Real Division Algebras with Left Unit Satisfying Some Identities.
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i3.5153Keywords:
Division algebra, left unit, fused algebras and isomorphism of algebras,Abstract
We study A, finite dimensional real division algebra with left unit $e$, satisfying: for all $x\in A$,
\\
\ (\textbf{E1}) \ \ $(x,x,x)=0$, \ \ \ (\textbf{E2}) \ \ $(x^2,x^2,x^2)=0$, \ \ \ (\textbf{E3}) \ \ $x^2e=x^2$ \ \ and \ \ (\textbf{E4})\ \ $(xe)e=x$.
\\
We show that:
$\bullet$ If $A$ satisfies to (\textbf{E1}), then e is the unit element of $A$.
$\bullet$ $(\textbf{E1})\Longrightarrow (\textbf{E2})\Longrightarrow (\textbf{E3})\Longrightarrow (\textbf{E4})$.
\\In two-dimensional, we determine $A$ satisfying (\textbf{Ei}$)_{i\in\{1,2,3,4\}}$. We have
$$\begin{tabular}{|c|c|c|c|c|}
\hline
% after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
A \ satisfies to & (E1) & (E2) & (E3) & (E4) \\\hline
A \ isomorphic \ to & $\mathbb{R}$; $\mathbb{C}$ & $\mathbb{R}$; $\mathbb{C}$; $^{\star}\mathbb{C}$ & $\mathbb{R}$; $\mathbb{C}$; $^{\star}\mathbb{C}$ & $\mathbb{R}$; $\mathbb{C}$; $^{\star}\mathbb{C}$; $\mathcal{L}(1, -1, \gamma, 1)$\\
\hline
\end{tabular}
$$ We show
as well as
$(\textbf{E1})\Longrightarrow (\textbf{E2})\Longleftrightarrow (\textbf{E3})\Longrightarrow (\textbf{E4})$.
\\
We finally study the fused four-dimensional real division algebras satisfying (\textbf{Ei}$)_{i\in\{1,2\}}$. We have shown that
those which verify (\textbf{E2}) are $\mathbb{H}$, $^{\star}\mathbb{H}$ and $\mathbb{C}\oplus \mathbb{B}$. and that $\mathbb{H}$ is the only fused algebra division with left unit satisfies to (\textbf{E1}).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.