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Abstract. This paper seeks to showcase how a new approach can breathe new life into research
within the traditional domain of Pythagorean triples, introducing innovative applications to in-
vigorate the field. This serves not only as an exemplar but also as a wellspring of inspiration
for students at both school and university levels. The demonstrations will underscore that, with
fundamental mathematical concepts and unencumbered by intricate calculations, one can unveil
novel results and applications with ease. The new results and applications, along with those found
in the Preliminary Results section, show how the field of Pythagorean triples is still interesting
and stimulating to study, despite the centuries that have elapsed.
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1. Introduction

Let x, y, and z be positive integers satisfying

x2 + y2 = z2.

Such a triple (x, y, z) is called a Pythagorean triple. In particular, if x, y, and z are
coprime, the triple is termed a primitive Pythagorean triple.

Pythagorean triples owe their name to the Greek mathematician Pythagoras, who lived
in the 6th century B.C. Pythagoras was the founder of the philosophical school known as
Pythagoreanism, and Pythagorean triples are often associated with his discoveries and
teachings.

According to legend, Pythagoras and his followers became interested in Pythagorean
triples while studying numbers and musical proportions. It is said that they noticed
certain combinations of lengths of musical strings produced harmonic sounds, and these
combinations corresponded to Pythagorean triples. However, it’s important to note that
Pythagorean triples were not discovered or introduced by Pythagoras himself. Ancient
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Babylonian mathematicians were already aware of some Pythagorean triples long before
Pythagoreanism became famous. The earliest known record of the theorem is found in
an ancient Babylonian manuscript called Plimpton 322, dating back about 1,800 years
before Pythagoras. This text provides a list of Pythagorean triples and demonstrates
the Babylonians’ knowledge of Pythagorean formulas and how to use them. Neverthe-
less, it was Pythagoras and his school that placed a particular emphasis on these triples
and discovered some of their interesting properties. Pythagorean triples were extensively
studied by the Pythagoreans and the subsequent Pythagorean school. They sought to
find all possible Pythagorean triples and developed methods to generate new triples. The
theory of Pythagorean triples was further developed by mathematicians from various cul-
tures throughout history. For instance, ancient Indians, Chinese, Arabs, and Europeans
contributed to further developments in the theory of Pythagorean triples. Over time, nu-
merous Pythagorean triples with increasingly large values for their components have been
discovered.

The most famous discovery attributed to Pythagoras regarding Pythagorean triples
is the Pythagorean theorem. This theorem is fundamental in geometry and has many
practical applications. However, Pythagoras himself may not have provided a general
proof of the theorem, and many of the proofs attributed to him may have been developed
later by his followers. Pythagorean triples, due to their connection with the Pythagorean
theorem, are a fundamental concept with multiple practical applications in different fields
of mathematics and applied sciences.

Pythagorean triples continued to be studied and explored by numerous later mathe-
maticians, such as Euclid and Diophantus. Over the centuries, many interesting properties
and relationships regarding Pythagorean triples have been discovered, and their impor-
tance has extended to various mathematical fields, including number theory, modular
arithmetic, geometry, and graph theory.

Pythagorean triples and the Pythagorean theorem have had a lasting impact on math-
ematics and geometry and have been extensively studied and applied over the centuries,
influencing disciplines ranging from trigonometry to mathematical analysis.

Today, Pythagorean triples continue to be a subject of study and appreciation for
their unique properties. They are used in various mathematical contexts and practical
applications, such as cryptography, random number generation, algorithm design, solving
problems involving right-angled triangles, number theory, and many other fields such as
physics, engineering, and computer science [11], [12].

Beyond mathematics, Pythagorean triples have been of interest in the history of art
and culture, appearing in various forms in architecture, music, and symbolism.

Pythagorean triples have also played a significant role in number theory, with math-
ematicians like Fermat and Euclid studying their properties. For example, a common
formula to generate Pythagorean triples is the following:

x = m2 − n2, y = 2mn, z = m2 + n2

where m and n are arbitrary positive integers with m > n, and m,n ∈ N [10]. The above
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formula mentioned earlier, involving the numbers m and n, was developed by the Euclid,
and the majority of results on Pythagorean triples are due to this formula [9], [8], [1].

In addition to the scientific aspects of Pythagorean triples, we also underscore several
valuable didactic perspectives that enrich the learning experience:

Pythagorean triples serve as a tangible gateway to the realm of number theory. By
actively engaging with these triples, students can develop a hands-on understanding of
fundamental concepts in number theory, such as divisibility, prime factorization, and the
properties of integers.

Delving into Pythagorean triples provides an opportunity to reinforce the geometric
interpretation of the Pythagorean theorem. Through visualizing right-angled triangles and
their associated triples, students gain insights into the geometric relationships embedded
in the theorem, fostering a deeper comprehension of its principles.

The exploration of Pythagorean triples naturally encourages students to recognize
patterns within numerical relationships. Analyzing these triples prompts discussions about
the symmetry inherent in certain configurations, the distinctive roles of odd and even
numbers, and the impact of scaling factors on the generation of triples. This process
cultivates analytical thinking and the ability to discern mathematical patterns in different
contexts.

Working with Pythagorean triples presents students with a variety of mathematical
scenarios that require creative problem-solving approaches. As they investigate unique
cases and consider different parameterizations, students enhance their problem-solving
skills and develop a robust toolkit for addressing mathematical challenges.

Exploring the origins and historical significance of Pythagorean triples provides a
broader context for their study. Students can appreciate the cultural contributions of
ancient mathematicians like Pythagoras and recognize the enduring legacy of these triples
in various mathematical and scientific disciplines.

By embracing these didactic perspectives, the study of Pythagorean triples transcends
mere mathematical abstraction, offering a rich and interconnected learning experience that
extends beyond the confines of a single theorem. This multifaceted approach not only
deepens students’ understanding of mathematical concepts but also nurtures a broader
appreciation for the historical, cultural, and problem-solving dimensions of mathematics.

Already in 1981, as a student, I had studied how to generate Pythagorean triples,
achieving a preliminary result [2]. After many years, returning to study the topic, I
found a new and comprehensive result [3] that is suitable for obtaining new results and
applications in fields such as geometry, trigonometry, linear algebra, and number theory.

This paper seeks to showcase how a new approach can breathe new life into research
within the traditional domain of Pythagorean triples, introducing innovative applications
to invigorate the field. This serves not only as an exemplar but also as a wellspring
of inspiration for students at both school and university levels. The demonstration will
underscore that, with fundamental mathematical concepts and unencumbered by intricate
calculations, one can unveil novel results and applications with ease.
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2. Prelimunary Results

Let us review recent results concerning some relations among Pythagorean triples
that have already been established. The primary tool utilized in those works was the
fundamental characterization of Pythagorean triples through a cathetus. This reads as
follows.

Theorem 1. [3] The triple (x, y, z) is a Pythagorean triple if and only if there exists
d ∈ C(x) such that

x = x, y =
x2

2d
− d

2
, z =

x2

2d
+

d

2
(1)

with x positive integer, and where

C(x) =


D(x), if x is odd,

D(x) ∩ P (x), if x is even,

with

D(x) = {d ∈ N : d ≤ x with d divisor of x2},

and if x is even with x = 2nk, n ∈ N and k ≥ 1 odd fixed, with

P (x) = {d ∈ N : d = 2sl with l divisor of x2 and s ∈ {1, 2, ..., 2n− 1}}.

In theorem (1) x is a predetermined integer, which means finding all right triangles
whose sides have integer measures and one cathetus is predetermined. Theorem (1) has
also one geometrical interpretation. Moreover in [3], based on Theorem (1), we have
proved the following theorem.

Theorem 2. [3] Each x ∈ N can be found as cathetus in at least one Pythagorean triple.
Every x ∈ N can be represented in the form x =

√
z2 − y2 with y, z ∈ N.

Moreover in [6], an analytic result was found that characterizes primitive Pythagorean
triples through a cathetus. This method, which differs from Euler’s formulas, offers the
advantage of easily identifying all primitive Pythagorean triples x, y, z ∈ N, where x is a
predetermined integer. This reads as follows.

Theorem 3. [6] Let (x, y, z) be all the Pythagorean triples generated by any predetermined
positive integer x ≥ 1 using (1), d ∈ C(x), then (x, y, z) is a primitive Pythagorean triple
if and only if following both conditions are verified

if x is odd then


d is a square

x2

d
with d are coprime positive odd integers
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if x is even then


d

2
is a square

x2

2d
with

d

2
are coprime positive integers of different parities.

We remember that the Euclid’s formulas do not give all Pythagorean triples that
involves a predetermined positive integer x, for example the triples (12, 9, 15), (33, 180,
183) and (33, 44, 55). Moreover it can be laborious to find m and n such that x = m2−n2,
while using Theorem (1), it is enough to find all the d ∈ C(x) to obtain all Pythagorean
triples.

In particular, if we need to find all primitive Pythagorean triples that involves a prede-
termined positive integer x, now we can use only the d ∈ C(x) that satisfy the conditions
of the Theorem (3).

In [4], relations were established between the primitive Pythagorean triple (x, y, z)
generated by any predetermined positive odd integer x and the primitive Pythagorean
triple generated by xm with m ∈ N and m ≥ 2, rispectively, using formulas (1).

Subsequently, additional relations among Pythagorean triples were established in [5].
The primary tool that serves as the foundation of our analysis is Theorem (1) in [3],
enabling the determination of relationships between two Pythagorean triples with assigned
catheti a and b, and the Pythagorean triple with cathetus a · b. This reads as follows.

Theorem 4. [5] Let (a, b, c ), (d, e, f ), (a·d, y, z) be the Pythagorean triples generated
by a, d, and a·d, respectively using (1) with c − b = d1 ∈ C(a), f − e = d2 ∈ C(b), and
z − y = d3 ∈ C(a·d). Then

y = ce + bf , z = ce + bf + d1d2,

and also

y = be + cf − d1d2, z = be + cf

with d3 = d1d2∈ C(a·d).

Above theorem introduces one suitable binary operation in the set of Pythagorean triples.
In [7], thanks to Theorem (4), we found suitable binary operations on the set of

Pythagorean triples, obtaining two commutative infinite groups, one with elements in
Q and the other with elements in Z. Additionally, we obtained a commutative infinite
monoid with elements in N or in Z. In particular, on the set of primitive Pythagorean
triples, we established two commutative infinite groups, one with elements in Q and the
other with elements in Z.

All previous results were obtained without advanced techniques and this can be a
virtue to reach a wider audience of readers, including students in schools and universities.



R. Amato / Eur. J. Pure Appl. Math, 17 (2) (2024), 676-689 681

3. Applications and Results

In this section, we want to study some applications and results in fields such as ge-
ometry, trigonometry, linear algebra and number theory. We will obtain new relations
taking into account results seen in Preliminar Results section, and often using only a
predeterminatus x and d.

Let’s begin to notice that, the formulas of Theorem (1) satisfy the ralation x2+y2 = z2

for every x, d ∈ R. It is easy to see that, if x, d ∈ R then we obtain all Pythagorean triples
in R, that is, also also y, z ∈ R. Moreover, if x, d ∈ R are positive, with d ≤ x, then also
y, z ∈ R are positive.

If x is a positive integer and d ∈ C(x), we want to obtain directly area A, perimeter p
and inradius r of all right-angled triangle having only a predeterminatus positive integer
cathetus x. We have the following remark.

Remark 1. In a right-angled triangle, with a predeterminatus cathetus x ∈ N, we have,
regard to area A, perimeter p and inradius r, the following fundamental formulas

A =
x(x2 − d2)

4d
, (2)

p = x+
x2

d
, (3)

r =
x− d

2
. (4)

with d ∈ C(x).

Formulas (2) and (3) follow directly from (1). To find formula (4), it suffices that we

consider the known formula r =
2A

p
, obtaining

r =
2A

p
=

2x(x2 − d2)

4d

x+
x2

d

=
x(x2 − d2)

2(xd+ x2)
=

x(x− d)(x+ d)

2x(x+ d)
=

x− d

2
.

Moreover, if x is a positive integer then d ∈ C(x),and since x and d have the same parity,
we obtain also the known result that r is an integer.

If we have a positive x ∈ R, (2), (3) and (4) hold, with d = z − y. For example, we
can find the sides of a right-angled triangle, knowing one cathetus x and the perimeter p.

From (3), we have d =
x2

p− x
, that substituted into the formulas of Theorem (1), provides

the values of y and z. Other example, we can find the sides of a right-angled triangle,
knowing one cathetus x and the inradius r. From (4) we have d = x−2r, that substituted
into the formulas of Theorem (1), provides the values of y and z. For both examples, this
avoids forming relationships and solving systems of equations using the classical method.
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Let the pythagorean triangle ABC be depicted in Figure (1). We consider lines
OA,OB ,OC from the incentre to the vertices, and x = AB . The following theorem holds.

Theorem 5. In a right-angled triangle, with a predeterminatus cathetus x ∈ R, we have
the following relation among lines OA,OB ,OC from the incentre to the vertices

OA ·OB = d ·OC (5)

with OA,OB < OC, and d = z − y.

Figure 1:

Proof. Let’s begin to notice that EB =
x+ d

2
, while from Theorem 2.1 and (4) we

have

FC = AC − r =
x2 − d2

2d
− x− d

2
=

x− d

2d
· x.

Applying the Pythagorean theorem, we obtain

OA =
x− d

2
·
√
2 , OB =

√
x2 + d2√

2
, OC =

x− d

2d
·
√

x2 + d2

from wich (5) easily follows, and consequently, Theorem (5) is proved.

Obviously if x is a positive integer we have d ∈ C(x).
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Figure 2:

Let x, y, z ∈ R be positive satisfying x2 + y2 = z2. From Theorem (1), this triple is
generated by x with d = z − y and y with d′ = z − x respectively. We want to study the
relation betwen d and d′ used to obtain the same triple. From formulas (1), we obtain

d′ =
x2 + d2

2d
− x =

(x− d)2

2d
. (6)

that is the the relation betwen d and d′.

Let the pythagorean triangle ABC be depicted in Figure (2), and OH the line from
centre of incircle to centre of circumcircle and x = AB . The following theorem holds.

Theorem 6. In a right-angled triangle, with a predeterminatus cathetus x ∈ R the line
from centre of incircle to centre of circumcircle, is given from

OH =

√
(x− d)4 + 4d4

(4d)4
(7)

and also

OH =

√(
d

2

)2

+

(
d′

2

)2

(8)

with d = z − y and d′ = z − x.
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Proof. Let’s begin to notice that

OI =
x

2
− x− d

2
=

d

2

while

IH =
1

2

(
x2

2d
− d

2

)
− x− d

2
=

(x− d)2

4d
.

Applying the Pythagorean theorem, we obtain (7), and for (6) also (8). Consequently,
Theorem (6) is proved.

Obviously if x is a positive integer we have d ∈ C(x) and d′ ∈ C(y).

Let the pythagorean triangle ABC be depicted in Figure (2). To obtain trigonometric
formulas, using only a predeterminatus cathetus x ∈ N, with d ∈ C(x), we have the
following remark.

Remark 2. In a right-angled triangle, with a predeterminatus cathetus x ∈ N for the
angle apposite to x and the acute angle adjacent to x, we have the following trigonometric
formulas

sin(Ĉ) = cos(B̂) =
2xd

x2 + d2
, cos(Ĉ) = sin(B̂) =

x2 − d2

x2 + d2
, (9)

sin
ˆ(
C

2

)
=

d√
x2 + d2

, cos
ˆ(
C

2

)
=

x√
x2 + d2

, tan
ˆ(
C

2

)
=

d

x
, (10)

sin
ˆ(
B

2

)
=

x− d√
2 ·

√
x2 + d2

, cos
ˆ(
B

2

)
=

x+ d√
2 ·

√
x2 + d2

, tan
ˆ(
B

2

)
=

x− d

x+ d
(11)

with d ∈ C(x).

Let’s begin to notice that from formulas of Theorem (1) we have (9). Applying the half-
angle formulas, we obtain (10) and (11).
Moreover, if we have a positive x ∈ R, (9), (10) and (11) hold, with d = z − y.

We consider a rectangle with sides and diagonal given by x, y, and z ∈ N, respectively.
Let the parallelepiped have edges and spatial diagonal given by x, y, w, and t ∈ N, re-
spectively. We want obtain all parallelepipeds with x, y, z, w, and t ∈ N, where x is a
predetermined integer. The following theorem holds.

Theorem 7. Let a rectangle have sides x, y ∈ N and diagonal given by z ∈ N, and let a
parallelepiped have edges x, y, w ∈ N and spatial diagonal given by t ∈ N, respectively,
where x is a predetermined integer. The quadruple (x, y, w, t) and z satisfy the conditions

x2 + y2 = z2 and x2 + y2 + w2 = t2 (12)
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if and only if

x = x, y =
x2 − d2

2d
, w =

(
x2 + d2

2d

)2

− (d∗)2

2d∗
, t =

(
x2 + d2

2d

)2

+ (d∗)2

2d∗
(13)

with d ∈ C(x) and d* ∈ C(z).

Proof. Let’s begin to notice that for a predeteminatus x ∈ N, f or Theorem (2) there
exists almost a pair y, z ∈ N such that x2+y2 = z2 with z−y = d ∈ C(x). Also, for Theorem
(2) there exists almost a pair w, t ∈ N such that z2+w2 = t2 with t−w = d∗ ∈ C(z), and
then there exist x, y, w, and t ∈ N such that x2 + y2 + w2 = t2 with z ∈ N. To obtain
formulas (13), using formulas (1) to a predeteminatus x ∈ N we obtain y and z such that

x2 + y2 = z2 with d ∈ C(x), and re-applying same formulas to z =
x2 + d2

2d
, considering

it as prededeterminatus positive integer, with d∗ ∈ C(z), we obtain also w and t that
togheter with y satisfy (12). To prove that (13) gives every x2 + y2 +w2 = t2 with z ∈ N,
it suffices apply Theorem (1) to the triples x2 + y2 = z2 and z2 + w2 = t2. Consequently,
Theorem (7) is proved.

We observe that if C(x) = {1, x} and C(z) = {1, z}, that is x and z are prime numbers,
then we have one unique (x, y, w, t) that satisfies (12), remembering that for d = x and
d∗ = z we obtain trivial triples. Consequently, if x or z are not prime number, then we
obtain more (y, w, t) that togheter x satisfy (12).

More in general, there exists the following theorem.

Theorem 8. Let a1 be a predetermined integer. There exist at least one Pythagorean
n-uple of integers (a1, a2, ..., an) such that

a21 +

n−1∑
i=2

a2i = a2n (14)

Proof. From Theorem (7), we know that for a predetermined integer a1 there exist
a2, a3, b ∈ N such that a21 + a22 + a23 = b2. From Theorem (2), there exists almost a couple
(a4, c), a4, c ∈ N, such that b2 = c2 − a24 and then a21 + a22 + a23 + a24 = c2. Iterating the
procedure n− 5 times, then we obtain (14). Consequently, Theorem (8) is proved.

It is interesting to note that we can iterate the previous procedure infinitely. For this
reason we have the following corollary.

Corollary 1. For every predetermined integer a1, there exists at least one b ∈ N and one
infinite set of integers ai, i = 1, 2, ...,∞, such that

a21 +
∞∑
i=2

a2i = b2.
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Let G be one set of 2x2 symmetric commuting matrices with non-zero determinant,
defined in N, in the following form:

G =

{(
c

b

b

c

)
suchthat c2 − b2 = a2, with a, b, c ∈ N, a ̸= 0

}
.

Let (a, b, c ), (d, e, f ), (a·d, y, z) be the Pythagorean triples generated by a, d, a·d,
respectively using (1). Taking into account Theorem (4), we have that y = bf + ce and
z = be+ cf . The following theorem holds.

Theorem 9. Let (a, b, c ), (d, e, f ), and (ad, bf+ce, be+cf ) be Pythagorean triples. We

consider A =

(
c

b

b

c

)
, B =

(
f

e

e

f

)
, C =

(
be + cf

bf + ce

bf + ce

be + cf

)
∈ G. In the set of Pythagorean

triples, the binary operation

(a, b, c) · (d, e, f) = (ad, bf + ce, be+ cf)

is equivalent, in the set G, to the matrix multiplication A·B=B·A=C and det(A)·det(B)=det(C),

and the identity matrix corresponds to the the identity element (1, 0, 1).

Proof. It suffices to apply the properties of the product between matrices and, to
obtain the identity matrix, use the trivial Pythagorean triple (1, 0, 1). Consequently,
Theorem (9) is proved.

We observe that if a, b, c ∈ Q, being det(A) = c2 − b2 = a2 ̸= 0, then there exists the
inverse matrix of A in G. Consequently it is easy to obtain that the set of Pythagorean
triples is a commutative group in Q, as already seen in [7] but with different approach. If
a, b, c ∈ Z it is needed to deal with and introduce particular endomorphisms to obtain
results also in Z. In particular to study the set of primitive Pythagorean triples to obtain
a commutative group with elements in Q or in Z., Therefore, from the beginning, to have
results we preferred in [7] to give an approach that was simpler and suitable for a wider
audience.

In order to investigate a possible addition operation among Pythagorean triples, we
have the following theorem.

Theorem 10. Let

(
x,

x2 − 1

2
,
x2 + 1

2

)
and

(
y,

y2 − 1

2
,
y2 + 1

2

)
be two Pythagorean

triples genetated by odd integers x and y, rispectively, using (1) with d = 1 ∈ C(x) and C(y).
One addition operation between the two Pythagorean triples is given by the Pythagorean
triple (

x+ y,
x2 − 1

2
+

y2 − 1

2
−
(
x− y

2

)2

,
x2 + 1

2
+

y2 + 1

2
−
(
x− y

2

)2 )
. (15)
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Proof. We note that x + y is even and considering the Pythagorean triple generated
by x+ y, using (1) with d = 2 ∈ C(x+ y), we obtain(

x+ y,
(x+ y)2 − 4

4
,
(x+ y)2 + 4

4

)
.

To verify that (15) is a Pythagorean triple, for Theorem (1), then it suffices to prove

(x+ y)2 − 4

4
=

x2 − 1

2
+

y2 − 1

2
−
(
x− y

2

)2

and

(x+ y)2 + 4

4
=

x2 + 1

2
+

y2 + 1

2
−
(
x− y

2

)2

.

It is easy to see that above equations are identities and consequently, Theorem (10) is
proved.

We observe that (15) is applicable only to every pair of Pythagorean triples generated
by odd integers x and y, respectively, using (1) with d = 1, obtaining one Pythagorean
triple generated by the even integer x + y with d = 2. Currently, the addition opera-
tion is not iterable, meaning that the obtained triple cannot be summed with another
Pythagorean triple to result in another Pythagorean triple. Additionally, there is a lack
of identity and opposite elements. Anyway, it’s a start to explore addition operation in
the set of Pythagorean triples.

As a consequence of Theorem (1) and (3) let us state the following theorem.

Theorem 11. Every prime number is present as cathetus in only one Pythagorean triple,
and this is a primitive Pythagorean triple.

Proof. From Theorem (1), we have that C(x) = {1, x}, for d = x the triple is trivial,
and there exists a unique Pythagorean triple generated by x for d = 1. From Theorem
(3), we have that this triple is primitive, and consequently, Theorem (11) is proved.

At last, let f : ]0,∞[ → R be such that f(x) = 2x, ∀ y, z ∈ ]0,∞[, as depicted in
Figure (3). We have the following remark.

Remark 3. Let f : ]0,∞[ → R defined as f(x) = 2x, ∀ y, z ∈ ]0,∞[, we have∫ z

y
2x dx = d2 + 2yd (16)

with d = z − y.
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Figure 3:

The above integral is the area of right-angled trapezoid ABCD given by the sum of the
areas of the rectangle ABED and the triangle ECD. Consequently, we have (16). Observing
that the result of this integral is also in the form z2 − y2 = x2, then we get x2 = d2 +2yd.
From last equation, and taking into account that z = y + d. we have (1). In this way,
we find another geometric interpretation of (1), different from that found in Theorem (1),
and it holds ∀ x, y, z ∈ ]0,∞[. Obviously, if x, y, z ∈N then d ∈ C(x).

4. Conclusion and Remarks

The discovery of the parametrization and relations among Pythagorean triples that we
have found shows the fundamental role of d ∈ C(x) and characterizing the results.

This approach could be employed to study further relationships among Pythagorean
triples. For instance, it might be used to find a suitable addition operation between
Pythagorean triples which could allow us, in turn, to define a vector space of Pythagorean
triples. This way could be used to study other problems, some of which are still open.
One of the next steps could be to study the parametrizations of Pythagorean quadruples,
looking for a representation similar to (1) and finding all Pythagorean quadruples. Mainly
it will be interesting to find other parametrizations, relations and characterizations regard
to the Pythagorean n-uples dependent by d ∈ C(x).

The new results and applications, along with those found in the Preliminary Results
section, show how the field of Pythagorean triples is still interesting and stimulating to
study, despite the centuries that have elapsed. In every case, this is a new approach to
study the Pythagorean triples for students in schools and universities.
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