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Abstract. The relaxation-oscillation differential equation serves as the fundamental model gov-
erning the description of relaxation-oscillation processes with notable applications in fluid flow
and oscillation dynamics. The present study seeks the help of the unswerving Adomian Decom-
position Method (ADM) to construct a generalized recurrent scheme for the relaxation-oscillation
differential equation conferred with the ψ-Caputo fractional derivative. Moreover, fractional-order
derivatives are known for unearthing the hidden features that the classical integer-order deriva-
tives are deficient in revealing. Thus, the outcomes acquired through this method when applied
to certain ψ-Caputo fractional Cauchy problems prove to be precise and steadfast in contrast to
those attained using previously studied methods for solving this equation.
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1. Introduction

In recent times, fractional calculus has attracted much concern in favor of its capa-
bility to perfectly model real-life scenarios with profound insights. Lately, the theory of
non-classical derivatives has been comprehensively employed in various science and techno-
logical engineering fields, counting rheology [19], anomalous diffusion [33], bioengineering
[23], modeling of viscoelastic dampers [22] and others [32, 34]. During the theoretical devel-
opment of fractional calculus, many fractional differential and integral operators emerged
with specific motives and were used by contemporary researchers. Indeed, some of the most
used fractional operators include the Riemann-Liouville [36], Caputo, Caputo-Hadamard,
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Hadamard, Caputo-Erdelyi-Kober, [27], Hilfer [28], conformable [26] and Erdelyi-Kober
[4] operators to mention a few. Furthermore, the concept of a fractional differentiation
with regard to a given arbitrary function was initiated by Kilbas et al. [4] using the
Riemann-Liouville fractional thought. Since then, a lot of definitions have followed suit,
including the most used ψ-Caputo fractional derivative that was initiated by Almeida [5],
extending the original concept of the Caputo fractional derivative to equally incorporate
an arbitrary function ψ that satisfies certain impositions. [8] explored the uniqueness and
existence results for the solutions of nonlinear Fractional Differential Equations (FDEs)
that involve a ψ-Caputo derivative; this work plays an instrumental role in consolidat-
ing various fractional operators. In addition, recent studies on the ψ-Caputo differential
operators suggest that FDEs featuring the ψ-Caputo fractional differentials offer greater
flexibility and yield favorable results in various scenarios. Almeida, in a study focusing
on world population growth, employed the ψ-Caputo derivative and showcased that the
model’s accuracy relies on carefully choosing the fractional operator. Additionally, opting
for a suitable trial function is vital for accurately representing physical phenomena and
improves the practical applicability of the approach from a standpoint [6, 8, 14].

Besides, various scientists have extensively employed the ψ-Caputo fractional derivative
and investigated its diverse qualitative properties. In addition, the ψ-Caputo fractional
derivatives serve as highly effective tools for modeling various real-world physical phenom-
ena, showcasing their ability to reveal hidden features. As in [12] the experimental findings
regarding the modeling of drug concentration levels in blood indicate that the ψ-Caputo
method, employing a pure kernel function, yielded the highest performance. This was
followed by a simple fractional approach, with the classical method performing last. Also,
in this investigation [13], when the population’s carrying capacity is significantly high and
experiences restricted growth, the logistic and exponential approaches align. Nevertheless,
these methods may not be appropriate for modeling the growth of such populations. In
both scenarios, the ψ-Caputo method minimized error.

The literature presents various methods for the acquisition of both analytical and
computation solutions for the defeenet type of ψ-FDEs, such as [31] introduce a wavelet
method for the solution of linear and nonlinear ψ-Caputo fractional initial and boundary
value problem, also paper [11] introduces a methodology for examining finite-approximate
controllability in Hilbert spaces for linear/semilinear v-Caputo fractional evolution equa-
tions, in paper [10], the authors examine adequate conditions for both the existence and
stability of solutions to a coupled system involving ψ-Caputo hybrid fractional derivatives.
These derivatives have orders ranging from 1 to 2 and are subjected to Dirichlet bound-
ary conditions. And in [38] They introduce a new Pharmacokinetic/ Pharmacodynamic
(PK/PD) model specifically for the induction phase of anesthesia, which incorporates the
ψ-Caputo fractional derivative. This model utilizes the Picard iterative process.

Moreover, the model of study in this manuscript is the relaxation-oscillation equation
which models the dynamics of fluid flow and oscillation processes. The relaxation oscillator
is an oscillator type reliant on the behavior of a given phenomenon to go back to an
equilibrium state after experiencing a disturbance or distribution. In addition, this model
stands as the fundamental equation governing the processes of relaxation and oscillation.
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Thus, the equation that presides over the relaxation process is given by the following
differential equation [17]

dy

dx
+ λy(x) = f(x), (1)

where λ is the material constant, while the function f(x) represents strain rate. Moreover,
when f(x) = 0, the equation admits the following exact solution y(x) = Ce−λx, with C
serving as an arbitrary constant to be determined with the imposed initial data. In the
same direction, the governing equation presiding over the oscillation process is considered
as follows

d2y

dx2
+ λy(x) = f(x), (2)

where λ = k
m , k denotes the stiffness coefficient, while m represents the mass of the

media. Equally, when f(x) = 0, the exact solution of the equation is found to be y(x) =
A cos

√
λx+B sin

√
λx, where A and B are constants to be obtained from the constrained

initial data.
Now, the concept of fractional calculus has allowed us to simultaneously get a sense

of the relaxation and oscillation processes using one fractional differential equation with
a varying fractional-order derivative. Thus, to simultaneously account for slow relaxation
and damped oscillation processes, the two equations above are now combined to result in
the fractional relaxation-oscillation model as follows

Dαy(x) + λy(x) = f(x), α ∈ (0, 2)\{1}, x > 0, (3)

whereDα is a given fractional-order derivative. In addition, the relaxation process requires
the following initial condition

y(0) = y0, when 0 < α < 1, (4)

while the oscillation process needs the following initial data

y(0) = y0, y
′(0) = y1, when 1 < α < 2. (5)

In summary, considering the Initial-Value Problem (IVP) (3)-(5), one may see that for

• 0 < α < 1, the IVP (3) and (4) represents the relaxation process with attenuation
power law,

• 1 < α < 2, the IVP (3) and (5) describes the damped oscillation process with
viscoelastic intrinsic oscillator damping.

This model has been applied to various processes, including the description of cardiac
pacemakers [17], predator-prey systems [15] and [24, 30] among others. In addition, as the
fractional calculus plays a vital role in unraveling some of the salient features associated
with certain physical models, different scientists have equally deployed various approaches
to construct different numerical solutions for the fractional relaxation-oscillation model,
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including the application of residual power series method [9], block-by-block method [40]
and the B-spline cubic wavelet collocation approach [18] to mention a few.

However, motivated by the given studies above and the quest for unraveling some
hidden properties embedded in the fractional relaxation-oscillation equation, the need for
ψ-Caputo fractional relaxation-oscillation IVP thus aroused, which is modeled to have the
following expression

Dα,ψ
a y(x) + λy(x) = f(x), max{n− 1,

1

2
} < α < n, n ∈ N, a < x < b, (6)

under the initial conditions

(δψ)
ky(a) = yk, k = 0, 1, . . . , n− 1, (7)

where Dα,ψ
a is the fractional derivative defined using the ψ-Caputo fractional of order α,

with both ψ, f : [a, b] → [0, 1], where ψ is a non-decreasing function in Cn(I) such that
ψ(I) = [0, 1], and ψ′(x) > 0; while λ is a non-zero real constant.

Moreover, for k = 0, 1, . . . , n− 1,

(δψ)
ky(x) =

{
y(x), when k = 0,(

1
ψ′(x)

d
dx

)k
y(x), when k = 1, 2, . . . , n− 1.

In addition, the problem (6)-(7) has been examined in [7] using the operational matrix of ψ-
shifted Legendre polynomials and in [35] by using the ψ-Haar Wavelet operational matrix
method. Similarly, when 0 < α < 1, the ψ-fractional IVP represents the relaxation process
with power law attenuation; while when 1 < α < 2, the ψ-fractional IVP describes the
damped oscillation development with viscoelastic intrinsic oscillator damping. In addition,
we state some of the extensions of the governing model to have application in immersed
spheres in fluid and coupled relaxation-oscillation equations in [39] and [21], respectively,
among others, where the authors used variants of coupling between the Laplace transform
and other mathematical infusions.

However, motivated by the immense application of the governing model and the burn-
ing relevance of the ψ-Caputo fractional derivative, the present manuscript thus aimed
at developing a technique for rapidly approximating solutions to a particular fractional
relaxation-oscillation equation that involves the ψ-Caputo derivative. To achieve this, we
employ the Adomian Decomposition Method (ADM), a robust and extensively utilized
approach. Since its inception in 1980, ADM has been widely applied to solving both
nonlinear and linear problems across diverse domains. Recently, it has gained significant
traction as an effective tool for tackling a broad spectrum of Fractional Differential Equa-
tions (FDEs), comprising for instance, the study of FDEs with modification procedures
of ADM [16], the examination of FDEs with augmented ADM [3], the analysis of frac-
tional Bernoulli’s equation via ADM [25] and the scrutinizing heat transfer process wing
fractional including with the help of ADM [29] to mention but a few. The Adomian decom-
position method has garnered growing interest in examining both its convergence and the



M. Alsulami et al. / Eur. J. Pure Appl. Math, 17 (3) (2024), 2311-2328 2315

stability of its solutions. Numerous studies have delved into investigating convergence and
stability, as exemplified here, without reiterating the same information see [1, 2, 20, 37].

Lastly, the organization of the manuscript goes in the following pattern: In the first
section, the introduction is given. In section 2, we present some preliminaries and essential
definitions which are used to carry out our work. We derive an explicit scheme for treating
ψ-Caputo fractional relaxation-oscillation models based on ADM in section 3. Section 4
presents several numerical examples showcasing the correctness and effectiveness of the
devised approach. Finally, the last section provides some concluding notes.

2. Basic definitions

In the current section, we provide some essential definitions of ψ-fractional operators
along with their fundamental properties.

Definition 1.
If y : I → R is an integrable function, where I = [a, b] and α ∈ R, n ∈ N and ψ(x) ∈ Cn(I)
upon which ψ′(x) ̸= 0 ∀x ∈ I. Then, the fractional integral and fractional derivatives of
order α > 0 of the function y with regard to another function ψ are defined as follows [5]

Iα,ψa y(x) := {Γ(α)}−1
∫ x

a
ψ′(t)(ψ(x)− ψ(t))−1+αy(t)dt, (8)

and

Dα,ψ
a+

y(x) :=

(
1

ψ′(x)

d

dx

)n
In−α,ψ
a+

y(x),

= {Γ(n− α)}−1

(
1

ψ′(x)

d

dx

)n ∫ x

a
ψ′(t)(ψ(x)− ψ(t))−1−α+ny(t)dt,

sequentially, with n = 1 + [α].

Definition 2.
Given the interval I = [a, b] with α > 0, n ∈ N. The ψ-Caputo fractional derivative of
order α > 0 of the function y is defined as follows [5]

CDα,ψ
a y(x) = In−α,ψ

a+

(
1

ψ′(x)

d

dx

)n
y(x),

= {Γ(n− α)}−1
∫ x

a
ψ′(t)(ψ(x)− ψ(t))n−α−1y

[n]
ψ (t)dt,

where both the functions ψ(x) and y ∈ Cn(I) with the condition that ψ is increasing and
ψ′(x) ̸= 0 ∀x ∈ I. Further, {

n = α, for α ∈ N,
n = 1 + [α], for α /∈ N.
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Remarkably, the definition above reduces to some well-known fractional operators upon
choosing particular cases for the function ψ(x) as follows [5]:

• ψ(x) = x refers to the classical Riemann-Liouville and Caputo fractional operators,

• ψ(x) = ln(x) refers to the classical Hadamard and Caputo-Hadamard fractional
operators.

In addition, considering y(x) = (ψ(x)− ψ(a))β−1 where β ∈ R, β > n, α > 0, certain vita
features for ψ(x)-fractional operators are thus deduced as follows [5]:

•
CDα,ψ

a+
y(x) =

Γ(β)

Γ(β − α)
(ψ(x)− ψ(a))β−α−1, (9)

•
Iα,ψa y(x) =

Γ(β)

Γ(β + α)
(ψ(x)− ψ(a))β+α−1, (10)

•

Iα,ψa

(
CDα,ψ

a y(x)
)
= y(x)−

n−1∑
k=0

y
[k]
ψ (a)

k!
(ψ(x)− ψ(a))k. (11)

Moreover, when α ∈ (0, 1), the last result reduces to

Iα,ψa

(
CDα,ψ

a y(x)
)
= y(x)− y(a). (12)

3. Adomian decomposition method for ψ-Caputo fractional
relaxation-oscillation equation

The current section makes use of the standard ADM to derive a generalized recursive
scheme for solving a fractional relaxation-oscillation equation endowed with the ψ-Caputo
derivative. Thus, in doing so, let us again consider the IVP (6)-(7) for the fractional
relaxation-oscillation equation involving the arbitrary function ψ as follows

Dα,ψ
a y(x) + λy(x) = f(x), max{n− 1,

1

2
} < α < n, n ∈ N, a < x < b, (13)

under the following imposed initial conditions

(δψ)
ky(a) = yk, k = 0, 1, . . . , n− 1. (14)

Therefore, to solve the IVP for ψ-Caputo relaxation-oscillation equation expressed in (13)-

(14) by the application of ADM, we operate the operator Iα,ψa on the governing equation
to get

Iα,ψa [Dα,ψ
a y(x)] + Iα,ψa [λy(x)] = Iα,ψa [f(x)]. (15)
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In addition, when using the information expressed in (11), alongside utilizing the imposed
initial conditions, the above ψ-fractional equation takes the following form

y(x)−
n−1∑
k=0

(δψ)
ky(a)

k!
(ψ(x)− ψ(a))k + Iα,ψa [λy(x)] = Iα,ψa [f(x)], (16)

or alternatively

y(x) =

n−1∑
k=0

(δψ)
ky(a)

k!
(ψ(x)− ψ(a))k − λIα,ψa [y(x)] + Iα,ψa [f(x)]. (17)

Further, the standard ADM defines the solution y(x) by the following infinite series

y(x) =

∞∑
n=0

yn(x), (18)

which when substituted into (17) yields the following

∞∑
n=0

yn(x) =

n−1∑
k=0

(δψ)
ky(a)

k!
(ψ(x)− ψ(a))k + Iα,ψa [f(x)]− λIα,ψa [

∞∑
n=0

yn(x)], (19)

and admitting the generalized recurrent relation as follows{
y0(x) =

∑n−1
k=0

(δψ)
ky(a)
k! (ψ(x)− ψ(a))k + Iα,ψa [f(x)],

yn(x) = −λIα,ψa [yn−1(x)], n ≥ 1.
(20)

Additionally, many researchers have formally shown that when an exact solution exists,
the resulting series converges remarkably fast to the available exact solution. All of yn(x)
are calculable, and y(x) =

∑∞
n=0 yn(x). Indeed, as the series converges very quickly, the

n-term partial sum

ϕn(x) =

n−1∑
i=0

yi(x), (21)

serves as an exact solution with the closed-form solution taking the following form

y(x) = lim
n→∞

ϕn(x) =

∞∑
i=0

yi(x). (22)

4. Numerical applications

The current section assesses the competency of the proposed scheme for the solution
of ψ-Caputo relaxation-oscillation equation via fractional IVPs involving various forms of
strain rate functions ψ(x). Besides, the section also attempts to graphically portray some
of the acquired solutions for visualization.
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Example 1. Consider the IVP for ψ-fractional oscillator equation [7]

D
3/2,ψ
0 y(x) +

2

Γ(3/2)
y(x) =

2

Γ(3/2)
(
√
ψ(x))(1 + (ψ(x))3/2), x ∈ I = [0, 1], (23)

subject to the following constrained initial condition

y(0) = y′(0) = 0. (24)

Remarkably, the present ψ-fractional problem in (23)-(24) has a unique exact solution as
(cf [8])

y∗(x) = (ψ(x))2, x ∈ I. (25)

To solve the governing ψ-fractional IVP with the help of ADM, we operate both sides

of (23) by the ψ-fractional integral I
3/2,ψ
0 to obtain

I
3/2,ψ
0

[
D

3/2,ψ
0 y(x)

]
+I

3/2,ψ
0

[
2

Γ(3/2)
y(x)

]
= I

3/2,ψ
0

[
2

Γ(3/2)
(
√
ψ(x))(1+(ψ(x))3/2)

]
. (26)

Next, upon using the result of (11) and the initial conditions in (24), one obtains from
the latter equation the following

y(x) + I
3/2,ψ
0

[
2

Γ(3/2)
y(x)

]
= I

3/2,ψ
0

[
2

Γ(3/2)
(
√
ψ(x))(1 + (ψ(x))3/2)

]
, (27)

or equally

y(x) = −I3/2,ψ0

[
2

Γ(3/2)
y(x)

]
+ I

3/2,ψ
0

[
2

Γ(3/2)
(
√
ψ(x))(1 + (ψ(x))3/2)

]
. (28)

Now, on deploying the ADM procedure, the last equation becomes

∞∑
n=0

yn(x) = −I3/2,ψ0

[
2

Γ(3/2)

∞∑
n=0

yn(x)

]
+ I

3/2,ψ
0

[
2

Γ(3/2)
(
√
ψ(x))(1 + (ψ(x))3/2)

]
, (29)

which eventually leads to the acquisition of the resulting recurrent scheme as follows
y0(x) = I

3/2,ψ
0

[
2

Γ(3/2)(
√
ψ(x))(1 + (ψ(x))3/2)

]
,

yn(x) = −I3/2,ψ0

[
2

Γ(3/2)yn−1(x)

]
, n ≥ 1.

(30)

Besides, when the above recurrent scheme is expressed, some of the few components from
the scheme are obtained as follows

y0(x) =
(
ψ(x)

)2
+

128
(
ψ(x)

) 7
2

105π
,
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y1(x) = −
128

(
ψ(x)

) 7
2

105π
−

4
(
ψ(x)

)5
15π

,

...

Remarkably, it is worth noting here that some noise terms arise in the recurrent
solution of the present model, particularly, concerning y0(x) and y1(x) components as

±
(128(ψ(x)) 7

2

105π

)
. Thus, when adding just these two components, the noise terms will even-

tually cancel out; thereby leaving behind the exact solution of the problem (23)-(24) as
follows

y(x) =
∞∑
n=0

yn(x) =
(
ψ(x)

)2
. (31)

Indeed, for certain special cases of interest concerning the choice of the function ψ, we
present the following solution cases

when ψ(x) = x, then y(x) = x2,

when ψ(x) = x
2 (x+ 1), then y(x) =

(
x
2 (x+ 1)

)2
,

when ψ(x) = ln((e− 1)x+ 1), then y(x) =
(
ln((e− 1)x+ 1)

)2
,

when ψ(x) = tan(πx4 ), then y(x) =
(
tan(πx4 )

)2
,

(32)

with the case of ψ(x) = x featuring the state of the Caputo fractional derivative. Moreover,
Almeida et al. [7] solved the linear version of the model expressed in (23)-(24) through the
application of operational matrix by introduce shifted Legendre polynomial and obtained
approximate solution. However, the ADM which is a semi-analytic method gives us a
noise term which reveals the exact solution while using only 2 terms and that offers an
advantage because it tends to converge to exact solution more effectively compared to
numerical methods, Consequently, it leads to a reduction in computational complexity. In
addition, we have shown in Figure 1, the graphical presentation of the acquired ψ-ADM
solution for different kernels for the ψ-fractional-order IVP (23)-(24).
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(a) ψ(x) = x (b) ψ(x) = x(x+1)
2

(c) ψ(x) = ln((e− 1)x+ 1) (d) ψ(x) = tan(πx4 )

Figure 1: ADM solutions with respect to the different kernels for the ψ-fractional IVP
(23)-(24).

Example 2. Consider the IVP for ψ-fractional relaxation-oscillation equation [35]

Dα,ψy(x)+
Γ(2α+ 1)

Γ(α+ 1)
y(x) =

Γ(2α+ 1)

Γ(α+ 1)
(ψ(x))α

[
1+(ψ(x))α

]
, 0 < α ≤ 1, x ∈ [0, 1], (33)

together with the following initial data

y(0) = 0. (34)

The exact analytical solution for the model (33)-(34) is established as follows

y∗(x) = (ψ(x))2α, x ∈ [0, 1]. (35)

To solve problem (33)-(34) with the aid the ADM, we operate the operator Iα,ψ on
both sides of the governing equation to obtain

Iα,ψ
[
Dα,ψy(x)

]
+ Iα,ψ

[
Γ(2α+ 1)

Γ(α+ 1)
y(x)

]
= Iα,ψ

[
Γ(2α+ 1)

Γ(α+ 1)
(ψ(x))α

[
1 + (ψ(x))α

]]
. (36)

In addition, upon using (11), and the given initial condition, the latter equation becomes

y(x) = −Iα,ψ
[
Γ(2α+ 1)

Γ(α+ 1)
y(x)

]
+ Iα,ψ

[
Γ(2α+ 1)

Γ(α+ 1)
(ψ(x))α

[
1 + (ψ(x))α

]]
, . (37)
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In addition, the standard ADM procedure necessitates the above equation to be expressed
in series form as follows

∞∑
n=0

yn(x) = −Iα,ψ
[
Γ(2α+ 1)

Γ(α+ 1)

∞∑
n=0

yn(x)

]
+ Iα,ψ

[
Γ(2α+ 1)

Γ(α+ 1)
(ψ(x))α

[
1 + (ψ(x))α

]]
, (38)

which then reveals the following formal recursive relation
y0(x) = Iα,ψ

[
Γ(2α+1)
Γ(α+1) (ψ(x))

α

[
1 + (ψ(x))α

]]
,

yn(x) = −Iα,ψ
[
Γ(2α+1)
Γ(α+1) yn−1(x)

]
, n ≥ 1.

(39)

Therefore, when the above recurrent scheme is expressed, some of the few components
from the scheme are obtained as follows

y0(x) = (ψ(x))2α +
Γ(2α+ 1)

Γ(α+ 1)

Γ(2α+ 1)

Γ(3α+ 1)
(ψ(x))3α,

y1(x) = −Γ(2α+ 1)

Γ(α+ 1)

Γ(2α+ 1)

Γ(3α+ 1)
(ψ(x))3α − Γ(2α+ 1)3

Γ(α+ 1)2Γ(4α+ 1)
(ψ(x))4α.

...

Notably, noise terms ±
(

Γ(2α+1)
Γ(α+1)

Γ(2α+1)
Γ(3α+1)(ψ(x))

3α

)
, arise between the components y0(x)

and y1(x), upon which when cancelled gives the exact solution for the problem (33)-(34)
as follows

y(x) =

∞∑
n=0

yn(x) = (ψ(x))2α. (40)

Accordingly, for certain special cases of interest concerning the choice of the function ψ,
we present the following solution cases

when ψ(x) = x, then y(x) = (x)2α,

when ψ(x) = 1
3(x

3 − x2 − x), then y(x) =
(
1
3(x

3 − x2 − x)
)2α

,

when ψ(x) = x3

15 , then y(x) =
(
x3

15

)2α
,

when ψ(x) = x+ 1, then y(x) =
(
x+ 1

)2α
,

(41)

with the case of ψ(x) = x featuring the state of the Caputo fractional derivative.
Consequently, Sunthrayuth et al. [35] equally solved the linear version of the ψ-

fractional model expressed using the ψ-Haar wavelet operational matrix method, allows us
to obtain an approximate solution. However, the ADM which is a semi-analytic method
gives us a noise term which reveals the exact solution while using only 2 terms and that of-
fers an advantage because it tends to converge to exact solution more effectively compared
to numerical methods, Consequently, it leads to a reduction in computational complexity.
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In addition, we report in Figure 2 ADM solutions for different choices of α and ψ for the
governing ψ-fractional IVP (33)-(34).

(a) ψ(x) = x (b) ψ(x) = 1
3 (x

3 − x2 − x)

(c) ψ(x) = x3

15 (d) ψ(x) = x+ 1

Figure 2: ADM solutions for different choices of α and ψ for the ψ-fractional IVP (33)-
(34).

Example 3. Consider the IVP for ψ-fractional relaxation-oscillation equation [35]

Dα,ψy(x)+y(x) = 1−4ψ(x)+5(ψ(x))2− 4

Γ(2− α)
(ψ(x))1−α+

10

Γ(3− α)
(ψ(x))2−α, (42)

where 0 < α ≤ 1, together with the following initial data

y(0) = 1. (43)

In addition, the exact analytical solution of the present model (42)-(43) can be found to be

y∗(x) = 1− 4ψ(x) + 5(ψ(x))2, x ∈ [0, 1]. (44)

To solve problem (42)-(43) with the help of ADM, we operate the fractional operator
Iα,ψ on both sides of the governing equation to obtain

Iα,ψ
[
Dα,ψy(x)

]
+Iα,ψ

[
y(x)

]
= Iα,ψ

[
1−4ψ(x)+5(ψ(x))2− 4

Γ(2− α)
(ψ(x))1−α+

10

Γ(3− α)
(ψ(x))2−α

]
.
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Equally, when using (11) and applying the related initial condition, one obtains

y(x) = 1−Iα,ψ
[
y(x)

]
+Iα,ψ

[
1−4ψ(x)+5(ψ(x))2− 4

Γ(2− α)
(ψ(x))1−α+

10

Γ(3− α)
(ψ(x))2−α

]
.

Now, on using ADM process, the above equation is re-expressed as follows

∞∑
n=0

yn(x) = 1−Iα,ψ
[ ∞∑
n=0

yn(x)

]
+Iα,ψ

[
1−4ψ(x)+5(ψ(x))2− 4

Γ(2− α)
(ψ(x))1−α+

10

Γ(3− α)
(ψ(x))2−α

]
,

that then leads to the recurrent scheme for the model as follows
y0(x) = 1 + Iα,ψ

[
1− 4ψ(x) + 5(ψ(x))2 − 4

Γ(2−α)(ψ(x))
1−α + 10

Γ(3−α)(ψ(x))
2−α

]
,

yn(x) = −Iα,ψ
[
yn−1(x)

]
, n ≥ 1.

(45)
As proceed, some of the components for the solution of the model are obtained from the
above ADM schemes as follows

y0(x) =
(ψ(x))α

Γ(α+ 1)
− 4(ψ(x))α+1

Γ(2 + α)
+

10(ψ(x))α+2

Γ(3 + α)
− 4(ψ(x)) + 5(ψ(x))2 + 1,

y1(x) = − (ψ(x))2α

Γ(2α+ 1)
+

4(ψ(x))2α+1

Γ(2 + 2α)
− 10(ψ(x))2α+2

Γ(3 + 2α)
− (ψ(x))α

Γ(α+ 1)
+

4(ψ(x))α+1

Γ(2 + α)
− 10(ψ(x))α+2

Γ(3 + α)
,
...

Accordingly, upon cancelling the noise terms ±
(

(ψ(x))α

Γ(α+1) −
4(ψ(x))α+1

Γ(2+α) + 10(ψ(x))α+2

Γ(3+α)

)
between

the components y0(x) and y1(x), and justify that the remaining terms of y0(x) that satisfies
the imposed initial data, one obtained the resultant exact solution of the model as follows

y(x) =
∞∑
n=0

yn(x) = 1 + 5(ψ(x))2 − 4(ψ(x)). (46)

In the same vein, for certain special cases of interest with regard to the choice of the
function ψ, we present the following solution cases
when ψ(x) = x, then y(x) = 1− 4x+ 5x2,

when ψ(x) = x3

15 , then y(x) = 1− 4
(
x3

15

)
+ 5

(
x3

15

)2
,

when ψ(x) = 1
2(x

2 + x), then 1− 4(12(x
2 + x)) + 5(12(x

2 + x))2,

when ψ(x) = 1
3(x

3 + x2 + x), then y(x) = 1− 4(13(x
3 + x2 + x)) + 5(13(x

3 + x2 + x))2,

(47)
with the case of ψ(x) = x featuring the state of the Caputo fractional derivative.

Conspicuously, Sunthrayuth et al. [35] similarly solved the linear version of the present
model with the help of the ψ-Haar wavelet operational matrix method, allows us to obtain
an approximate solution. On the other hand,the ADM which is a semi-analytic method



M. Alsulami et al. / Eur. J. Pure Appl. Math, 17 (3) (2024), 2311-2328 2324

gives us a noise term which reveals the exact solution while using only 2 terms and that of-
fers an advantage because it tends to converge to exact solution more effectively compared
to numerical methods, Consequently, it leads to a reduction in computational complexity;
see Figure 3 for the graphical depiction of the obtained ADM solutions for different choices
of ψ function for the ψ-fractional IVP (42)-(43).

(a) ψ(x) = x (b) ψ(x) = x3

15

(c) ψ(x) = 1
2 (x

2 + x) (d) ψ(x) = 1
3 (x

3 + x2 + x)

Figure 3: ADM solutions for different choices of ψ for the ψ-fractional IVP (42)-(43).

5. Conclusion

In the present study, the standard ADM has been adopted to derive a generalized
recurrent scheme for the solution of fractional relaxation-oscillation equation involving
ψ-Caputo derivative. Indeed, the study showcased the accuracy and efficiency of the
adopted methodology by testing it with several numerical examples.Our method offers
an advantage in that it tends to converge towards the exact solution more effectively
compared to numerical methods, thereby reducing the computational workload. Hence,
the study ends by recommending that the implored method should be extended to more
complex physical models of real-life application.
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