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Abstract. A bacterial disease called leptospirosis is very typical in both tropical and subtropical
regions. It is a well-known animal-borne illness that is brought on by spiral-shaped bacteria
(Leptospira spp.). Both directly and indirectly, the disease can spread to humans through the urine
of sick animals or polluted water, soil, or food. Two phases might appear in leptospirosis symptoms.
The patient will have mild symptoms during the first phase, which is known as the Septicemic phase.
In the meantime, the Immune phase, the second, is more severe. This study aimed to create a
mathematical model of leptospirosis disease using free-living bacteria. In the model, interactions
occur between people, free-living Leptospira, animal hosts, and animal vectors. The population’s
characteristics are used to build the model, and the actual issue is used to identify the disease’s
transmission paths. While the endemic equilibrium is investigated numerically through ODE45
solver, the disease-free equilibrium is analyzed theoretically. The paper demonstrates that for the
established mathematical model with an epidemic threshold R0, analytical and numerical solutions
produced the same outcome.
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1. Introduction

The Leptospira genus of spiral-shaped spirochetes is the cause of leptospirosis, a dan-
gerous zoonotic illness that affects people worldwide. Leptospirosis is a serious zoonoses
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disease that affect people all over the world and is caused by spiral-shaped spirochetes
belonging to the Leptospira genus. This disease spreads widely not just in tropical regions
but also in subtropical regions, including Europe[9, 23], Africa [6], America [26, 31], Asia
[1, 7, 29] and Australia [16, 28]. The disease is also well-known as one of the world’s most
typical zoonoses, with a prevalence of 1.03 million cases and 58.900 cases every year [18].

First recognized as an occupational disease, leptospirosis infected sewer workers in
1883. In 1886, German physician Adolf Weil discovered four patients with clinical man-
ifestations of this disease, which included symptoms of severe jaundice, fever, enlarged
liver, and kidney failure [27]. Subsequently, in 1987, Goldsmith named the disease Weil’s
disease. This disease also has other names in several countries, such as Swamp fever,
Swineherd’s disease, Mud fever, Redwater of Calves, Autumn fever (Akiyami), Rice-field
fever, Canicola fever, Cane-cutter’s fever, Hemorrhagic Jaundice, Stuttgart disease [4, 12].
Furthermore, in 1915, Inada succeeded in isolating the Leptospira icterohemorrhagiae bac-
terium as a cause of Weil’s disease [12]. Up to now, there are 20 genus Leptospira species
based on DNA hybridization studies consisting of three major, namely, pathogenic, inter-
mediate, and saprophytic (non-pathogenic) leptospires [4, 14].

Pathogenic bacteria infect humans and animals. Rats are well-known as vector animals
for this disease. Even though bacteria can infect it, rats still usually live. Almost all species
of rats are a good reservoir for the spread of leptospirosis disease [2, 21]. The bacteria
breed and grow well in the rat’s kidney. These bacteria spread through rats’ urine and
then contaminate the environment. Humans and animals in contact with contaminated
water, soil and mud have easily been infected by leptospirosis disease [5]. In human cases,
these bacteria enter the body through mucosae such as the mouth, nose, and eye. It
also enters the human body through broken skin. People who work as farmers, ranchers,
gardeners, and butchers would be more susceptible to the disease [3, 15]. Some animals
like cats, dogs, pigs, horses, and cows are also easily infected by the bacteria. These kinds
of animals are called host animals, and the bacteria can kill them.

There are two main phases of infection in the human population. The first phase,
Septicemic, occurs in 3-7 days with some symptoms like fever, rash, vomiting, muscle
pain, headache, chills, and red eyes [8, 19, 24]. Some symptoms look like flu disease,
such that people with these symptoms usually think that the influenza virus has infected
them. It is also one reason why this disease is sometimes un-diagnosed or misdiagnosed.
However, in order to know whether someone has an infection with leptospirosis or not, the
patient needs to do a blood test. The second phase, Immune, occurs in 0-30 days. Some
symptoms that probably appear in this phase are jaundice, acute rash, bleeding, kidney
failure, heart failure, liver failure, or meningitis. In this phase, some leptospirosis patients
probably will die [11, 25]. There is also interphase and defervescence, lasting 2-3 days. In
this phase, someone with leptospirosis will feel better. Unfortunately, bacteria are still in
their body, so after this phase, they will go to the Immune phase [20].

Some research in mathematical epidemiology has been developed to analyze the dynam-
ics and spread of leptospirosis in a homogeneous/heterogeneous population [10, 17, 22].
Unfortunately, none of these research had considered assessing the effect of free-living
leptospira in the surroundings. In the last decade, research conducted to develop mathe-
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matical models of leptospirosis disease only considers the interaction between humans and
animal vectors, animal hosts with animal vectors or humans with free-living leptospira
alone, so this interaction model cannot describe the overall dynamics of this disease. The
research gap that occurs is that a mathematical model needs to be developed that looks
at all the factors that cause the spread of leptospirosis. Mathematical models of diseases
that are strongly influenced by environmental factors and spread through the intermediary
of several animals, both vectors and hosts and also can cause serious illness in humans,
need to be constructed and analyzed so that it can be known its spread in the human
population which in turn can be done effective prevention of the spread of this disease.
In this paper, a framework model of leptospirosis disease with free-living bacteria in the
environment is rigorously studied, which has been developed from similar research about
schistosomiasis, which has been done by Garira et al. l [13].

2. Mathematical Model

The construction of a leptospirosis model in a closed population was considered a
system with no seasonal effect. With regard to the characteristics of the disease, the human
population at any time t was divided into susceptible human individuals SHu(t), exposed
human individuals who relate to the septicemic phase EHu(t), infected human individuals
who relate to the immune phase IHu(t) and recovered human individuals RHu(t). The
animal population was divided into a host animal population and a vector population.
Similarly with the human, the host animal population at any time t was divided into
susceptible host animal individuals SHo(t), infected host animal individual IHo(t), and
recovered host animal individual RHo(t), while the vector animal population at any time
t was divided into susceptible vector animal individuals SHo(t) and infected vector animal
individual IHo(t). Free-living leptospira at any time t is L(t).

There are three possible transmission routes for susceptible humans to become infected.
They have direct interaction with free-living leptospira in the surroundings at the rate of
βHu1 , they have contact with infected host animals at the rate βHu2 , or they have contact
with infected vector animals at the rate βHu3. It was assumed that there was only one
transmission route for susceptible animals to become infected. Host and vector animals
have contact with free-living leptospira at the rate βHo and βV , respectively. There are
also two possibilities for the exposed human population to become infected at the rate
γHu or recover at the rate σHu. The number of bacteria in the environment only comes
from the urine of the infected population at the rate κHu,κHo, and κV .

We made some assumptions to construct the model, as follows: a) each population is
assumed to be closed; b) every individual in each population is blending homogeneously;
c) every infected individual sheds leptospira bacteria in the environment; d) there is no
recovered vector animal population; e) there is no direct transmission between host animal
and vector animal; f) recovered individuals can be re-infected; and g) there is death-caused
by the infection in human and host animal, whereas in vector animal population there is
no death-caused by the infection.

By incorporating a few assumptions that can provide support when creating a mathe-
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matical model, the spread of the illness can be illustrated in a component diagram similar
to the one shown in Figure 1. With regard to the assumptions and the compartment

Figure 1: The route of transmission from Free-Living Leptospira into the human population, animal-host
population, and animal-vector population.

diagram, the route of transmission of leptospira bacteria at time t is disempowered by the
following nonlinear ordinary differential system.

Human population

dSHu

dt
= ΛHu − (λHu + µHu)SHu + θHuRHu, (1)

dEHu

dt
= λHuSHu − (γHu + µHu + σHu)EHu, (2)

dIHu

dt
= γHuEHu − (µHu + δHu + αHu)IHu, (3)

dRHu

dt
= αHuIHu + γHuEHu − (µHu + θHu)RHu, (4)

Animal-Host Population

dSHo

dt
= ΛHo − (λHo + µHo)SHo + θHoRHo, (5)

dIHo

dt
= λHoSHo − (µHo + δHo + αHo)IHo, (6)
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dRHo

dt
= αHoIHo − (µHo + θHo)RHo, (7)

Animal-Vector Population

dSV

dt
= ΛV − (λV + µV )SV , (8)

dIV
dt

= λV SV − µV IV , (9)

Free-Living Leptospira in the environment

dL

dt
= κHu(EHu + IHu) + κHoIHo + κV IV − µLL, (10)

where,
λHu = ( βHu1L

L0+∈L + βHu2IHo
NHu

+ βHu3IV
NHu

),

λHo = ( βHoL
L0+∈L),

λV = ( βV L
L0+∈L),

All parameters for equations are assumed to be non-negative for all times t¿0 with the
initial condition given by
SHu(t0) ≥ 0, EHu(t0) ≥ 0, IHu(t0) ≥ 0, RHu(t0) ≥ 0, SHo(t0) ≥ 0, IHo(t0) ≥ 0, RHo(t0) ≥
0, SV (t0) ≥ 0, IV (t0) ≥ 0, L(t0) ≥ 0
Here, t ≥0 represents the time in days and t0 represents the beginning of the leptospirosis
illness spread where each symbol can be written as follows in table 1.

Table 1: Summary of parameter’s description

Parameter Description

ΛHu the rate at which the human population is being recruited

ΛHo the rate at which animal host populations are being recruited

ΛV the rate at which animal vector populations are being recruited

µHu the rate of death in the human population

µHo the rate of death of animal host population

µV the rate of death of animal vector population

µL the rate of death of free-living leptospira in the environment

θHu the transmission rate of humans from the recovered population to the
susceptible population

θHo the transmission rate of the animal host from the recovered population
to the susceptible population

γHu the transmission rate from the septicemic phase to the immune phase

σHu the transmission rate of humans from the exposed population to the
recovered population
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Table 2: Summary of parameter’s description

Parameter Description

δHu mortality rate caused by sickness in the human population

δHo mortality rate caused by sickness of animal host population

αHu the recovery rate of the human population

αHo the recovery rate of animal host population

βHu1 the infection rate of the human population by free-living lep-
tospires in the environment

βHu2 the infection rate of the human population by infected animal host
population

βHu3 the infection rate of the human population by infected animal
vector population

βV infection rate of animal host population by free-living leptospira
in the environment

L0 infection rate of animal vector population by free-living leptospira
in the environment

ε saturation constant of leptospires bacteria

κHu a reduction in the growth rate of leptospires bacteria, given the
rise in cases

κHo the excretion rate of leptospira from the human population into
the environment

κV the excretion rate of leptospira from animal-host populations into
the environment

3. Result and Discussion

3.1. Feasibility Region of the Equilibria of the Model

Mathematically and epidemiologically, the system is well-posed by constructed it from
the real phenomenon of disease spread and the system of differential equations, meaning
it is biologically meaningful when all model parameters and state variables for the model
system are assumed to be non-negative and consistent with human and animal populations
for all time t ≥ 0. Additionally, it can be confirmed that for the model system, all
bounded and non-negative solutions with non-negative beginning conditions continue to
exist. Leptospirosis transmission dynamics model in the equations (1) - (10) shall thus
be examined in a suitable, feasible area, which will be determined as follows. Letting
NHu = SHu +EHu + IHu +RHu, and adding equations (1) - (4) in the system, it will give
us.

dNHu

dt
= ΛHu − µHuNHu − δHu ≤ ΛHu − µHuNHu,

This implies that

lim
t→∞

supNHo ≤
ΛHo

µHo
,
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Analogous for another two populations Letting NHo = SHo + IHo + RHo, and adding
equations (5) - (7) in the system will give us. dNV

dt ≤ ΛV − µV NV ,
This implies that

lim
t→∞

supNV ≤ ΛV

µV
,

From equation (10), we have dL
dt ≤ κHu(EHu + IHu) +κHoIHo +κV IV −µLL, This implies

that

lim
t→∞

supNV ≤ κHu(EHu + IHu) + κHoIHo + κV IV
µL

,

Therefore, every possible systemic solution is positive and will eventually reach the invari-
ant attractive area.
Ω = {(SHu, EHu, IHu, RHu, SHo, IHo, RHo, SV , IV , L) : NHu(t) ≤ ΛHu

µHu
, NHo(t) ≤ ΛHo

µHo
, NV (t)

≤ ΛV
µV

, L(t) ≤ κHu(EHu+IHu)+κHoIHo+κV IV
µL

},

Thus, whenever ΛHu > µHu, Ω is attractive and positively invariant, examining the
system’s solutions in Ω suffices. Results for the system’s existence, uniqueness, and contin-
uation hold in this area, and all solutions beginning in Ω stay there for all t ≥ 0. Therefore,
the model is well-posed both mathematically and epidemiologically. Examining the dy-
namics of the flow produced by the model in Ω suffices. Unless otherwise indicated, we
will assume in all that follows that ΛHu > µHu.

3.2. Determination of disease-free equilibrium

We subsequently ascertained the solution of the system of nonlinear ordinary differen-
tial equations based on the created mathematical model (1) - (10). In order to determine
this solution, the right-hand side of each equation was taken to be equal to zero. This
allowed the system to admit two equilibrium states: the endemic state and the disease-free
equilibrium.

dSHu

dt
=

dEHu

dt
=

dIHu

dt
=

dRHu

dt
=

dSHo

dt
=

dIHo

dt
=

dRHo

dt
=

dSV

dt
=

dIV
dt

=
dL

dt
= 0,

Infection in the populations of humans, animals serving as hosts, and animal vectors occurs
when there are no free-living leptospira in the environment or in a state of disease-free
equilibrium. As such, the model system’s disease-free equilibrium is given by
E0 = (ΛHu

µHu
, 0, 0, 0, ΛHo

µHo
, 0, 0, ΛV

µV
, 0, 0)

3.3. Calculation of the Reproduction Number

The basic reproduction number, or R0, is the most intriguing quantity in many epi-
demic models that highlights the key players in the disease transmission cycle. Its defini-
tion is the mean quantity of secondary infections caused by a single infectious host that is
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introduced into a population that is completely susceptible. A basic reproduction number
is one of the most crucial tools for evaluating disease outbreaks. For the majority of illness
outbreaks, if R0 < 1, then with time, the outbreak will end, whereas if R0 > 1, then The
epidemic will continue at endemic proportions.

The basic reproduction number has been obtained using the operator approach of the
next-generation matrix. The form can be used to write a model system.

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z),

dZ

dt
= h(X,Y, Z),

where
X = (SHu, RHu, SHo, RHo, SV ),
Y = (EHu, IHu),
Z = (IHo, IV , L),
Component X represents the quantity of vulnerable, while component Y represents the
quantity of those with the infection who do not spread the illness. The component of Z
represents the number of people that are able to spread the illness.
Define g̃(X∗, Z) by

g̃(X∗, Z) = g̃1(X
∗, Z), g̃2(X

∗, Z) with

g̃1(X
∗, Z) = (βHu1L

Lo+ϵL + βHu2LHo
NHu

+ βHu3IV
NHu

) ΛHu
µHu

1
γHu+µHu+σHu

,

g̃2(X
∗, Z) = γHu

µHu+δHu+αHu
(βHu1L
Lo+ϵL + βHu1LHo

Lo+ϵL + βHu2IHo
NHu

+ βHu3IV
NHu

) ΛHu
µHu

1
γHu+µHu+σHu

,

Let A = Dzh(X∗, g̃(X∗,0), 0) and further presume that A can be expressed as follows: A
= M - D where M ≥ 0 and D > 0, a diagonal matrix. Next, A turns into

dIHo
dt = ( βHoL

L0+ϵL).ΛHo
µHo

- (µHo + δHo + αHo)IHo,

dIV
dt = ( βV L

L0+ϵL).Λµ - µV IV ,

dL
dt = κHu((βHu1L

L0+ϵL + βHu2IHo
NHu

+ βHu3IV
NHu

).ΛHu
µHu

. 1
(γHu+µHu+σHu)

+ γHu

(µHu+δHu+αHu)
(βHu1L
L0+ϵL +

βHu2IHo
NHu

+ βHu3IV
NHu

).ΛHu
µHu

. 1
(γHu+µHu+σHu)

) + κHoIHo + κV IV − µLL,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


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where
a11 = −(µHo + δHo + αHo),
a12 = 0,
a13 = ΛHo

µHo

βHoL0

(L0+ϵL)2
,

a21 = 0,
a22 = −µV ,
a23 = ΛV

µv

βV L0

(L0+ϵL)2
,

a31 = κHuβHu2

(γHu+µHu+σHu)
+ γHuβHu2

(µHu+δHu+αHu)
. 1
(γHu+µHu+σHu)

+ κHo,

a32 = κHuβHu3

(γHu+µHu+σHu)
+ γHuβHu3

(µHu+δHu+αHu)
. 1
(γHu+µHu+σHu)

+ κV ,

a33 = κHu(( βHu1L0

(L0+ϵL)2
).ΛHu

µHu
. 1
(γHu+µHu+σHu)

+ γHu

(µHu+δHu+αHu)
( βHu1L0

L0+ϵL)2
).ΛHu

µHu
. 1
(γHu+µHu+σHu)

)−
µL,

Since A = M - D, we deduce matrices M and D to be

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33


where
m11 = 0,
m12 = 0,
m13 = ΛHo

µHo

βV L0

(L0+ϵL)2
,

m21 = 0,
m22 = 0,
m23 = ΛV

µV

βV L0

(L0+ϵL)2
,

m31 = κHuβHu2

(γHu+µHu+σHu)
+ γHuβHu2

(µHu+δHu+αHu)
. 1
(γHu+µHu+σHu)

+ κHo,

m32 = κHuβHu3

(γHu+µHu+σHu)
+ γHuβHu3

(µHu+δHu+αHu)
. 1
(γHu+µHu+σHu)

+ κV ,

m33 = κHu(( βHu1L0

(L0+ϵL)2
).ΛHu

µHu
. 1
(γHu+µHu+σHu)

+ γHu

(µHu+δHu+αHu)
( βHu1L0

(L0+ϵL)2
).ΛHu

µHu
. 1
(γHu+µHu+σHu)

),

D =

d11 d12 d13
d21 d22 d23
d31 d32 d33


d11 = µHo + δHo + αHo,
d11 = 0,
d12 = 0,
d13 = 0,
d21 = 0,
d22 = µv,
d23 = 0,
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d31 = 0,
d32 = 0,
d33 = µL,

The basic reproduction number is the spectral radius (dominant eigenvalue) of the matrix
MD−1, that is

R0 = ρ(MD−1) =

√
r

a
.
p

c
+

s

b
.
q

c
,

where
a = 1

µHo+δHo+αHo
,

b = 1
µV

,

c = 1
µL

,

p = ΛHo
µHo

βHoL0

(L0+ϵL)2
,

q = ΛV
µV

βV L0

(L0+ϵL)2
,

r = κHuβHu2

(γHu+µHu+σHu)
+ γHuβHu2

(µHu+δHu+αHu)
. 1
(γHu+µHu+σHu)

+ κHo,

s = κHuβHu3

(γHu+µHu+σHu)
+ γHuβHu3

(µHu+δHu+αHu)
. 1
(γHu+µHu+σHu)

+ κV ,

3.4. Local Stability of the Disease Free Equilibrium

Based on the theorem proposed by van den Dreissche and Watmough [30], The disease
cannot spread throughout the population if the basic reproduction number R0 is smaller
than one, indicating that the disease-free equilibrium is locally asymptotically stable. This
is condensed into the subsequent theorem.
Theorem The point E0, When R0 < 1, the model system is locally asymptotically stable;
otherwise, it is unstable.
Proof Since local stability of the disease-free equilibrium is a result of the van den Driess-
che and Warmough theorem, there is no need for the proof.

3.5. Global Asymptotic Stability of Disease-Free Equilibrium

The theorem proposed by van den Dreissche and Watmough [30] states that when
R0 < 1 and R0 > 1, the disease-free equilibrium is locally asymptotically stable and
unstable, respectively. In order to ensure the global asymptotic stability of the disease-
free equilibrium, we must first enumerate two conditions. Fill out the form with the
system’s information.

dX

dt
= F (X,Z),

dZ

dt
= G(X,Z), G(X, 0) = 0,
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with X = (SHu, RHu, SHo, RHo, SV ) comprises of the uninfected components
Z = (EHu, IHu, IHo, IV , L) comprises of infected and infectious components
E0 = (X∗, 0) = (ΛHu

µHu
, 0, 0, 0, ΛHo

µHo
, 0, 0, ΛV

µV
, 0, 0) denotes the disease-free equilibrium

To ensure asymptotic global stability, the condition H1 and H1 must be hold
H1 : For dX

dt = F (X,Z), X∗ is globally asymptotically stable (g.a.s)
H2 : G(X,Z) = AZ−G(X,Z), G(X,Z) ≥ 0 for R(X,Z) ∈ R+

10 where A = DZG(X∗, 0) is
an M-matrix and R+

10 is the area in which the biological model makes sense. Here, we have

F (X, 0) =



ΛHu − µHu.SHu

0
ΛHu − µHu.SHu

0
ΛV − µV .SV

0

 and

A =


−(γHu + µHu + σHu) 0 βHu2

NHu
.ΛHu
µHu

βHu3
NHu

.ΛHu
µHu

βHu1
L0

.ΛHu
µHu

γHu −(µHu + δHu + αHu) 0 0 0

0 0 −(µHo + δHo + αHo) 0 βHo
L0

.ΛHo
µHo

0 0 0 −µV
βV /
L0

.ΛV
µV

κHu κHu κHo κV −µL



Z =


EHu

IHu

IHo

IV
L


Next, we have to find G̃(X,Z) from G(X,Z) = AZ − G̃(X,Z)

G̃(X,Z) =


( 1
L0

.ΛHu
µHu

− 1
L0+ϵLSHu)βHu1L

0

( 1
L0

.ΛHo
µHo

− 1
L0+ϵLSHo)βHoL

( 1
L0

.ΛV
µV

− 1
L0+ϵLSV )βV L

0


Since S0

Hu = ΛHu
µHu

then 1
L0

≥ 1
L0+ϵL , S

0
Hu = ΛHo

µHu
then 1

L0≥ 1
L0+ϵL

, and S0
V = ΛV

µV
then

1
L0

≥ 1
L0+ϵL therefore, it is clear that G̃(X,Z) ≥ 0 for all (X,Z) ∈ R+

10. It is also clear that
matrix A is an M -matrix since the off-diagonal elements of A are non-negative. This result
can be summarized that the disease-free equilibrium E0 = (ΛHu

µHu
, 0, 0, 0, ΛHo

µHo
, 0, 0, ΛV

µV
, 0, 0)

is globally asymptotically stable of the system if and the condition H1 and H2 are fulfilled.
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3.6. The Endemic Equilibrium State

This section contains our findings regarding the presence of a constant solution or
endemic equilibrium for the model system. We’ll use a threshold parameter, which we’ve
already designated as R0, to do this. There is one endemic equilibrium in the pro-
portionately specified model solution given by E1 = (SHu = S∗

Hu, EHu = E∗
Hu, IHu =

I∗Hu, RHu = R∗
Hu, SHo = S∗

Ho, IHo = I∗Ho, RHo = R∗
Ho, SV = S∗

V , IV = I∗V , L = L∗); with
(S∗

Hu, E
∗
Hu, I

∗
Hu, R

∗
Hu, S

∗
Ho, I

∗
Ho, R

∗
Ho, S

∗
V , I

∗
V , L

∗) all non-negative, the threshold parameter
determining their existence and characteristics R0 > 1 or more specific determined by
the existence of free-living Leptospira in the environment. Suppose we have L∗ from the
system, and then we have the endemic equilibrium presented.

S∗
Hu =

ΛHu + θHuR
∗
Hu

(λ∗
Hu + µHu)

,

E∗
Hu =

λ∗
HuS

∗
Hu

(γHu + µHu + σHu)
,

I∗Hu =
γHuE

∗
Hu

(µHu + δHu + αHu)
,

R∗
Hu =

αHuI
∗
Hu + σHuE

∗
Hu

(µHu + θHu)
,

S∗
Ho =

ΛHo + θHoR
∗
Ho

λ8
Ho + µHo

,

I∗Ho =
λ∗
Ho

(µHo + δHo + αHo)
S∗
Ho,

R∗
Ho =

αHoI
∗
Ho

(µHo + θHo)
,

S∗
V =

ΛV

λ∗
V + µV

,

I∗V =
λ∗
V

µV
S∗
V ,

where
λ∗
Hu = (βHu1L

∗

L0+ϵL∗ + βHu2IHo
NHu

+ βHu3IV
NHu

),

λ∗
Ho = ( βV L

L0+ϵL∗ ),

λ∗
V = ( βV L

L0+ϵL∗ ),

The analysis for this equilibrium could not be written in this article due to the com-
plexity of the results, and it will be explored in the numerical simulation in the next
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section.

3.7. Numerical Simulation

This section displays the system’s result as a graphics produced by ODE45 Solver.
The parameter value is given in Table 2.
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Table 3: Summary of parameters used in the system

Parameter Value Units Reference/Rational

ΛHu 10451
Human
day−1

247.949.975
65x365

ΛHo 1000
Animal-
Host day−1

Assumed

ΛHo 5000
Animal-
Vector
day−1

Assumed

µHu 0.000042 day−1
1

65x365 (Lifespan of human with average
lifespan about 65 years)

µHo 0.00027 day−1
1

10x365 (Lifespan of animal host about ten
years)

µV 0.0013 day−1
1

2x365 (Lifespan of animal vector about two
years)

µL 0.07 day−1
1
14 (Lifespan of leptospire bacteria about
14 days)l

θHu 0.01 day−1
1

100 (re-infection could be happen after
three months)

θHo 0.01 day−1
1

100 (re-infection could be happen after
three months)

γHu 0.05 day−1
1
20 (Septicemic phase to immune phase oc-
curs in 20 days)

σHu 0.005 day−1
1

200 (Exposed to recovered population oc-
curs in 6 months)

δHu 0.0003 day−1
30

100,000 (it is about 30 individual human
deaths over 100,000 population)

δHo 0.0005 day−1
50

100,000 (it is about 50 individual animal
host deaths over 100,000 population)

αHu 0.1 day−1 1
10 (Human recovery in 10 days)

κHu 0.007 day−1 Estimated

κHo 0.007 day−1 Estimated

κV 0.005 day−1 Estimated

αHo 0.3 day−1 1
3 (Animal Host recovery in 3 days)

βHu1 0.001 day−1 Fitted

βHu2 0.009 day−1 Fitted

βHu3 0.005 day−1 Fitted

βHo 0.0005 day−1 Fitted

βV 0.0005 day−1 Fitted

 L0 10000 - Estimated

ϵ 0.001 - Estimated
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Figure 2 illustrates the solution profile for all populations when R0 < 1 (disease-free
equilibrium). This condition means that there are no free-living bacteria in the environ-
ment for an extended period, so then no infected population will be found in the human
and animal populations. The numerical solution shows that only the susceptible human,
animal host and animal vector population will exist.

Figure 2: The simulation for each population in which disease-free equilibrium exists (The condition when
R0 < 1).

Figure 3 illustrates the dynamics of the human population, animal-host population, animal-
vector population and free-living leptospires in the environment with condition R0 > 1.
This result demonstrates a correlation between the existence of free-living bacteria in the
environment and the existence of leptospirosis disease in human, animal-host and animal
vectors. When the bacteria exist, the disease will exist in all populations. This implies that
the improvement in the free-living leptospires in the environment can reduce the risk of the
spread of disease in all populations. As the route of transmission depends on the infection
rate parameter (β), which is the infection occurs not only in the human population but
also in the animal host and animal vector population then, the next figures will illustrate
the numerical solution for several values of infection rate (βHu1, βHu2, βHu3, βHo, βV ). Fig-
ure 4 shows the graph of the numerical solution model for the infected human population,
recovered human population, animal host population, and animal vector population with
parameters βHu1 = 0.1, βHu1 = 0.01, and βHu1 = 0.0001. In the infected human popu-
lation, there is no significant difference between βHu1 = 0.1 and βHu1 = 0.01, whereas,
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Figure 3: The simulation for each population in which endemic equilibrium exists (The condition when R0 > 1)

for βHu1 = 0.0001, the spread of disease is quite slow in the beginning, then increases
to the endemic equilibrium. This phenomenon also occurs in the animal host and vector
population. It slowly increases in the beginning for βHu1 = 0.0001. The graph of the
recovered human population indicates the same thing as the other graph in Figure 4.
Figure 5 illustrates the graph of the numerical solution model for the infected human
population, recovered human population, animal host population, and animal vector pop-
ulation with parameters βHu2 = 0.9, βHu2 = 0.09, and βHu2 = 0.009. All population
in figure 5 shows the same phenomenon that any difference value of βHu2 does not have
a significant result. Infected-human, animal-host and animal-vector population increase
almost in the same interval time. Figure 6 illustrates the numerical solution model for
the infected human population, recovered human population, animal host population, and
animal vector population with parameters βHu3 = 0.5, βHu3 = 0.05, and βHu3 = 0.005.
All populations show the same thing for the first interval time, and all of them increase to
the endemic equilibrium. However, in the first interval time, all of the three parameters
show a significant difference for each population dynamic.
Figure 7 illustrates the numerical solution of the model for the infected human population,
recovered human population, animal-host population, and animal-vector population with
parameters βHo = 0.05, βHo = 0.005, and βHo = 0.0005. For the infected-human pop-
ulation, recovered-human population, and animal vector population, the parameter does
not have a great effect on the dynamic, whereas, for the infected-animal host population,
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Figure 4: The simulation numeric for infected recovered human population and infected animal host and animal
vector with several values of βHu1 (βHu1 = 0.1, βHu1 = 0.01, βHu1 = 0.001)

Figure 5: The simulation numeric for infected recovered human population and infected animal host and animal
vector with several values of βHu2(βHu2 = 0.9, βHu2 = 0.09, βHu2 = 0.009)

this parameter has a significant effect on the dynamic. Figure 8 shows the graph of the
numerical solution model for the infected human population, recovered human popula-
tion, animal host population, and animal vector population with parameters βV = 0.05,
βV = 0.005, and βV = 0.0005. Almost all of the population have the same dynamic behav-
ior with several values of parameter βV . However, the infected animal vector population
has significant results compared to the other population, precisely when βV=0.0005.

4. Conclusions

In conclusion, our work has built and investigated the mathematical modeling of lep-
tospirosis using free-living microorganisms in the environment. With free-living microbes
in the environment, various infectious diseases can theoretically be replicated using the
generic modeling approach. This study established the disease reproduction number R0
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Figure 6: The simulation numeric for infected recovered human population and infected animal host and animal
vector with several values of βHu3(βHu3 = 0.5, βHu3 = 0.05, βHu3 = 0.005)

Figure 7: The simulation numeric for infected recovered human population and infected animal host and animal
vector with several values of βHo(βHo = 0.5, βHo = 0.05, βHo = 0.005)

and the connected within-animal host and between-animal vector models of human lep-
tospirosis using numerical simulations of the whole model and results from the analysis of
the endemic equilibrium expression. The endemic equilibrium point and the disease-free
equilibrium point are the two equilibrium points that are calculated. Additionally, this
work provided a stability analysis for the disease-free equilibrium, which is stable if all
of the parameters are assumed to be positive and the stability conditions are met. This
is consistent with the numerical simulation that shows a disease-free equilibrium exists.
The next generation matrix, which is assessed at the disease-free equilibrium point, is
used to compute the basic reproduction number or R0. The presence of the disease in
the human population was identified by the state of each basic reproduction number pair.
The presence of the endemic and disease-free equilibriums, which rely on the threshold pa-
rameter R0, is confirmed through numerical simulation. The presence of the endemic and
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Figure 8: The simulation numeric for infected recovered human population and infected animal host and animal
vector with several values of βV (βV = 0.5, βV = 0.05, βV = 0.005)

disease-free equilibriums, which rely on the threshold parameter R0, is confirmed through
numerical simulation. The numerical results also provide a simulation of the dynamics for
the selected populations, that is, the populations of infected humans, recovered humans,
infected animal hosts, and infected animal vectors.
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