EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 3, 2024, 1553-1564 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Weakly quasi (τ_1, τ_2) -continuous multifunctions

Prapart Pue-on¹, Supannee Sompong², Chawalit Boonpok^{1,*}

 Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
 ² Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

Abstract. Our main purpose is to introduce the notion of weakly quasi (τ_1, τ_2) -continuous multifunctions. Furthermore, several characterizations of weakly quasi (τ_1, τ_2) -continuous multifunctions are established.

2020 Mathematics Subject Classifications: 54C08, 54C60, 54E55 Key Words and Phrases: $\tau_1\tau_2$ -open set, weakly quasi (τ_1, τ_2)-continuous multifunction

1. Introduction

The concept of quasi continuous functions was introduced by Marcus [28]. Popa [33] introduced and investigated the notion of almost quasi continuous functions. Neubrunnovaá [29] showed that quasi continuity is equivalent to semi-continuity due to Levine [27]. Popa and Stan [36] introduced and studied the notion of weakly quasi continuous functions. Weak quasi continuity is implied by quasi continuity and weak continuity [26] which are independent of each other. It is shown in [30] that weak quasi continuity is equivalent to weak semi-continuity due to Arya and Bhamini [1] and Kar and Bhattacharyya [24]. Duangphui et al. [23] introduced and investigated the notion of weakly $(\mu, \mu')^{(m,n)}$ -continuous functions. Moreover, some characterizations of almost (Λ, p) -continuous functions, strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $\theta(\Lambda, p)$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, \star -continuous functions, θ - \mathscr{I} -continuous functions, almost (q, m)-continuous functions, (Λ, sp) -continuous functions, $\delta p(\Lambda, s)$ -continuous functions, $(\Lambda, p(\star))$ -continuous functions, pairwise weakly M-continuous functions, (τ_1, τ_2) continuous functions, almost (τ_1, τ_2) -continuous functions and weakly (τ_1, τ_2) -continuous functions were presented in [38], [40], [12], [37], [18], [11], [10], [6], [3], [43], [39], [9], [4], [19], [17] and [13], respectively.

Email addresses: prapart.p@msu.ac.th (P. Pue-on),

s_sompong@snru.ac.th (S. Sompong), chawalit.b@msu.ac.th (C. Boonpok)

https://www.ejpam.com

© 2024 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i3.5191

The concept of almost quasi continuous multifunctions was introduced by Popa and Noiri [35]. Noiri and Popa [31] introduced and studied the notion of weakly quasi continuous multifunctions. Several characterizations of weakly quasi continuous multifunctions have been obtained in [35]. Popa and Noiri [34] introduced and investigated the concepts of upper and lower θ -quasi continuous multifunctions. In particular, some characterizations of upper and lower θ -quasi continuous multifunctions were established in [32]. In [8], the present author introduced and studied the concepts of almost quasi *-continuous multifunctions and weakly quasi *-continuous multifunctions. Laprom et al. [25] introduced and investigated the notion of almost $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [42] introduced and studied the concept of weakly $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Furthermore, several characterizations of weakly $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, almost weakly \star -continuous multifunctions, weakly \star -continuous multifunctions, weakly α - \star -continuous multifunctions, weakly i^{*}-continuous multifunctions, weakly quasi (Λ, sp) -continuous multifunctions, weakly (Λ, sp) -continuous multifunctions and weakly (τ_1, τ_2) -continuous multifunctions were investigated in [7], [21], [20], [5], [15], [14], [44], [16] and [41], respectively. In this paper, we introduce the concept of weakly quasi (τ_1, τ_2) -continuous multifunctions. Moreover, some characterizations of weakly quasi (τ_1, τ_2) -continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [22] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [22] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [22] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [22] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

1555

A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$ -open [42] (resp. $(\tau_1, \tau_2)s$ -open [7], $(\tau_1, \tau_2)\beta$ -open [7], $\alpha(\tau_1, \tau_2)$ -open [45]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)\beta$ -open, $\alpha(\tau_1, \tau_2)$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)\beta$ -closed, $(\tau_1, \tau_2)\beta$ -closed, $\alpha(\tau_1, \tau_2)$ -closed). Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)s$ -closed sets of X containing A is called the $(\tau_1, \tau_2)s$ -closure [7] of A and is denoted by $(\tau_1, \tau_2)s$ -interior [7] of A and is denoted by $(\tau_1, \tau_2)s$ -in

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) (τ_1, τ_2) -sCl(A) = $\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) \cup A [21];
- (2) (τ_1, τ_2) -sInt $(A) = \tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int $(A)) \cap A$.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [42] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [42] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [42] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [42] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

Lemma 3. [42] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_1 \tau_2$ -open in X, then $\tau_1 \tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, following [2] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and

$$F^{-}(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}.$$

In particular, $F^{-}(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$. Let $\mathscr{P}(X)$ be the collection of all nonempty subsets of X. For any $\tau_1 \tau_2$ -open set V of a bitopological space (X, τ_1, τ_2) , we denote $V^+ = \{B \in \mathscr{P}(X) \mid B \subseteq V\}$ and $V^- = \{B \in \mathscr{P}(X) \mid B \cap V \neq \emptyset\}$.

3. Weakly quasi (τ_1, τ_2) -continuous multifunctions

In this section, we introduce the concept of weakly quasi (τ_1, τ_2) -continuous multifunctions. Moreover, some characterizations of weakly quasi (τ_1, τ_2) -continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be weakly quasi (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y such that $F(x) \in V_1^+ \cap V_2^-$ and each $\tau_1 \tau_2$ -open set U of X containing x, there exists a nonempty $\tau_1 \tau_2$ -open set G such that $G \subseteq U$, $F(G) \subseteq \sigma_1 \sigma_2$ - $Cl(V_1)$ and $\sigma_1 \sigma_2$ - $Cl(V_2) \cap F(z) \neq \emptyset$ for every $z \in G$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be weakly quasi (τ_1, τ_2) -continuous if F is weakly quasi (τ_1, τ_2) -continuous at each point of X.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is weakly quasi (τ_1, τ_2) -continuous;
- (2) for each $x \in X$ and every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y such that $F(x) \in V_1^+ \cap V_2^-$, there exists a (τ_1, τ_2) s-open set of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ - $Cl(V_1)$ and $\sigma_1 \sigma_2$ - $Cl(V_2) \cap F(z) \neq \emptyset$ for every $z \in U$;
- (3) $\tau_1\tau_2$ - $Int(\tau_1\tau_2$ - $Cl(F^-(\sigma_1\sigma_2$ - $Int(K_1)) \cup F^+(\sigma_1\sigma_2$ - $Int(K_2)))) \subseteq F^-(K_1) \cup F^+(K_2)$ for every $\sigma_1\sigma_2$ -closed sets K_1, K_2 of Y;
- (4) $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2 Cl(V_1)) \cap F^-(\sigma_1 \sigma_2 Cl(V_2)))$ for every $\sigma_1 \sigma_2$ open sets V_1, V_2 of Y;
- (5) (τ_1, τ_2) -sCl $(F^-(V_1) \cup F^+(V_2)) \subseteq F^-(\sigma_1 \sigma_2$ -Cl $(V_1)) \cup F^+(\sigma_1 \sigma_2$ -Cl $(V_2))$ for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y.

Proof. (1) \Rightarrow (2): Let $\mathscr{U}(x)$ the family of all $\tau_1\tau_2$ -open sets of X containing x. Let V_1, V_2 be any $\sigma_1\sigma_2$ -open sets of Y such that $F(x) \in V_1^+ \cap V_2^-$. For each $H \in \mathscr{U}(x)$, there exists a nonempty $\tau_1\tau_2$ -open set G_H such that $G_H \subseteq H$, $F(G_H) \subseteq \sigma_1\sigma_2$ -Cl(V_1) and $\sigma_1\sigma_2$ -Cl(V_2) $\cap F(y) \neq \emptyset$ for each $y \in G_H$. Let $W = \cup \{G_H \mid H \in \mathscr{U}(x)\}$. Then, W is $\tau_1\tau_2$ -open in $X, x \in \tau_1\tau_2$ -Cl(W), $F(W) \subseteq \sigma_1\sigma_2$ -Cl(V_1) and $\sigma_1\sigma_2$ -Cl(V_2) $\cap F(w) \neq \emptyset$ for every $w \in W$. Put $U = W \cup \{x\}$, then $W \subseteq U \subseteq \tau_1\tau_2$ -Cl(W). Thus, U is a $(\tau_1, \tau_2)s$ -open set of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Cl(V_1) and $\sigma_1\sigma_2$ -Cl(V_2) $\cap F(z) \neq \emptyset$ for every $z \in U$.

 $(2) \Rightarrow (4)$: Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y and $x \in F^+(V_1) \cap F^-(V_2)$. Then, $F(x) \in V_1^+ \cap V_2^-$ and there exists a $(\tau_1, \tau_2)s$ -open set U of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl (V_1) and $\sigma_1 \sigma_2$ -Cl $(V_2) \cap F(z) \neq \emptyset$ for each $z \in U$. Thus, $x \in U \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2$ -Cl $(V_1)) \cap F^-(\sigma_1 \sigma_2$ -Cl $(V_2)))$ and so

$$F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$$
-sInt $(F^+(\sigma_1 \sigma_2 - \text{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 - \text{Cl}(V_2)))$.

$$(4) \Rightarrow (5)$$
: Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y. Then by (4), we have

$$\begin{aligned} X &- (F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{1})) \cup F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{2}))) \\ &= (X - F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{1}))) \cap (X - F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{2}))) \\ &= F^{+}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{1})) \cap F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{2})) \\ &\subseteq (\tau_{1}, \tau_{2})\text{-}\mathrm{sInt}(F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{1}))) \cap F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{2})))) \\ &= (\tau_{1}, \tau_{2})\text{-}\mathrm{sInt}(F^{+}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{1}))) \cap F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V_{2})))) \\ &\subseteq (\tau_{1}, \tau_{2})\text{-}\mathrm{sInt}(F^{+}(Y - V_{1}) \cap F^{-}(Y - V_{2})) \\ &= (\tau_{1}, \tau_{2})\text{-}\mathrm{sInt}((X - F^{-}(V_{1})) \cap (X - F^{+}(V_{2}))) \\ &= (\tau_{1}, \tau_{2})\text{-}\mathrm{sInt}(X - (F^{-}(V_{1}) \cup F^{+}(V_{2}))) \end{aligned}$$

and hence (τ_1, τ_2) -sCl $(F^-(V_1) \cup F^+(V_2)) \subseteq F^-(\sigma_1 \sigma_2$ -Cl $(V_1)) \cup F^+(\sigma_1 \sigma_2$ -Cl $(V_2))$. (5) \Rightarrow (3): Let K_1, K_2 be any $\sigma_1 \sigma_2$ -closed sets of Y. By (5) and Lemma 2,

$$\tau_{1}\tau_{2}\operatorname{-Int}(\tau_{1}\tau_{2}\operatorname{-Cl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K_{1})) \cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K_{2}))))$$

$$\subseteq (\tau_{1}, \tau_{2})\operatorname{-sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K_{1})) \cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K_{2})))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K_{1}))) \cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K_{2})))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(K_{1})) \cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(K_{2}))$$

$$= F^{-}(K_{1}) \cup F^{+}(K_{2}).$$

 $(3) \Rightarrow (4)$: Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y. By (3) and Lemma 2,

$$\begin{aligned} X &- (\tau_1, \tau_2) \text{-sInt}(F^+(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_2))) \\ &= (\tau_1, \tau_2) \text{-sCl}(F^-(Y - \sigma_1 \sigma_2 \text{-} \text{Cl}(V_1)) \cup F^+(Y - \sigma_1 \sigma_2 \text{-} \text{Cl}(V_2))) \\ &\subseteq F^-(\sigma_1 \sigma_2 \text{-} \text{Cl}(Y - \sigma_1 \sigma_2 \text{-} \text{Cl}(V_1))) \cup F^+(\sigma_1 \sigma_2 \text{-} \text{Cl}(Y - \sigma_1 \sigma_2 \text{-} \text{Cl}(V_2))) \\ &= F^-(Y - \sigma_1 \sigma_2 \text{-} \text{Int}(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_1))) \cup F^+(Y - \sigma_1 \sigma_2 \text{-} \text{Int}(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_2))) \\ &\subseteq F^-(Y - V_1) \cup F^+(Y - V_2) \\ &= (X - F^+(V_1)) \cup (X - F^-(V_2)) \\ &= X - (F^+(V_1) \cap F^-(V_2)) \end{aligned}$$

and hence $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2 - \operatorname{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 - \operatorname{Cl}(V_2)))$.

 $\begin{array}{l} (4) \Rightarrow (1): \text{ Let } x \in X \text{ and } V_1, V_2 \text{ be any } \sigma_1 \sigma_2 \text{-open sets of } Y \text{ such that } F(x) \in V_1^+ \cap V_2^-. \\ \text{By } (4), \text{ we have } F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2) \text{-} \text{sInt}(F^+(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_2))). \\ \text{Put } U = (\tau_1, \tau_2) \text{-} \text{sInt}(F^+(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 \text{-} \text{Cl}(V_2))). \\ \text{Then, } U \text{ is } (\tau_1, \tau_2) \text{s-open set of } X \\ \text{containing } x \text{ such that } F(U) \subseteq \sigma_1 \sigma_2 \text{-} \text{Cl}(V_1) \text{ and } \sigma_1 \sigma_2 \text{-} \text{Cl}(V_2) \cap F(z) \neq \emptyset \text{ for every } z \in U. \\ \text{This shows that } F \text{ is weakly quasi } (\tau_1, \tau_2) \text{-} \text{continuous.} \end{array}$

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

1557

- (1) F is weakly quasi (τ_1, τ_2) -continuous;
- (2)

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int((\sigma_1, \sigma_2)\theta - Cl(B_1))) \cup F^+(\sigma_1\sigma_2 - Int((\sigma_1, \sigma_2)\theta - Cl(B_2))))$$

$$\subseteq F^-((\sigma_1, \sigma_2)\theta - Cl(B_1)) \cup F^+((\sigma_1, \sigma_2)\theta - Cl(B_2))$$

1558

for every subsets B_1, B_2 of Y;

(3)

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(B_1))) \cup F^+(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(B_2))))$$

$$\subseteq F^-((\sigma_1, \sigma_2)\theta - Cl(B_1)) \cup F^+((\sigma_1, \sigma_2)\theta - Cl(B_2))$$

for every subsets B_1, B_2 of Y;

(4)

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_1))) \cup F^+(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_2))))$$

$$\subseteq F^-(\sigma_1\sigma_2 - Cl(V_1)) \cup F^+(\sigma_1\sigma_2 - Cl(V_2))$$

for every $\sigma_1 \sigma_2$ -open sets V_1, V_2 of Y;

(5)

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_1))) \cup F^+(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_2)))) \\ \subseteq F^-(\sigma_1\sigma_2 - Cl(V_1)) \cup F^+(\sigma_1\sigma_2 - Cl(V_2))$$

for every (σ_1, σ_2) p-open sets V_1, V_2 of Y;

(6)

$$(\tau_1, \tau_2)$$
-sCl $(F^-(\sigma_1 \sigma_2 - Int(K_1)) \cup F^+(\sigma_1 \sigma_2 - Int(K_2))) \subseteq F^-(K_1) \cup F^+(K_2)$

for every (σ_1, σ_2) r-closed sets K_1, K_2 of Y.

Proof. (1) \Rightarrow (2): Let B_1, B_2 be any subsets of Y. Since $(\sigma_1, \sigma_2)\theta$ -Cl (B_1) and $(\sigma_1, \sigma_2)\theta$ -Cl (B_2) are $\sigma_1\sigma_2$ -closed in Y, by Theorem 1

$$\tau_1\tau_2\operatorname{-Int}(\tau_1\tau_2\operatorname{-Cl}(F^-(\sigma_1\sigma_2\operatorname{-Int}((\sigma_1,\sigma_2)\theta\operatorname{-Cl}(B_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}((\sigma_1,\sigma_2)\theta\operatorname{-Cl}(B_2))))) \subseteq F^-((\sigma_1,\sigma_2)\theta\operatorname{-Cl}(B_1)) \cup F^+((\sigma_1,\sigma_2)\theta\operatorname{-Cl}(B_2))$$

and by Lemma 2, we have

$$(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}((\sigma_1, \sigma_2)\theta\operatorname{-Cl}(B_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}((\sigma_1, \sigma_2)\theta\operatorname{-Cl}(B_2)))) \subseteq F^-((\sigma_1, \sigma_2)\theta\operatorname{-Cl}(B_1)) \cup F^+((\sigma_1, \sigma_2)\theta\operatorname{-Cl}(B_2)).$$

(2) \Rightarrow (3): This is obvious since $\sigma_1 \sigma_2$ -Cl(B) \subseteq (σ_1, σ_2) θ -Cl(B) for every subset B of Y. (3) \Rightarrow (4): This is obvious since $\sigma_1 \sigma_2$ -Cl(V) = (σ_1, σ_2) θ -Cl(V) for every $\sigma_1 \sigma_2$ -open set

V of Y.

(4) \Rightarrow (5): Let V_1, V_2 be any $(\sigma_1, \sigma_2)p$ -open sets of Y. Then, we have

 $V_i \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V_i))$

and $\sigma_1 \sigma_2$ -Cl $(V_i) = \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V_i)))$ for i = 1, 2. Now, put

$$G_i = \sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V_i)),$$

then G_i is $\sigma_1 \sigma_2$ -open in Y and $\sigma_1 \sigma_2$ -Cl $(G_i) = \sigma_1 \sigma_2$ -Cl (V_i) . Thus, by (4),

$$(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_2)))) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V_1)) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(V_2)).$$

 $(5) \Rightarrow (6)$: Let K_1, K_2 be any $(\sigma_1, \sigma_2)r$ -closed sets of Y. Since $\sigma_1\sigma_2$ -Int (K_1) and $\sigma_1\sigma_2$ -Int (K_2) are $(\sigma_1, \sigma_2)p$ -open in Y, by (5), we have

$$\begin{aligned} &(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(K_1)) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}(K_2))) \\ &= (\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(K_1)))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(K_2))))) \\ &\subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(K_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(K_2))) \\ &= F^-(K_1) \cup F^+(K_2). \end{aligned}$$

(6) \Rightarrow (1): Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y. Then, $\sigma_1 \sigma_2$ -Cl(V_1) and $\sigma_1 \sigma_2$ -Cl(V_2) are $(\sigma_1, \sigma_2)r$ -closed in Y. Thus by (6),

$$(\tau_1, \tau_2)\operatorname{sCl}(F^-(V_1) \cup F^+(V_2))$$

$$\subseteq (\tau_1, \tau_2)\operatorname{sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_2))))$$

$$\subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V_1)) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(V_2)).$$

It follows from Theorem 1 that F is weakly quasi (τ_1, τ_2) -continuous.

Theorem 3. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) F is weakly quasi (τ_1, τ_2) -continuous;

(2)

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_1))) \cup F^+(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_2)))) \\ \subseteq F^-(\sigma_1\sigma_2 - Cl(V_1)) \cup F^+(\sigma_1\sigma_2 - Cl(V_2))$$

for every $(\sigma_1, \sigma_2)\beta$ -open sets V_1, V_2 of Y;

(3)

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_1))) \cup F^+(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_2))))$$

$$\subseteq F^-(\sigma_1\sigma_2 - Cl(V_1)) \cup F^+(\sigma_1\sigma_2 - Cl(V_2))$$

for every (σ_1, σ_2) s-open sets V_1, V_2 of Y;

$$(\tau_1, \tau_2) - sCl(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_1))) \cup F^+(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V_2))))$$

$$\subseteq F^-(\sigma_1\sigma_2 - Cl(V_1)) \cup F^+(\sigma_1\sigma_2 - Cl(V_2))$$

for every (σ_1, σ_2) p-open sets V_1, V_2 of Y.

Proof. (1) \Rightarrow (2): Let V_1, V_2 be any $(\sigma_1, \sigma_2)\beta$ -open sets of Y. Then, we have $V_i \subseteq \sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V_i))$) and hence $\sigma_1\sigma_2$ -Cl $(V_i) = \sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V_i))$) for i = 1, 2. Since $\sigma_1\sigma_2$ -Cl (V_1) and $\sigma_1\sigma_2$ -Cl (V_2) are $(\sigma_1, \sigma_2)r$ -closed sets, by Theorem 2

$$(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_2)))) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V_1)) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(V_2)).$$

(2) \Rightarrow (3): This is obvious since every $(\sigma_1, \sigma_2)s$ -open set is $(\sigma_1, \sigma_2)\beta$ -open.

(3) \Rightarrow (4): For any $(\sigma_1, \sigma_2)p$ -open set V of Y, $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed and $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)s$ -open in Y.

(4) \Rightarrow (1): Let V_1, V_2 be any $\sigma_1 \sigma_2$ -open sets of Y. Then, V_1 and V_2 are $(\sigma_1, \sigma_2)p$ -preopen in Y. By (4), we have

$$(\tau_1, \tau_2)\operatorname{-sCl}(F^-(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_1))) \cup F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V_2)))) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V_1)) \cup F^+(\sigma_1\sigma_2\operatorname{-Cl}(V_2)).$$

It follows from Theorem 2 that F is weakly quasi (τ_1, τ_2) -continuous.

Theorem 4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is weakly quasi (τ_1, τ_2) -continuous;
- (2) $\tau_1 \tau_2 \operatorname{-Int}(\tau_1 \tau_2 \operatorname{-Cl}(F^-(V_1) \cup F^+(V_2))) \subseteq F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V_1)) \cup F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(V_2))$ for every $(\sigma_1, \sigma_2) p$ -open sets V_1, V_2 of Y;
- (3) (τ_1, τ_2) -sCl $(F^-(V_1) \cup F^+(V_2)) \subseteq F^-(\sigma_1 \sigma_2$ -Cl $(V_1)) \cup F^+(\sigma_1 \sigma_2$ -Cl $(V_2))$ for every (σ_1, σ_2) popen sets V_1, V_2 of Y;
- (4) $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2 Cl(V_1)) \cap F^-(\sigma_1 \sigma_2 Cl(V_2)))$ for every (σ_1, σ_2) popen sets V_1, V_2 of Y.

1560

REFERENCES

Proof. (1) \Rightarrow (2): Let V_1, V_2 be any $(\sigma_1, \sigma_2)p$ -open sets of Y. Since F is weakly quasi (τ_1, τ_2) -continuous, by Theorem 2

 $\tau_{1}\tau_{2}\operatorname{-Int}(\tau_{1}\tau_{2}\operatorname{-Cl}(F^{-}(V_{1})\cup F^{+}(V_{2})))$ $\subseteq \tau_{1}\tau_{2}\operatorname{-Int}(\tau_{1}\tau_{2}\operatorname{-Cl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V_{1})))\cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V_{2})))))$ $\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V_{1}))\cup F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V_{2})).$

 $(2) \Rightarrow (3)$: Let V_1, V_2 be any $(\sigma_1, \sigma_2)p$ -open sets of Y. By (2) and Lemma 2, we have

$$(\tau_1, \tau_2) - \mathrm{sCl}(F^-(V_1) \cup F^+(V_2)) = (F^-(V_1) \cup F^+(V_2)) \cup \tau_1 \tau_2 - \mathrm{Int}(\tau_1 \tau_2 - \mathrm{Cl}(F^-(V_1) \cup F^+(V_2)))$$
$$\subseteq F^-(\sigma_1 \sigma_2 - \mathrm{Cl}(V_1)) \cup F^+(\sigma_1 \sigma_2 - \mathrm{Cl}(V_2)).$$

 $(3) \Rightarrow (4)$: Let V_1, V_2 be any $(\sigma_1, \sigma_2)p$ -open sets of Y. Then by (3), we have

$$\begin{aligned} X &- (\tau_1, \tau_2) \text{-}\operatorname{SInt}(F^+(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2))) \\ &= (\tau_1, \tau_2) \text{-}\operatorname{sCl}(X - (F^+(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1)) \cap F^-(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2)))) \\ &= (\tau_1, \tau_2) \text{-}\operatorname{sCl}((X - F^+(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1))) \cup (X - F^-(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2)))) \\ &= (\tau_1, \tau_2) \text{-}\operatorname{sCl}(F^-(Y - \sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1)) \cup F^+(Y - \sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2))) \\ &\subseteq F^-(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(Y - \sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1))) \cup F^+(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2))) \\ &= (X - F^+(\sigma_1 \sigma_2 \text{-}\operatorname{Int}(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1)))) \cup (X - F^-(\sigma_1 \sigma_2 \text{-}\operatorname{Int}(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2)))) \\ &= X - (F^+(\sigma_1 \sigma_2 \text{-}\operatorname{Int}(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_1))) \cap F^-(\sigma_1 \sigma_2 \text{-}\operatorname{Int}(\sigma_1 \sigma_2 \text{-}\operatorname{Cl}(V_2)))) \\ &\subseteq X - (F^+(V_1) \cap F^-(V_2)) \end{aligned}$$

and hence $F^+(V_1) \cap F^-(V_2) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(\sigma_1 \sigma_2$ -Cl $(V_1)) \cap F^-(\sigma_1 \sigma_2$ -Cl $(V_2)))$. (4) \Rightarrow (1): Since every $\sigma_1 \sigma_2$ -open set is $(\sigma_1, \sigma_2)p$ -open, this follows from Theorem 1.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- S. P. Arya and M. P. Bhamini. Some weaker forms of semi-continuous functions. Ganita, 33:124–134, 1982.
- [2] C. Berge. Espaces topologiques fonctions multivoques. Dunod, Paris, 1959.
- C. Boonpok. Almost (g, m)-continuous functions. International Journal of Mathematical Analysis, 4(40):1957–1964, 2010.
- [4] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.

- [5] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii Journal of Mathematics, 40(1):24–35, 2019.
- [6] C. Boonpok. On characterizations of *-hyperconnected ideal topological spaces. Journal of Mathematics, 2020:9387601, 2020.
- [7] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. *Heliyon*, 6:e05367, 2020.
- [8] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(1):339–355, 2020.
- [9] C. Boonpok. On some closed sets and low separation axioms via topological spaces. European Journal of Pure and Applied Mathematics, 15(3):300–309, 2022.
- [10] C. Boonpok. On some spaces via topological ideals. Open Mathematics, 21:20230118, 2023.
- [11] C. Boonpok. $\theta(\star)$ -precontinuity. Mathematica, 65(1):31–42, 2023.
- [12] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [13] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [14] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [15] C. Boonpok and P. Pue-on. Upper and lower weakly α-*-continuous multifunctions. International Journal of Analysis and Applications, 21:90, 2023.
- [16] C. Boonpok and P. Pue-on. Upper and lower weakly (Λ, sp) -continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(2):1047–1058, 2023.
- [17] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [18] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) continuity. European Journal of Pure and Applied Mathematics, 16(1):29–43, 2023.
- [19] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [20] C. Boonpok and C. Viriyapong. Almost weak continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:367–372, 2020.
- [21] C. Boonpok and C. Viriyapong. Upper and lower almost weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 14(4):1212–1225, 2021.

- [22] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. Journal of Mathematics and Computer Science, 18:282–293, 2018.
- [23] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1165– 1174, 2011.
- [24] A. Kar and P. Bhattacharyya. Weakly semi-continuous functions. The Journal of Indian Academy of Mathematics, 8:83–93, 1986.
- [25] K. Laprom, C. Boonpok, and C. Viriyapong. $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces. *Journal of Mathematics*, 2020:4020971, 2020.
- [26] N. Levine. A decomposition of continuity in topological spaces. The American Mathematical Monthly, 68:44–46, 1961.
- [27] N. Levine. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70:36–41, 1963.
- [28] S. Marcus. Sur les fonctions quasicontinues au sense de S. Kempisty. Colloquium Mathematicum, 8:47–53, 1961.
- [29] A. Neubrunnová. On certain generalizations of the notion of continuity. Matematički Časopis, 23:374–380, 1973.
- [30] T. Noiri. Properties of some weak forms of continuity. International Journal of Mathematics and Mathematical Sciences, 10:97–111, 1987.
- [31] T. Noiri and V. Popa. Weakly quasi continuous multifunctions. Analele Universității din Timișoara. Seria Matematică-Informatică, 26:33–38, 1988.
- [32] T. Noiri and V. Popa. Some properties of upper and lower θ -quasi continuous multifunctions. *Demonstratio Mathematica*, 38(1):223–234, 2005.
- [33] V. Popa. On a decomposition of quasicontinuity in topological spaces. Studii şi Cercetări de Matematicaă, 30:31–35, 1978.
- [34] V. Popa and T. Noiri. On θ-quasi continuous multifunctions. Demonstratio Mathematica, 28:111–122, 1995.
- [35] V. Popa and T. Noiri. Almost quasi continuous multifunctions. Tatra Mountains Mathematical Publications, 14:81–90, 1998.
- [36] V. Popa and C. Stan. On a decomposition of quasicontinuity in topological spaces. Studii şi Cercetări de Matematicaă, 25:41–43, 1973.
- [37] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.

- [38] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. International Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [39] N. Srisarakham and C. Boonpok. On characterizations of $\delta p(\Lambda, s)$ - \mathscr{D}_1 spaces. International Journal of Mathematics and Computer Science, 18(4):743–747, 2023.
- [40] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [41] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) continuity. (accepted).
- [42] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. Journal of Mathematics, 2020:6285763, 2020.
- [43] C. Viriyapong and C. Boonpok. (Λ, sp)-continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [44] C. Viriyapong and C. Boonpok. Weak quasi (Λ, sp) -continuity for multifunctions. International Journal of Mathematics and Computer Science, 17(3):1201–1209, 2022.
- [45] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. International Journal of Mathematics and Computer Science, 19(3):855–860, 2024.