EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 2, 2024, 721-724 ISSN 1307-5543 — ejpam.com Published by New York Business Global

Note on irreducible polynomials over $\mathbb{F}_q[X]$

Alanod M. Sibih

Department of Mathematics, Jamoum University College, Umm Al-Qura University, Holly Makkah 21955, Saudi Arabia

Abstract. In this note, we provide a new criterion of polynomials's irreducibility over $\mathbb{F}_q[X]$, where \mathbb{F}_q is a finite field.

2020 Mathematics Subject Classifications: 11Txx, 11T55

Key Words and Phrases: Polynomials, irreducibility, criterion, finite fields.

1. Introduction

A polynomial is reducible over a given field if it can be expressed as a product of lower degree polynomials with coefficients in the same field. Otherwise, it is called to be irreducible.

We are interested in determining if a particular polynomial is irreducible or not. As a result, a simple test or criterion for obtaining this information is desirable.

Unfortunately, no such criterion that applies to all classes of polynomials has yet been developed; nonetheless, a number of tests, or irreducibility criteria, have been discovered so far that provide useful information for some specific classes of polynomials.

This article focuses on irreducible polynomials with coefficients in $\mathbb{F}_q[X]$, where over \mathbb{F}_q is a finite field.

A. Chandoul et al. [2], proved a widely accepted irreducibility criterion, which states that:

Theorem 1. If $\Lambda(Y) = Y^d + \lambda_{d-1}Y^{d-1} + \cdots + \lambda_0$ be a polynomial with $\lambda_i \in_q [X]$, $\lambda_0 \neq 0$ and $\deg \lambda_{d-1} > \deg \lambda_i$, for each $i \neq d-1$. Then Λ is irreducible over q[X].

This result was the starting point for many researches and the exploration of new criterions, see [1, 3]. For older results, see [4, 5]. In this note, we provide a new criterion of polynomials's irreducibility over $\mathbb{F}_q[X]$.

721

DOI: https://doi.org/10.29020/nybg.ejpam.v17i2.5095

Email address: amsibih@uqu.edu.sa (A. M. Sibih)

2. Preliminaries

Let \mathbb{F}_q be the finite field and denote by $\mathbb{F}_q[X]$ the ring of polynomials with coefficients in \mathbb{F}_q and by $\mathbb{F}_q(X)$ the quotient field of $\mathbb{F}_q[X]$. Let $\mathbb{F}_q((X^{-1}))$ be the field of Laurent formal power series defined as follows:

$$\mathbb{F}_q((X^{-1})) = \{ \sum_{n \ge n_0} a_n X^{-n}, \ a_n \in \mathbb{F}_q \text{ and } n_0 \in \}.$$

For
$$w = \sum_{n=n_0}^{+\infty} a_n X^{-n} \in \mathbb{F}_q((X^{-1}))$$
, we define the integer part $[w]$ of w by $[w] = \sum_{n=n_0}^{0} a_n X^{-n}$

if
$$n_0 \le 0$$
 and $[w] = 0$ if $n_0 > 0$, the fractional part of w by $\{w\} = w - [w] = \sum_{n=-1}^{+\infty} a_n X^{-n}$.

We have a non-archimedean absolute value $|\cdot|$ on $\mathbb{F}_q((X^{-1}))$, namely, for any element $w \in \mathbb{F}_q((X^{-1}))$ having the form

$$w = \sum_{n=n_0}^{+\infty} a_n X^{-n} \qquad (a_n \in \mathbb{F}_q),$$

we define $|w| = e^{-n_0}$ if $w \neq 0$, where n_0 is the smallest index verifying $a_{n_0} \neq 0$, and |w| = 0 if w = 0. We know that $\mathbb{F}_q((X^{-1}))$ is complete and locally compact with respect to the metric defined by this absolute value.

We denote by $\overline{\mathbb{F}}_q((X^{-1}))$ an algebraic closure of $\mathbb{F}_q((X^{-1}))$. We note that the absolute value has a unique extension to $\overline{\mathbb{F}}_q((X^{-1}))$. To denote this extended absolute value, we also use the symbol $|\cdot|$.

3. Main results

Theorem 2. Let \mathbb{F}_q be a finite field of caracteristic $p, n \geq 2$ and let

$$P(Y) = A_s Y^s + A_{s-1} Y^{s-1} + A_{s-2} Y^{s-2} + \dots + A_1 Y + A_0$$

be a polynomial over $\mathbb{F}_q[X]$, such that $A_sA_{s-1}A_0 \neq 0$, A_s and A_{s-1} has a same irreducible factor B, with $lcm(A_{s-1},B)=B^m$ $(A_{s-1}=B^ma_{s-1})$ and $lcm(A_s,B)=B^n$ $(A_s=B^na_s)$. If

$$n > ms + \frac{(s-1)(degA_s - m\deg B) + M}{degB}$$

with $M = \max(\underset{i \neq s}{\text{deg}} Ai)$, then P is irreducible over $\mathbb{F}_q[X]$.

Proof. Suppose that P(Y) = Q(Y)H(Y), where $Q, H \in \mathbb{F}_q[X][Y]$. let

$$Q(Y) = Q_j Y^j + Q_{j-1} Y^{j-1} + Q_{j-2} Y^{j-2} + \dots + Q_1 Y + Q_0$$

and $H(Y) = H_k Y^k + H_{k-1} Y^{k-1} + H_{k-2} Y^{k-2} + \dots + H_1 Y + H_0$

where j + k = s, $Q_j H_k = A_s$, $Q_0 H_0 = A_0$ and $A_{s-1} = Q_j H_{k-1} + H_k Q_{j-1}$. Let $B^d = lcm(Q_j, B)$, $(Q_j = B^d q_j)$, then $B^{n-d} = lcm(H_k, B)$ $(H_k = B^{m-d} h_k)$ and we must have $m \ge d$.

Consider the factorisation of P and Q in $\overline{\mathbb{F}_q((X^{-1}))}$, we have

$$P(Y) = A_s(Y - \omega_1) \cdots (Y - \omega_n)$$
and
$$Q(Y) = Q_j(Y - \omega_1) \cdots (Y - \omega_j)$$

where $\omega_i \in \overline{\mathbb{F}_q((X^{-1}))}$, for all $i := 1, \dots, n$.

Consider, now, the nonarchimedean absolute value, and set a real number $\alpha \geq 0$ such that

$$|A_s| > e^{\alpha} \max_{i \neq s} |A_i|$$

then, using the viète theorem, we have

$$|\omega_1 \cdots \omega_s| = |\omega_1| \cdots |\omega_s| = \frac{|A_0|}{|A_s|} < \frac{|A_0|}{e^{\alpha} \max_{i \neq s} |A_i|} < \frac{1}{e^{\alpha}},$$

thus, for any $j := 1, \dots, n$, we must have $|\omega_j| < \frac{1}{e^{\alpha/s}}$. So that, we get

$$|\omega_1\cdots\omega_j|<\frac{1}{e^{j\alpha/s}}.$$

On the other hand, we have

$$|\omega_1 \cdots \omega_j| = \left| \frac{Q_0}{Q_j} \right| = \left| \frac{Q_0}{B^d q_j} \right| \ge \frac{1}{|B^m| |a_s|}.$$

To reach a contraduction, it is still necessary to chose α such that

$$\frac{1}{|B^m|\,|a_s|} \ge \frac{1}{e^{j\alpha/s}}.$$

It can be sufficient to choose α such that

$$|B^m|\,|a_s| \le e^{\alpha/s}.$$

Or, equivalently

$$\alpha \ge sm \deg B + s(\deg A_s - n \deg B).$$

A conceivable value for α is $sm \deg B + s(\deg A_s - n \deg B)$, which leads to a contradiction if $n > ms + \frac{(s-1)(\deg A_s - m \deg B) + M}{\deg B}$ where $M = \max(\deg Ai)$, what was to be proved.

REFERENCES 724

References

- [1] M Ben Nasr and Hassen Kthiri. Characterization of 2-pisot elements in the field of laurent series over a finite field. *Mathematical Notes*, 107:552–558, 2020.
- [2] A Chandoul, M Jellali, and M Mkaouar. Irreducibility criterion over finite fields. *Communications in Algebra*, 39(9):3133–3137, 2011.
- [3] Amara Chandoul and Alanod M Sibih. Note on irreducible polynomials over finite field. European Journal of Pure and Applied Mathematics, 14(1):265–267, 2021.
- [4] HL Dorwart. Irreducibility of polynomials. The American Mathematical Monthly, 42(6):369–381, 1935.
- [5] Ravindranathan Thangadurai. Irreducibility of polynomials whose coefficients are integers. *Mathematics Newsletter*, 17:29–61, 2007.