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Abstract. In this paper we first derive a law of iterated logarithm for the maximum likelihood esti-

mator of the parameters in a Poisson regression model. We then use this result to establish the strong

consistency of a class of model selection criteria in Poisson regression model selection. We show that

under some general conditions, a model selection criterion, which consists of a minus maximum log-

likelihood and a penalty term, will select the simplest correct model almost surely if the penalty term

increases with model dimension and has an order in between O(log log n) and O(n).
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1. Introduction

Poisson regression model is a widely used econometric and statistical tool for studying

the relationship between a Poisson-type response variable and a set of explanatory variables.

A familiar example is the analysis of contingency tables of categorical data. In addition to

parameter estimation, another important inference task in Poisson regression is searching for

a subset of available explanatory variables that can best explain or predict the response. This

amounts to the Poisson regression model or variable selection. Many papers can be found in

recent literature in the area of model selection, which deal with different models in different

ways. We refer to [4] and [14] and references therein for the detailed survey.

It appears that, while it might be implied according to some general model selection prin-

ciple, the Poisson regression model selection method by itself has hardly been investigated in
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a formal and rigorous way. The lack of a formal theory for Poisson regression model selec-

tion creates uncertainty and inconvenience for people applying the method for practice. This

motivates the writing of this paper which focuses on the asymptotic performance of a class

of model selection criteria including AIC, BIC, Mallows Cp and stochastic complexity or min-

imum description length for Poisson regression models. A byproduct of this asymptotic study

is the establishment of the law of iterated logarithm for the maximum likelihood estimators

(MLE) in the Poisson regression models. The convergence rate of the MLE provided by the law

of iterated logarithm is very useful in deriving precise approximations for likelihood function.

In the paper we first set up a model selection framework for Poisson regression models

and review several general model selection criteria such as AIC [1], BIC [18] and stochastic

complexity or minimum description length [16] in section 2. In section 3 we present the

main results and the conditions for ensuring these results. We have shown that when the

employed model is a correct one, the MLE β̂ converges almost surely to the true parameter

value β0 with a rate not slower than O(
p

n−1 log log n). We have also shown that, for a model

selection criterion consisting of the minus log-likelihood and a penalty term, it will select the

simplest correct model almost surely if the penalty term is an increasing function of the model

dimension and is of an order higher than O(log log n) and lower than O(n). The detailed

proof of these results are given in section 4 and the appendix. The paper is concluded with a

discussion given in section 5.

2. Model Selection in Poisson Regression Model

The problem to our interest is whether any component of a given explanatory vector

x = (x1, · · · , xp)
t has any effect on a response variable Y . When Y is a count variable, it is

often sensible to assume a Poisson distribution for Y which has a probability function P(Y =

y) = (y!)−1µy e−µ (y = 0,1,2, · · · ). Then the problem can be studied in the framework of

a log-linear regression model which assumes a linear predictor η = xtβ for logarithm of the

mean of Y , i.e., logµ = η = xtβ , where β = (β1, · · · ,βp)
t is the unknown parameter vector

of interest.

Now let Yn = (y1, · · · , yn)
t be the n independent observations from Y , with the corre-

sponding explanatory vectors being x1, · · · ,xn. Denote Xn = (x1, · · · ,xn)
t as the design matrix.

Then under the log-linear regression model considered, the distribution for yi is Poisson(µi)

with µi = eηi = ext
i
β ; and the log-likelihood function for the parameter β is

ℓ(β |Yn, Xn) =

n
∑

i=1

{− log yi!+ yi logµi −µi}= −
n
∑

i=1

log yi!+

n
∑

i=1

{yix
t
iβ − ext

i
β}. (1)

The maximum likelihood estimator(MLE) β̂ is defined to be

β̂ = arg max
β
ℓ(β |Yn, Xn) = arg min

β

n
∑

i=1

{ext
i
β − yix

t
iβ}
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which can be solved from
∂ ℓ

∂ β
=

n
∑

i=1

(yi −µi)xi = 0.

In this paper we will show that the estimation error ||β̂ − β0|| = O(
p

n−1 log log n) almost

surely under some general conditions. Here β0 is the true value of β and || · || is the Euclidean

norm. The Fisher information for the parameter β can be found to be

In(β) = −E
∂ 2ℓ

∂ β∂ β t
= − ∂ 2ℓ

∂ β∂ β t
= X t

nU nXn, (2)

where Un = diag{µ1, · · · ,µn}.
With the Poisson regression model logµ = xtβ , the effect of each x variable on Y can

be measured by the value of the corresponding β component. Thus if any of the β compo-

nents equals 0 or is close to 0, there would be no necessity to include the corresponding x

components into the model. Since the values of β can only be estimated, one needs a statisti-

cal model selection criterion to determine which x components have significant effects on Y

thus should be included in the model. The maximum likelihood principle cannot serve as a

model selection criterion because the maximum likelihood for the full model including all the

available x components is always greater than the maximum likelihood for a sub-model using

a subset of the x components. But a model selection criterion can be based on a penalised

log-likelihood. Let α be a pα-component sub-vector of (1,2, · · · , p). Let xα and β(α) be the

sub-vectors of x and β indexed by α respectively. Further let logµα = ηα = xt
αβα be a Poisson

regression model containing a subset of explanatory variables given by xα. The penalised

log-likelihood based model selection criterion can be expressed as

S(ηα) = −ℓ(β̂(α)|Yn, Xnα) + C(n, β̂(α)), (3)

where the first term is the minus maximum log-likelihood measuring the goodness of fit of

model ηα, and the second term measures the complexity of the model. The matrix Xnα

comprises those columns of Xn indexed by α; and β̂(α) is the MLE of β(α). Under the

criterion (3), those sub-models having both better goodness of fit and smaller complexity

will be preferred than the others; and the best model will be the one achieving the small-

est S(ηα) value. Many commonly used model selection criteria, such as AIC [1], BIC [18],

Cp [7] and stochastic complexity criterion (SCC)[16, 17, 11], are of the form given by (3).

For example, for AIC and Cp C(n, β̂(α)) = pα; for BIC C(n, β̂(α)) = 1

2
pα log n; and for SCC

C(n, β̂(α)) = 1

2
log |In(β̂(α))|+

∑pα
i=2

log(|β̂(α)i|+ ǫn−1/4) where β̂(α)i is the i-th component

of β̂(α), and ǫ is a specified quantity to ensure the invariance of the SCC [see 11, for details].

Assuming that the model logµ = xtβ is the full model which includes all the explanatory

variables available and the first component of x is an intercept term, there will be in total

2p−1 sub-models of the form logµα = xt
αβ(α) for selection, provided that only those models

having an intercept term are considered. In this paper we assume that some components of

β0 = (β01, · · · ,β0p)
t , the true value of β , are equal to 0. We also use α to represent a Poisson

regression sub-model logµα = xt
αβ(α), which is actually a one-to-one representation. Then

all the 2p − 1 sub-models can be classified into the following two groups:
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1. Ac = {α : β0i = 0 for any i 6∈ α};
2. Aw = {α : β0i 6= 0 for some i 6∈ α}.

Apparently, every sub-model in Aw is a wrong model which misses at least one x variable

having non-zero effect on Y , while every sub-model inAc is a correct model which includes all

x variables having non-zero effects on Y . But the models inAc may contain some redundant x

variables having no effects on Y . An ideal model selection criterion should render the selection

of the simplest correct model in Ac containing no redundant explanatory variables. In this

paper we will show that the penalised log-likelihood based model selection criterion, under

some general conditions, selects the simplest correct model with probability 1 as the sample

size n goes to infinity. For simplicity of the presentation, we assume the simplest correct model

in Ac to be unique, which is the case if all components of x are linearly independent of each

other.

3. Conditions and Main Results

Let λ1{S} ≤ · · · ≤ λp{S} be the p eigenvalues of a p × p symmetric matrix S. Also let

b = 1

2
min1≤i≤pα0

|β0(α0)i|, where α0 is the correct model in Ac with the smallest dimension,

and β0(α0)i is the i-th component of β0(α0). We assume b > 0 in this paper. Note that b is

only used in the proof of Theorem 3 in this paper; and b = 0 represents the case whereAw is

an empty set thereby Theorem 3 is not applicable. Further define

δn =
q

max
1≤i≤n

µ0ix
t
i
In(β0)

−1xi and ξn =
q

max
1≤i≤n

xt
i
In(β0)

−1xi

where µ0i = ext
i
β0 is the true value of µi.

The following conditions will be required in various places in proving our main results:

(C.1). limn→∞λ j{In(β0)} = ∞, j = 1, · · · , p. Also there exists a constant b0 such that 0 <

λp{In(β0)} ≤ b0λ1{In(β0)}.
(C.2). b1n≤ λp{In(β0)} ≤ b2n for some positive constants b1 and b2.

(C.3). ξn

p

log logλp{In(β0)}= o(1).

(C.4). δn

p

logλp{In(β0)}
p

log logλp{In(β0)} = o(1).

(C.5). δn logλp{In(β0)}
p

log logλp{In(β0)} = o(1).

(C.6). ξn logλp{In(β0)}
p

log logλp{In(β0)} = o(1).

(C.7). λ1{X t
nMnXn} ≥ b3n for some constant b3 > 0, where

Mn = diag{µ01e−2b‖x1‖, · · · ,µ0ne−2b‖xn‖}.
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Note that these conditions are not completely independent of each other. Firstly, one can

see that both (C.1) and (C.2) are implied from b1n ≤ λ1{In(β0)} ≤ λp{In(β0)} ≤ b2n. Sec-

ondly, conditions (C.1), (C.2) and (C.7) together suggest that all the eigenvalues of In(β0)

and XnMnXn are of order O(n). Thirdly, conditions (C.3) to (C.6) together with (C.2) indicate

ξn

p

log log n→ 0, δn

p

log n log log n→ 0, δn log n
p

log log n→ 0 and ξn log n
p

log log n→ 0

respectively. Finally, under condition (C.1), (C.3) is implied by (C.6); and (C.4) is implied

by (C.5). Although conditions (C.1) to (C.7) may be simplified according to the preceding

discussion, we prefer not to do so in order to clarify that to what extent each condition is

required in the proof.

The conditions (C.1) to (C.7) are essentially about the behavior of the explanatory vari-

ables x. Roughly speaking, they mean most of the observations {x1, · · · ,xn} should be finite

and stay away from 0; and if a subsequence of {x1, · · · ,xn} diverges to infinity, it should do

so with an appropriate rate. In fact, if we assume x is a random vector and x1, · · · ,xn as i.i.d.

observations from x, then the following are sufficient for (C.1) to (C.7) to hold:

(S.1). The moment generating function Eext s exists for ||s|| ≤ ||β0|| + s0 for some constant

s0 > 0. This implies that all of E(extβ0xtx)κ, E(extβ0−2b‖x‖xtx)κ and E(xtx)κ are finite

for some κ > 1.

(S.2). P(xtv 6= 0) > 0 for all v 6= 0 in R p, which implies Eextβ0xxt , Eextβ0−2b‖x‖xxt and Exxt

are all positive definite.

To see the sufficiency of (S.1) and (S.2), one can apply the strong law of large numbers for the

i.i.d. random variables x1, · · · ,xn, · · · under condition (S.1), which gives the following results:

1

n
X t

nUnXn− Eextβ0xxt a.s.→ 0,

1

n
X t

nMnXn− Eextβ0−2b‖x‖xxt a.s.→ 0.

These results together with (S.2) imply (C.1),(C.2) and (C.7). The conditions (C.3) to (C.6)

are implied from (C.1), (C.2) and the fact that, under (S.1)

δ2(1+κ′)
n ≤ λ1{In(β0)}−1−κ′

n
∑

j=1

e
xt

j
β0(1+κ

′)
(xt

jx j)
1+κ′ = O(n−κ

′
) a.s. and

ξ2(1+κ′)
n ≤ λ1{In(β0)}−1−κ′

n
∑

j=1

(xt
jx j)

1+κ′ = O(n−κ
′
) a.s.

for some κ′ > 0. In this paper we will regard the observations x1, · · · ,xn as deterministic for

simplicity of the presentation. There is no essential complication with random xi ’s.

In this paper we have obtained the following results.

Theorem 1. Suppose conditions (C .1) to (C .6) are satisfied. Then for any correct model α ∈ Ac,

||β̂(α)− β0(α)||= O(
p

n−1 log log n) a.s.. (4)
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Further, there exists a constant d > 0 such that for any α ∈Ac

lim sup
n→∞

||β̂(α)−β0(α)||
p

n−1 log log n
= d a.s.. (5)

Hence the M LE β̂(α) follows the law of iterated logarithm.

Theorem 2. Under conditions (C .1) to (C .6), for any correct model α ∈Ac ,

0≤ ℓ(β̂(α)|Yn, Xnα)− ℓ(β0|Yn, Xn) = O(log log n) a.s.. (6)

Theorem 3. Under conditions (C .1) to (C .7), for any incorrect model α ∈ Aw, we have

lim sup
n→∞

1

n
{ℓ(β̂(α)|Yn, Xnα)− ℓ(β0|Yn, Xn)} < 0 a.s.. (7)

From Theorems 2 and 3 we know that the maximum log-likelihood of any correct model

is almost surely greater than the unknown true log-likelihood of the full model by an amount

bounded by |O(log log n)|. On the other hand, the maximum log-likelihood of any incorrect

model in Aw is almost surely smaller than the true log-likelihood of the full model by an

amount greater than τn with τ > 0 when n is sufficiently large. Therefore, if we use a

penalised log-likelihood based criterion of form (3) for model selection, we will almost surely

select the simplest correct model inAc if the penalty term C(n, β̂(α)) is an increasing function

of the model dimension pα and is of an order in between O(log log n) and O(n). We call a

model selection criterion strongly consistent if it selects the simplest correct model almost

surely; and consistent if almost surely it only selects one of the correct models. From this

discussion we have the following:

Theorem 4. For a Poisson regression model satisfying conditions (C .1) to (C .7), both model

selection criteria BIC and SCC are strongly consistent, while AIC is consistent but not necessarily

strongly consistent.

Proof. As the Fisher information’s determinant |I(β(α))| is typically of order O(npα), both

the penalty terms of SCC and BIC are increasing functions of the model dimension pα and

are of order O(log n), it follows from Theorem 2 and Theorem 3 that both SCC and BIC are

strongly consistent. AIC is not necessarily strongly consistent because its penalty term is of

order O(1). But AIC is clearly consistent because its criterion value for a correct model is

almost surely smaller than that for any incorrect model by an amount greater than τn when

n is sufficiently large.

The proof of Theorems 1 to 3 will be the focus of the next section.

4. Proof of the Results

The key to proving our main results lies on the convexity and quadratic approximation of

the negative log-likelihood function, the Normal and Gamma approximations of the Poisson
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probabilities, and the law of iterated logarithm for independent random variables. The idea

of using the convexity property is broadly seen in establishing asymptotic representations of

the M-estimators in linear models, see e.g. [15, 20, 12] among the others.

By the definition of ξn and conditions (C.2) and (C.3) it is easy to see that there exists a

sequence of positive numbers {τn} satisfying:

τn ↑ ∞, τnξn

p

log log n→ 0 and τn

p

n−1 log log n ↓ 0.

Using τn we introduce two sequences of subsets:

An = {β : ||β − β0|| ≤ τn

p

n−1 log log n}
∂ An = {β : ||β − β0||= τn

p

n−1 log log n}.

It is clear that A1 ⊃ A2 ⊃ A3 ⊃ · · · ⊃ An. Further we define

H(β , n) = ℓ(β0|Yn, Xn)− ℓ(β |Yn, Xn) =

n
∑

k=1

{ext
k
β − ext

k
β0 − ykxt

k(β − β0)},

and K(t, s) = et − es − es(t − s). By these definitions it follows that

H(β , n) =

n
∑

k=1

K(xt
kβ ,xt

kβ0)−
n
∑

k=1

(yk −µ0k)x
t
k(β − β0)

def
= R1(β , n) + R2(β , n). (8)

Before proving the main results we need to establish some preliminary results.

Lemma 1. The function K(t, s) defined has the following properties:

(i). K(t, s) ≥ 0 for any real numbers t and s.

(ii). K(t, s) is strictly convex with respect to t.

(iii). For any ∆ > 0,

1

2
es−2∆(t − s)2 ≤ K(t, s) ≤ 1

2
es+2∆(t − s)2 if |t − s| ≤∆.

The proof of Lemma 1 will be give in Appendix.

Lemma 2. Let W be a Poisson(θ) random variable. Then for any w ≥ 0 the following inequalities

hold:

P(W ≤ w)≤ (2π)− 1

2

∫ (w+1−θ )/pθ

−∞
e−

1

2
t2

d t, (9)

P(W ≤ w) ≥ [Γ(θ + 1)]−1

∫ w

0

tθ e−t d t. (10)
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The results of Lemma 2 were obtained by [2] which can also be found in [6, p. 102].

Lemma 3 (Law of the Iterated Logarithm). Let {Zn, n ≥ 1} be independent random vari-

ables with EZn = 0, EZ2
n = σ

2
n and s2

n =
∑n

k=1σ
2
k
→ ∞. If |Zn| ≤ dn a.s., where dn =

o((s2
n/ log log s2

n)
1/2), then

lim sup
n→∞

±∑n

k=1 Zk
p

2s2
n log log s2

n

= 1 a.s..

This lemma and its proof can be found in e.g. [3, pp. 373-374] and [9, pp. 239-246].

Lemma 4. Under conditions (C.1), (C.2) and (C.4) to (C.6), we have

lim sup
n→∞

±∑n

k=1(yk −µ0k)xk j
p

2In(β0)( j, j) log log In(β0)( j, j)
= 1 a.s. for j = 1, · · · , p. (11)

Here xk j is the j-th element of xk and In(β0)( j, j) is the ( j, j)-th element of In(β0). Equation

(11) suggests that {(yk−µ0k)xk j, k = 1,2, · · · } obeys the law of iterated logarithm. Accordingly,

we have
∂ ℓ

∂ β
|β=β0

=

n
∑

k=1

(yk −µ0k)xk = X t
n(Yn−µ0) = O(

p

n log log n) a.s. (12)

where µ0 = (µ01, · · · ,µ0n)
t is the true mean vector.

Proof. The result (12) is obvious from (11) and condition (C.2). Hence we only need to

prove (11). Without losing generality we assume all xk j > 0.

Using the information that yk ∼ Poisson(µ0k) and the definition of In(β0) it is easy to

verify that for j = 1, · · · , p

E(yk −µ0k)xk j = 0, (13)

n
∑

k=1

E((yk −µ0k)xk j)
2 =

n
∑

k=1

µ0k x2
k j = In(β0)( j, j)→∞ (14)

as n→∞ by condition (C.1).

From now on we proceed to show that for j = 1, · · · , p

|(yn−µ0n)xnj| ≤ o(dnj) a.s. (15)

where dnj =
p

In(β0)( j, j)/ log log In(β0)( j, j)→ ∞ by (14). For any ǫ > 0, it is easy to see

that

P{|(yn −µ0n)xnj| > ǫdnj} ≤ P{yn > µ0n+ ǫdnj x
−1
nj }+ P{yn < µ0n − ǫdnj x

−1
nj }. (16)

Applying (9) of Lemma 2 we have

P{yn < µ0n − ǫdnj x
−1
nj } ≤ (2π)−

1

2

∫ (1−ǫdn j x
−1
n j
)/
p
µ0n

−∞
e−

1

2
t2

d t. (17)
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Note that from condition (C.1) and the inequality λ1{In(β0)} ≤ In(β0)( j, j) ≤ λp{In(β0)} we

have

µ0n x2
nj ≤ µ0nxt

nxn ≤ λp{In(β0)}µ0nxt
n In(β0)

−1xn

≤ λp{In(β0)}δ2
n ≤
λp{In(β0)}
λ1{In(β0)}

In(β0)( j, j)

log log In(β0)( j, j)
δ2

n log logλp{In(β0)}
≤ b0d2

njδ
2
n log logλp{In(β0)}. (18)

Thus when µ0n ≥ 1,

1− ǫdnj x
−1
njp

µ0n

=
1
p
µ0n

− ǫ

√

√

√

√

d2
nj

µ0n x2
nj

≤ 1− ǫ
p

b0δ
2
n log logλp{In(β0)}

→ −∞

by condition (C.4). This implies that

1− ǫdnj x
−1
njp

µ0n

≤ −1

2
ǫ(b0δ

2
n log logλp{In(β0)})−

1

2 when n is sufficiently large. (19)

From (17), (19) and a well-known inequality

∫ ∞

a

e−
1

2
t2

d t <
1

a
e−

1

2
a2

for all a > 0

[see 3, p.49], it follows that when µ0n ≥ 1 and n is sufficiently large,

P{yn < µ0n − ǫdnj x
−1
nj } ≤ (2π)−

1

2

∫ − 1

2
ǫ(b0δ

2
n log logλp{In(β0)})−

1
2

−∞
e−

1

2
t2

d t

< (2π)−12ǫ−1(b0δ
2
n log logλp{In(β0)})

1

2 e−
1

8
ǫ2(b0δ

2
n log logλp{In(β0)})−1

≤ (logλp{In(β0)})−
1

2 (λp{In(β0)})−2 (20)

where the last inequality follows from condition (C.4).

When µ0n < 1, it follows from (18) and conditions (C.1) and (C.4) that

µ0n − ǫdnj x
−1
nj =
p
µ0n(
p
µ0n− ǫ

√

√

√

√

d2
nj

µ0n x2
nj

)≤pµ0n(1− ǫ(b0δ
2
n log logλp{In(β0)})−

1

2 )< 0

if n is sufficiently large, which suggests P{yn < µ0n − ǫdnj x
−1
nj
} = 0 if n is sufficiently large.

Therefore the result (20) is true for any µ0n > 0, which implies that

∞
∑

n=1

P{yn < µ0n − ǫdnj x
−1
nj }<∞ (21)
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if further condition (C.2) holds.

Now let {cn : 0 < cn ≤ 1

2
, n = 1,2, · · · } be a sequence of numbers to be determined.

Applying the result (10) of Lemma 2 and the property for the Gamma function [Γ(θ +

1)]−1
∫∞

0
tθ e−t d t = 1, we have

P{yn > µ0n+ ǫdnj x
−1
nj } ≤ [Γ(µ0n+ 1)]−1

∫ ∞

µ0n+ǫdn j x
−1
n j

tµ0n e−t d t

≤ e
−cn(µ0n+ǫdn j x

−1
n j
)
[Γ(µ0n+ 1)]−1

∫ ∞

µ0n+ǫdn j x
−1
n j

tµ0n e−(1−cn)t d t

≤ e
−cn(µ0n+ǫdn j x

−1
n j
)
(1− cn)

−(µ0n+1) =
1

1− cn

�

e−cn

1− cn

�µ0n

e
−ǫcndn j x

−1
n j

≤ 2

 

1− cn +
1

2
c2

n

1− cn

!µ0n

e
−ǫcndn j x

−1
n j = 2

�

1+
c2

n

2(1− cn)

�µ0n

e
−ǫcndn j x

−1
n j . (22)

We take cn = min{1
2
,µ
− 1

2

0n } so
c2
n

2(1−cn)
≤ min{1

4
,µ−1

0n }. By considering the two cases µ0n ≤ 4

and µ0n > 4 separately and using the property that (1+ 1

a
)a ↑ e as a ↑ ∞, it is easy to see that

�

1+
c2

n

2(1− cn)

�µ0n

≤max{
�

5

4

�4

, e} = e. (23)

Applying (18) one can show that when n is sufficiently large

ǫdnjµ
− 1

2

0n
x−1

nj
≥ ǫb

− 1

2

0
(δn

p

log logλp{In(β0)})−1 ≥ 2 logλp{In(β0)} (24)

under conditions (C.1) and (C.5). In the same way as proving (18) one can show that under

condition (C.1)

x2
nj ≤ b0d2

njξ
2
n log logλp{In(β0)}. (25)

By (25) and condition (C.6) it follows that

1

2
ǫdnj x

−1
nj
≥ 1

2
ǫb
− 1

2

0 (ξn

p

log logλp{In(β0)})−1 ≥ 2 logλp{In(β0)} (26)

when n is sufficiently large. By (24), (26) and the fact that cn = min{1
2
,µ
− 1

2

0n } it follows that

when n is sufficiently large,

ǫcndnj x
−1
nj ≥ 2 logλp{In(β0)}. (27)

Now from (22), (23) and (27) we have

P{yn > µ0n+ ǫdnj x
−1
nj
} ≤ 2eλp{In(β0)}−2 (28)
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when n is sufficiently large. From (28) and condition (C.2) it follows that

∞
∑

n=1

P{yn > µ0n+ ǫdnj x
−1
nj }<∞. (29)

Following the results (16), (21) and (29) we have

∞
∑

n=1

P{|(yn −µ0n)xnj| > ǫdnj}<∞.

Hence by the Borel-Cantelli lemma,

P{|(yn−µ0n)xnj| > ǫdnj occurs infinitely often} = 0 for any ǫ > 0,

which implies that (15) is true. Since (13) to (15) are true, the result (11) is followed by

applying Lemma 3 for the independent random variables {(yk −µ0k)xk j, k = 1,2, · · · }.
Proof. (Theorem 1) Clearly it is sufficient to prove (4) only for the full model:

||β̂ −β0||= O(
p

n−1 log log n) a.s. (30)

Applying result (iii) of Lemma 1 with t = xt
k
β , s = xt

k
β0 and ∆= |xt

k
β − xt

k
β0|, it follows that

K(xt
k
β ,xt

k
β0)≥

1

2
e−2|xt

k
(β−β0)|µ0k[x

t
k
(β −β0)]

2. (31)

Following the definition of ξn and condition (C.2) one can find that

max
1≤k≤n

||xk||2 ≤ λp{In(β0)} max
1≤k≤n

xt
k
In(β0)

−1xk = λp{In(β0)}ξ2
n ≤ b2nξ2

n. (32)

Thus by (32) and Cauchy-Schwarz inequality,

max
1≤k≤n

|xt
k
(β−β0)|I(β∈∂An) ≤ max

1≤k≤n
||xk|| · ||β−β0||I(β∈∂An)≤

p

b2ξnτn

p

log log n (33)

where I(β ∈ ∂An) is an indicator function indicating that only those β in ∂An will be under

consideration. (This type of definition for the indicator function will be used in the rest of the

paper.) It follows from (8) and (31) to (33) that

R1(β , n)I(β∈∂An)≥
1

2
e−2max1≤k≤n |xt

k
(β−β0)|

n
∑

k=1

µ0k[x
t
k(β − β0)]

2I(β∈∂An)

≥ 1

2
e−2
p

b2ξnτn

p
log log n(β − β0)

t In(β0)(β − β0)I(β∈∂An)

≥ 1

2
e−2
p

b2ξnτn

p
log log nλ1{In(β0)}||β − β0||2I(β∈∂An). (34)
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By conditions (C.1) and (C.2) and the fact that τnξn

p

log log n→ 0, it comes after (34) that

there exists a constant b4 > 0 such that

R1(β , n)I(β∈∂An)≥ b4τ
2
n log log n. (35)

On the other hand, by result (12) of Lemma 4 and (8),

|R2(β , n)|I(β∈∂An)≤ ||
n
∑

k=1

(yk −µ0k)xk|| · ||β − β0||I(β∈∂An)

= O(
p

n log log n)τn

p

n−1 log log n= O(1)τn log log n a.s.. (36)

Knowing (35) and (36) we can find a constant b5 > 0 so that

H(β , n)I(β∈∂An) = {R1(β , n) + R2(β , n)}I(β∈∂An)≥ b5τ
2
n log log n a.s.. (37)

It is easy to see that H(β , n) is convex by Lemma 1 and that H(β0, n) = 0. This and (37)

suggests that the MLE β̂ which also minimizes H(β , n) must be inside the subset An almost

surely; namely

||β̂ − β0|| ≤ τn

p

n−1 log log n a.s.. (38)

Equation (38) implies (30) because the sequence {τn} can be chosen to diverge as slowly as

possible.

We now proceed to prove (5) for the full model. Suppose (5) does not hold for the full

model. This implies that

||β̂ − β0|| = o(
p

n−1 log log n) a.s., (39)

knowing that (30) is true. By applying result (iii) of Lemma 1, (8) and (32) it follows that

R1(β̂ , n)≤ 1

2
e2max1≤k≤n |xt

k
(β̂−β0)|

n
∑

k=1

µ0k[x
t
k(β̂ − β0)]

2

≤ 1

2
e2
p

b2nξn||β̂−β0||(β̂−β0)
t In(β0)(β̂−β0)≤

1

2
e2
p

b2nξn||β̂−β0||λp{In(β0)}||β̂−β0||2. (40)

Thus by (39) and conditions (C.2) and (C.3) we have R1(β̂ , n) = o(1) log log n a.s.. Corre-

sponding to (36) it can be seen that R2(β̂ , n) = o(1) log log n a.s. under the assumption of

(39). Hence we have that under assumption (39)

H(β̂ , n) = R1(β̂ , n) +R2(β̂ , n) = o(1) log log n a.s.. (41)

On the other hand, from (11) of Lemma 4 we know there exists a sequence of positive integers

{ni ↑ ∞} such that

lim
i→∞

∑ni

k=1
(yk −µ0k)xk1

p

2Ini
(β0)(1,1) log log Ini

(β0)(1,1)
= 1 a.s..



G. Qian / Eur. J. Pure Appl. Math, 3 (2010), 417-434 429

Thus when ni is sufficiently large,

∑ni

k=1
(yk −µ0k)xk1

p

2Ini
(β0)(1,1) log log Ini

(β0)(1,1)
≥ 1

2
a.s.. (42)

Now define a p× 1 vector β̃ni
with β̃ni

( j) = β0 j for j = 2, · · · , p and

β̃ni
(1) =

b1

4b0 b2

È

2 log log Ini
(β0)(1,1)

Ini
(β0)(1,1)

+ β01.

Then from (42) it follows that, when ni is sufficiently large

R2(β̃ni
, ni) =

ni
∑

k=1

(µ0k− yk)x
t
k
(β̃ni
−β0) =

ni
∑

k=1

(µ0k− yk)xk1(β̃ni
(1)− β01)

≤ −1

2

p

2Ini
(β0)(1,1) log log Ini

(β0)(1,1) · b1

4b0 b2

È

2 log log Ini
(β0)(1,1)

Ini
(β0)(1,1)

= − b1

4b0 b2

log log Ini
(β0)(1,1) a.s.. (43)

Note that by conditions (C.1) and (C.2)

b2n≥ λp{In(β0)} ≥ In(β0)(1,1)≥ λ1{In(β0)} ≥
b1

b0

n (44)

and accordingly

2 log log n≥ log log In(β0)(1,1)≥ 1

2
log log n when n is sufficiently large. (45)

It follows that

p

b1

2
p

b0 b2

Æ

n−1
i

log log ni ≥ β̃ni
(1)− β01 ≥

b1

4b0 b2

p

b2

Æ

n−1
i

log log ni (46)

when ni is sufficiently large. Using (46), (32) and the fact that ξn

p

log log n → 0 one can

show that

max
1≤k≤ni

|xt
k
(β̃ni−β0)| ≤ max

1≤k≤ni

||xk||(β̃ni
(1)−β01) ≤

1

2

È

b1

b0 b2

ξni

p

log log ni ≤
1

2
log2 (47)

when ni is sufficiently large. Similar to proving (40), by (44) and (47) one can see that

R1(β̃ni
, ni)≤ λp{Ini

(β0)}||β̃ni
− β0||2 ≤ b2ni

b2
1

16b2
0 b2

2

2 log log Ini
(β0)(1,1)

Ini
(β0)(1,1)



G. Qian / Eur. J. Pure Appl. Math, 3 (2010), 417-434 430

≤ b1

8b0 b2

log log Ini
(β0)(1,1) when ni is sufficiently large. (48)

Thus, by (43), (48) and (45) it follows that when ni is sufficiently large,

H(β̃ni
, ni) = R1(β̃ni

, ni) + R2(β̃ni
, ni)

≤ − b1

8b0b2

log log Ini
(β0)(1,1)≤ − b1

16b0b2

log log ni a.s.. (49)

Since β̂ ≡ β̂n is the MLE that minimizes H(β , n), inferring from (49) we have

H(β̂ni
, ni)≤ H(β̃ni

, ni)≤ −
b1

16b0b2

log log ni a.s. (50)

when ni is sufficiently large. Clearly, (50) is contradictory to (41) which suggests that (39)

is wrong. Therefore (5) is true for the full model and consequently so for the other correct

models inAc.

Proof. (Theorem 2) As in proving Theorem 1, we only need to prove (6) for the full model

which is equivalent to

0≥ H(β̂ , n) = R1(β̂ , n) + R2(β̂ , n) = O(log log n) a.s. (51)

by the definition of H(β , n). The inequality part of (51) is obvious because β̂ is the MLE of β .

Note that result (40) is also valid here, so by Theorem 1 and conditions (C.2) and (C.3)

0≤ R1(β̂ , n)≤ 1

2
e2
p

b2nξn||β̂−β0||λp{In(β0)}||β̂−β0||2 = O(log log n) a.s.. (52)

On the other hand, by result (12) of Lemma 4 and (4) of Theorem 1 we have

|R2(β̂ , n)| ≤ ||
n
∑

k=1

(yk −µ0k)xk|| · ||β̂ − β0|| = O(log log n) a.s.. (53)

By (52) and (53) it follows that |H(β̂ , n)| = O(log log n) a.s. which suffices the proof of the

theorem.

Proof. (Theorem 3) First we extend the pα×1 vector β̂(α), the MLE of βα, to a p×1 vector

β̂∗(α) by inserting p− pα 0’s into β̂(α) in such a way that the sub-vector of β̂∗(α) indexed by

α is equal to β̂(α). Then it is easy to see that proving (7) is equivalent to proving

lim inf
n→∞ n−1H(β̂∗(α), n)> 0 a.s. for any incorrect model α ∈Aw . (54)

Define

A0 = {β : ||β − β0|| ≤
1

2
min

1≤i≤pα0

|β0(α0)i|= b}.
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Clearly A0 is a compact set; and for any incorrect model α ∈ Aw we have β̂∗(α) 6∈ A0 because

||β̂∗(α)−β0|| ≥ 2b. Moreover, by Theorem 1, the MLE β̂ for the full model is an interior point

of A0 almost surely when n is sufficiently large. Since H(β , n) is convex with respect to β , it

follows that

H(β̂∗(α), n)≥ inf
β∈∂ A0

H(β , n)

where ∂A0 is the boundary of A0. Now it is sufficient to prove

lim inf
n→∞ inf

β∈∂ A0

n−1H(β , n)> 0 a.s. (55)

in order to prove (54). Using result (iii) of Lemma 1, (8), condition (C.7) and Cauchy-Schwarz

inequality one can show that

R1(β , n)I(β∈∂A0)≥
1

2

n
∑

k=1

e−2||xk ||·||β−β0||µ0k[x
t
k
(β − β0)]

2I(β∈∂A0)

=
1

2
(β − β0)

tX t
nMnXn(β − β0)I(β∈∂A0)

≥ 1

2
λ1{X t

nMnXn}||β − β0||2I(β∈∂A0)≥
1

2
b3 b2n,

which suggests

inf
β∈∂ A0

R1(β , n)≥ 1

2
b3 b2n. (56)

Following the same line as proving (36) one can show that

sup
β∈∂ A0

|R2(β , n)| = O(
p

n log log n) a.s.. (57)

Since infβ∈∂ A0
H(β , n) ≥ infβ∈∂ A0

R1(β , n)− supβ∈∂ A0
|R2(β , n)| by (8), it follows from (56)

and (57) that (55) is true and consequently (54) is true.

5. Discussion

The asymptotic results obtained in this paper are based on the assumption that the re-

sponse variable follows a Poisson distribution and the candidate models under consideration

for selection are based on those available explanatory variables. In practice, there may exist

some lurking variables which also affect the response variable. In this situation, a mixture

Poisson distribution may be introduced for modeling the response variable, in which an over-

dispersion parameter is used to account for the effects of the lurking variables. We refer to

[8, section 6.2.3] for details of the over-dispersion log-linear models. Then the model selec-

tion procedure can still focus on those available explanatory variables. Provided that a result

similar to that in Lemma 2 can be obtained for the mixture Poisson probability (which may be

shown by imitating the proof in [2]), it seems the same results as of Theorems 1 to 4 can also
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be established for the over-dispersion log-linear models using the same methods employed in

this paper.

It is also possible to extend our asymptotic results to the Poisson regression models with

the link functions other than the log-link, which is still under our investigation but shall be

presented somewhere else.

In addition to the model selection criteria studied here, there are many other approaches

for model selection, e.g. the hierarchical Bayesian approach [5] and LASSO [19] etc., for

which our results may not be applicable.

Finally, other than determining a model selection criterion and assessing its asymptotic

performance, there is a computational issue on how to execute a model selection procedure

from many possible candidate models. This becomes especially important when the number of

candidate models, often of the magnitude 2p, is enormous. However, a thorough investigation

of this issue is beyond the scope of this paper. We refer to [10] and [13] for some results in

this area.
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Appendix

Proof. (Lemma 1) Since

K(t, s) = et − es − es(t − s),

it is easy to see that

K(s, s) = 0, K ′t(t, s) = et − es, K ′t(s, s) = 0 and K ′′t (t, s) = et > 0.

Hence, K(t, s) is strictly convex with respect to t, and K(t, s) ≥ 0 with K(t, s) = 0 only if t = s.

Now let

F(t, s) = K(t, s)− 1

2
es−2∆(t − s)2

G(t, s) = K(t, s)− 1

2
es+2∆(t − s)2



REFERENCES 434

For any real numbers s, t and ∆ > 0, suppose |t − s| ≤∆. Then we have

s− 2∆ < s−∆ ≤ t ≤ s+∆ < s+ 2∆.

It is clear that

F(s, s) = 0, F ′t(t, s) = et − es − es−2∆(t − s),

F ′t(s, s) = 0 and F ′′t (t, s) = et − es−2∆ > 0

Therefore, F(t, s) ≥ 0 with F(t, s) = 0 only if t = s, namely

K(t, s) ≥ 1

2
es−2∆(t − s)2.

Similarly, we can show that G(t, s) ≤ 0 with G(t, s) = 0 only if t = s, namely

K(t, s) ≤ 1

2
es+2∆(t − s)2.

This concludes the proof.


