Finite Groups with Certain Weakly S-permutable Subgroups
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i2.5120Keywords:
Sylow subgroups , S-permutable subgroups, weakly S-permutable subgroups, p-nilpotent groupsAbstract
Let G be a finite group. A subgroup H of G is said to be weakly S-permutable in G if G has a subnormal subgroup T such that G = HT and T ∩ H ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are S-permutable in G. In this paper, we prove the following: For a Sylow p-subgroup P of G (p > 2), suppose that P has a subgroup D such that 1 < |D| < |P| holds and all subgroups H of P with |H| = |D| are weakly S-permutable in G. Then, the commutator subgroup G ′ is p-nilpotent. We certainly belive that this result will improve and extend a current and classical theories in the literature.
Downloads
Published
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.