in the treatment of can-
cer [29]. This offers additional evidence for the potential importance of proteins in the
central zone for drug target discovery.
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Table 3: Distribution of essential proteins in zones of BCPIN.

Zone Number of proteins Signalling Total

1 1 22(20.95%)
2 105 40(32.52%)
3 123 52(46.84%) 123
4 111 7(25%)
5 28 2(9.52%)

The distribution of growth proteins in the LCPIN zone is shown in Table 4. Exper-
imental evidence substantiates the involvement of the insulin-like growth factor (IGF)
signaling system in cancer progression, persistence, and treatment [11]. A small number
of proteins involved in growth function were found to be located in the central zone. These
include 0.95%, 2.43%, 2.70%, 0%, and 0% of zones 1-5, with proteins distributed accord-
ingly. This suggests that the central location zone may potentially be a good drug target.

Table 4: Distribution of growth proteins in zones of BCPIN.

Zone Number of proteins Growth Total

1 1 1(0.95%)
2 105 3(2.43%)
3 123 3(2.70%) 7
4 111 0(0%)
5 28 0(0%)

Table 5 shows the distribution of cell cycle proteins in the BCPIN zone. During the
cell cycle, zones 1 and 2 have the highest percentage of these proteins. They make up
19.51%, 9.85%, 2.19%, 0.80%, and 0 of proteins in zones 1-5, in that order. In [16], the
authors showed that established cell cycle kinases have limitations as potential targets for
anticancer drug discovery. This study also presented a new approach for the development
of therapeutic interventions to suppress tumor development and disease progression. This
provides compelling evidence of the importance of zone 1-3 proteins in cancer biology and
that many of them may be potential new drug targets.

Table 5: Distribution of cell cycle proteins in zones of BCPIN.

Zone Number of proteins Cell cycle Total

1 1 18(17.14%)
2 105 14(11.38%)
3 123 4(3.60%) 36
4 111 0(0%)
5 28 0(0%)

The distribution of suppressor proteins in the LCPIN zone is shown in Table 6. Proteins
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were exclusively localized in zones 1 and 2, with zones 1 and 2 containing the tumor
suppressors at 0.95% and 0.81%, respectively. While zones 3-5 lack tumor suppressors,
i.e.,0% exists in all cases.

Table 6: Distribution of suppressors proteins in zones of BCPIN.

Zone Number of proteins Suppressors Total

1 1 1(0.95%)
2 105 1(0.81%)
3 123 0(0%) 2
4 111 0(0%)
5 28 0(0%)

In Table 7, it is clear that zone 2, which has the highest proportion of proteins expressed
by oncogenes, predominates. These contain 0%, 2.43%, 0%, 0%, and 0% of proteins
in zones 1-5 respectively. According to a study conducted by the authors of [20], the
cascade is from oncogenes and tumor suppressors. It causes the development of metastatic
prostate cancer. Furthermore, they have been shown to have essential functions in the
development of human cancers [21]. Moreover, targeted therapy of these important tumor
suppressors and oncogenes shows promising therapeutic potential [17]. This demonstrates
the importance of zone 1-3 proteins in cancer biology and the potential of many of them
as potential new drug targets, as they are central to tumorgenesis and disease progression.

Table 7: Distribution of oncogenes proteins in zones of BCPIN.

Zone Number of proteins Oncogenes Total

1 1 0(0%)
2 105 3(2.43%)
3 123 0(0%) 3
4 111 0(0%)
5 28 0(0%)

Finally, zones 1-4 are enriched for successful drug targets. The distribution of these
proteins is shown in Table 8. These proteins account for 0.95%, 2.43%, 2.70%, and 3.57%
of the proteins in zones 1-4 respectively. In fact, this provides perhaps the most compelling
evidence for the importance of a centrally located zone potentially good for drug targets.

3.3. Distribution of MAPK signalling cascade, positive regulation and
negative regulation of signalling, apoptosis positively regulated and
negative regulation in lung cancer PIN

Table 10 shows that results related to MAPK signaling cascades, positive and negative
regulation of signaling, and positive and negative regulation of protein apoptosis show a
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Table 8: Distribution of successful drug target proteins in zones of BCPIN.

Zone Number of proteins Successful drug target Total

1 1 1(0.95%)
2 105 3(2.43%)
3 123 3(2.70%) 8
4 111 1(3.57%)
5 28 0(0%)

zonal predominance central location. In fact, the central location zone is good for drug
targets.

Table 9: Summary of the distribution of MAPK signalling cascade, positive regulation and negative regulation
of signalling, apoptosis positive regulation and negative regulation of protein in zones of BCPIN.

Zone MAPK signalling Positive signalling Negative signalling Apoptosis Positive apoptosis Negative apoptosis

1 3(2.85%) 4 (20.05%) 5 (4.76%) 0 (0%) 0 (0%) 0 (0%)
2 3 (2.43%) 4 (8.29%) 4 (3.25%) 1 (0.8%) 0 (0%) 1 (0.81%)
3 4 (3.60%) 4 (2.33%) 6 (5.40%) 0 (0%) 0 (0%) 0 (0%)
4 0 (0%) 0 (0.80%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
5 0 (0%) 1 (4.76%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

3.4. The central zones of LCPIN exhibit functional specialization

A pathway enrichment screening was conducted to assess the functional importance of
the identified topological patterns. The results showed that the zones near to the centre
contain important functions for LCPIN. Moreover, these zones exhibited functional spe-
cialization indicated by a high concentration of proteins near the centre (see Table ??).
Zone 1 regulates Gene Expression, Signaling, Immune system function, G1-G1/S Mitosis,
G2-G2/M Mitosis, Ribosome, Eukaryotic Translation Initiation, Regulation of mRNA sta-
bility by proteins that bind AU-rich elements, a marked accumulation of relevant proteins
was shown. This zone is thought to be a central hub, assumes a crucial involvement in
various biological processes, and has significant importance in both molecular and cellu-
lar biology. It governs fundamental mechanisms that regulate gene expression, cellular
signaling, immune system function, cell cycle progression, protein synthesis, and mRNA
stability. Zone 2 was also shown to be enriched for these pathways, albeit to a lesser
extent. In contrast, zones 3, 4 and 5 had lower enrichment levels compared to zones closer
to the centre. Furthermore, important process in cellular respiration, such as oxidative
phosphorylation, is governed by zones 4 and 5. These zones have exclusive control over
specific pathways that are not observable in any other areas. In fact, some pathways show
a decrease in the proportion of proteins in them as we move from the centre towards the
periphery and vice versa.
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Table 10: Summary of the distribution of MAPK signalling cascade, positive regulation and negative regulation
of signalling, apoptosis positive regulation and negative regulation of protein in zones of BCPIN.

Pathways with significant enrichment Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Gene Expression 87.61% 28.68% 18.91% - -
Metabolism of amino acids and derivatives 81.90% - - - -

Metabolism of proteins 88.57% 20.38% 26.12% - -
Signal Transduction 21.90% 28.45% 17.11% - -

Eukaryotic Translation Initiation 73.33% - - - -
Ribosome 72.38% - - - -

Mitotic G1-G1/S phases 12.38% - - - -
Mitotic G2-G2/M phases 12.38% 5.82% - - -

Regulation of mRNA stability by proteins that bind AU-rich elements 13.33% 5.69% - - -
Immune System 20% 18.69% 33.33% - -
Metabolism 82.85% - - 29.62% 80.95%

Respiratory electron transport - - - 14.28% 76.19%
Oxidative phosphorylation - - - 14.28% 57.14%

4. Discussion

In this article, we modeled LCPIN as a metric space and created a network struc-
ture, classifying proteins into different zones based on their graph-theoretic distance to
the central protein. Our network comprises 409 proteins and 4473 interactions. Analysis
revealed RPS27A as the central protein. This protein plays a critical role in various cellular
processes, including ribosome formation, translation regulation, cell proliferation, apop-
tosis regulation, cancer development, and cellular stress response [38] [25] [48] [36] [43].
Additionally, RPS27A interacts with proteins involved in MAPK signaling, cell cycle regu-
lation, and signal transduction. This suggests its potential involvement in multiple aspects
of cancer development and progression. Notably, MAPK signaling pathways are frequently
dysregulated in cancer, impacting cell growth, differentiation, and survival. RPS27A’s in-
volvement in signal modulation suggests its potential role in regulating various signaling
pathways that influence cell proliferation, apoptosis, and other cellular processes. Fur-
thermore, its association with cell cycle proteins implies its participation in cell division
and proliferation regulation. Dysregulation of cell cycle proteins can lead to uncontrolled
cell growth and tumor formation. Overall, our findings suggest that RPS27A is a multi-
faceted protein with significant roles in cancer. Its overexpression in various cancers and
involvement in crucial cellular processes highlight its potential as a promising candidate
for therapeutic interventions. Additionally, its association with drug resistance and poor
prognosis underscores its importance in clinical outcomes. Further research is necessary
to elucidate the mechanisms underlying the role of RPS27A in cancer and explore its
therapeutic potential.

Approximately 87% of proteins reside in zones 1 to 3. The average connectivity degree
is 60%, 12.5%, and 4.5% for zones 1, 2, and 3, respectively. This highlights the dense
core and sparse periphery of LCPIN, with proteins closer to the center exhibiting higher
connectivity. Nodes farther from the center tend to have lower connectivity degrees, with
some even being isolated (degree 1). Zones 1 to 3, closer to the network core, exhibit a
higher concentration of proteins essential for various cellular functions, including signaling,
cell cycle regulation, and apoptosis. These protein types are crucial in cancer biology and
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hold promise as potential drug targets. For example, U2AF1 and SF3B1 are oncogenes
involved in pre-mRNA splicing, with mutations linked to various cancers [6] [2]. Similarly,
H3F3A, another oncogene, plays a vital role in chromatin remodeling, gene expression,
and cellular differentiation. MCL1, an anti-apoptotic protein, regulates cell survival and
inhibits apoptosis. Its overexpression is associated with tumor progression and resistance
to chemotherapy in various cancers [23]. The SFN protein participates in diverse cellular
processes, including cell cycle regulation, signal transduction, and apoptosis, and has been
implicated in various cancers [14]. RBBP7, a crucial component in chromatin remodeling
factors, plays an essential role in cell cycle regulation, DNA repair, and transcriptional
control. Its involvement in various cellular processes is linked to tumorigenesis and can-
cer progression [39] [42]. PTEN, a tumor suppressor protein, plays a critical role in cell
survival, proliferation, and migration. Its function is often lost through mutation or dele-
tion, which is frequently observed in various types of cancer [18]. Notably, zones 1 to 3
display a high concentration of documented successful drug targets in the literature. This
finding strongly suggests the presence of abundant protein depots within these zones with
potential therapeutic applications.

Pathway enrichment analysis reveals distinct functional specializations across different
zones. For example, Zone 1 exhibits a higher concentration of proteins associated with
essential pathways, including the eukaryotic translation initiation process. This process
regulates gene expression, ensuring accurate protein synthesis, controlling protein pro-
duction, enabling cellular adaptation and response, influencing cell differentiation and
development, and has been implicated in various disease mechanisms [15]. Additionally,
Zone 1 plays a key role in amino acid metabolism and their derivatives, which are essential
for protein synthesis, energy production, biosynthesis of essential molecules, detoxification,
and maintaining nitrogen balance – all crucial for overall health and cellular function [40].

Ribosomes, also found in Zone 1, are essential for protein synthesis, a fundamental
process in all living organisms, supporting cellular activities, growth, development, and
survival [26]. Furthermore, the G1 and G1/S phases of the cell cycle, present in this zone,
are critical for cell growth, DNA repair, replication initiation, checkpoint control, cellular
differentiation, and development. These phases ensure accurate transmission of genetic
material and proper functioning of cells within an organism [28].

In contrast, Zone 2 is characterized by the regulation of mRNA stability by proteins
that bind AU-rich elements. This process is related to post-translational protein modifi-
cation, which can significantly influence cancer development and progression [13]. Finally,
Zones 4 and 5 are primarily associated with oxidative phosphorylation, a vital function for
cancer. This process is necessary for ATP production, providing energy for the growth and
proliferation of cancer cells. Notably, dysfunctional oxidative phosphorylation has been
observed across various cancer forms, often associated with aggressive and treatment-
resistant tumors [35]. Additionally, the respiratory electron transport chain, also present
in these zones, plays a crucial role in ATP production, regenerating electron carriers, man-
aging reactive oxygen species, and maintaining redox balance and regulation. Without this
critical process, cells would be unable to efficiently produce energy and carry out essential
metabolic functions [35].
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In summary, the analysis of pathway enrichment reveals functional specialization within
different zones. Zone 1 displays a higher concentration of proteins associated with diverse
pathways, such as the eukaryotic translation initiation process, amino acid metabolism,
and the cell cycle. Maintaining proper cellular function relies heavily on these processes.
Zone 2, on the other hand, is characterized by mRNA stability regulation and post-
translational protein modification, potentially impacting cancer development and progres-
sion. Finally, Zones 4 and 5 highlight the critical role of oxidative phosphorylation and the
respiratory electron transport chain in cancer, both of which are linked to aggressive and
treatment-resistant phenotypes. These findings strongly support the potential therapeutic
significance of the protein depots within these zones.

5. Conclusions

This study utilizes a metric space modeling approach to construct and explore the
topological properties of the lung cancer protein interaction network. Our analysis uncov-
ers RPS27A as a central hub within the network, implicated in diverse cellular processes
like ribosome biogenesis, translational regulation, cell proliferation, apoptosis control, and
oncogenesis. This central position suggests potential pleiotropic roles for RPS27A in cancer
progression, particularly in MAPK signaling, signal transduction, and cell cycle control.
The observed spatial distribution of essential, signaling, cell cycle, and apoptosis-related
proteins within central network zones highlights their potential significance in cancer biol-
ogy and as potential druggable targets. Notably, the presence of established drug targets
within these zones further bolsters the therapeutic potential of LCPIN proteins. How-
ever, further investigation is necessary to elucidate the precise mechanisms underlying
their involvement in cancer and translate this knowledge into effective therapeutic strate-
gies. Additionally, pathway enrichment analysis reveals distinct functional specializations
within different network zones, providing valuable insights into the functional landscapes
contributing to cellular dysfunction and disease progression. These findings establish a
robust framework for future studies and pave the way for the development of novel ther-
apeutic interventions targeting specific network zones and pathways. In conclusion, this
study unveils the multifaceted roles of central LCPIN proteins and underscores the net-
work’s potential as a valuable resource for identifying novel therapeutic targets in lung
cancer.
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[21] Karl Münger. Disruption of oncogene/tumor suppressor networks during human car-
cinogenesis. Cancer investigation, 20(1):71–81, 2002.

[22] Francesca Nazio, Matteo Bordi, Valentina Cianfanelli, Franco Locatelli, and Francesco
Cecconi. Autophagy and cancer stem cells: molecular mechanisms and therapeutic
applications. Cell Death & Differentiation, 26(4):690–702, 2019.

[23] Rhonda M Perciavalle and Joseph T Opferman. Delving deeper: Mcl-1’s contributions
to normal and cancer biology. Trends in cell biology, 23(1):22–29, 2013.

[24] Laura Francesca Pisani, Isabella Teani, Maurizio Vecchi, and Luca Pastorelli.
Interleukin-33: Friend or foe in gastrointestinal tract cancers? Cells, 12(11):1481,
2023.

[25] Giuseppina Raspaglio, Flavia Filippetti, Silvia Prislei, Roberta Penci, Ilaria De Maria,
Lucia Cicchillitti, Simona Mozzetti, Giovanni Scambia, and Cristiano Ferlini. Hypoxia
induces class iii beta-tubulin gene expression by hif-1α binding to its 3’flanking region.
Gene, 409(1-2):100–108, 2008.



REFERENCES 919

[26] Marina V Rodnina and Wolfgang Wintermeyer. Fidelity of aminoacyl-trna selection
on the ribosome: kinetic and structural mechanisms. Annual review of biochemistry,
70(1):415–435, 2001.
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