On the Bivariate Extension of the Extended Standard U-quadratic Distribution
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i2.5136Keywords:
Standard U-quadratic distribution, Kumaraswamy distribution, Bivariate distributionAbstract
This paper derives the bivariate version of the extended standard U-quadratic (eSU) distribution using the method of compounding or pseudo family of distributions. The joint probability and cumulative distribution functions of the derived distribution are obtained and it is observed that the said distribution can generate bivariate shape with the following properties: $(i)$ $X$ and $Y$ have bathtub shapes; $(ii)$ $X$ has constant and $Y$ has bathtub shapes; and $(iii)$ $X$ has inverted bathtub and $Y$ has bathtub shapes. Moreover, some properties of the derived distribution such as the marginal distribution, conditional distributions, conditional moments, product and ratio moments are derived. Further, the maximum likelihood estimation is performed to estimate the parameters of the derived distribution. Also, a simulation study is carried out to evaluate the behavior of the estimates of the parameters. Moreover, we derive a new bivariate Kumaraswamy distribution and use it to simulate bivariate data with $X$ and $Y$ having bathtub shapes. Furthermore, A new bivariate version of the Cubic Transmuted Uniform (CTU) distribution is also derived. Finally, the proposed Bivariate eSU distribution is applied to simulated data and compared with the said Bivarite Cubic Transmuted Uniform distribution. The result shows that the proposed Bivariate eSU distribution provides a better fit for the said simulated dataset as compared with the Bivariate CTU distribution.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.