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1. Introduction

The concept of quasi continuous functions was introduced by Marcus [28]. Popa [33]
introduced and investigated the notion of almost quasi continuous functions. Neubrun-
novaá [29] showed that quasi continuity is equivalent to semi-continuity due to Levine
[27]. Popa and Stan [36] introduced and studied the notion of weakly quasi continu-
ous functions. Weak quasi continuity is implied by quasi continuity and weak conti-
nuity [26] which are independent of each other. It is shown in [30] that weak quasi
continuity is equivalent to weak semi-continuity due to Arya and Bhamini [1] and Kar
and Bhattacharyya [24]. Duangphui et al. [23] introduced and investigated the no-
tion of weakly (µ, µ′)(m,n)-continuous functions. Moreover, some characterizations of al-
most (Λ, p)-continuous functions, strongly θ(Λ, p)-continuous functions, almost strongly
θ(Λ, p)-continuous functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous func-
tions, θ(⋆)-precontinuous functions, ⋆-continuous functions, θ-I -continuous functions, al-
most (g,m)-continuous functions, (Λ, sp)-continuous functions, δp(Λ, s)-continuous func-
tions, (Λ, p(⋆))-continuous functions, pairwise weakly M -continuous functions, (τ1, τ2)-
continuous functions, almost (τ1, τ2)-continuous functions and weakly (τ1, τ2)-continuous
functions were presented in [38], [40], [12], [37], [18], [11], [10], [6], [3], [43], [39], [9], [4],
[19], [17] and [13], respectively.
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The concept of almost quasi continuous multifunctions was introduced by Popa and
Noiri [35]. Noiri and Popa [31] introduced and studied the notion of weakly quasi contin-
uous multifunctions. Several characterizations of weakly quasi continuous multifunctions
have been obtained in [35]. Popa and Noiri [34] introduced and investigated the concepts
of upper and lower θ-quasi continuous multifunctions. In particular, some characteriza-
tions of upper and lower θ-quasi continuous multifunctions were established in [32]. In [8],
the present author introduced and studied the concepts of almost quasi ⋆-continuous mul-
tifunctions and weakly quasi ⋆-continuous multifunctions. Laprom et al. [25] introduced
and investigated the notion of almost β(τ1, τ2)-continuous multifunctions. Viriyapong and
Boonpok [42] introduced and studied the concept of weakly (τ1, τ2)α-continuous multifunc-
tions. Furthermore, several characterizations of weakly (τ1, τ2)δ-semicontinuous multifunc-
tions, almost weakly (τ1, τ2)-continuous multifunctions, almost weakly ⋆-continuous mul-
tifunctions, weakly ⋆-continuous multifunctions, weakly α-⋆-continuous multifunctions,
weakly ı⋆-continuous multifunctions, weakly quasi (Λ, sp)-continuous multifunctions, weakly
(Λ, sp)-continuous multifunctions and weakly (τ1, τ2)-continuous multifunctions were in-
vestigated in [7], [21], [20], [5], [15], [14], [44], [16] and [41], respectively. In this paper, we
introduce the concept of weakly quasi (τ1, τ2)-continuous multifunctions. Moreover, some
characterizations of weakly quasi (τ1, τ2)-continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [22] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A be
a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets of X
containing A is called the τ1τ2-closure [22] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [22] of A and is denoted
by τ1τ2-Int(A).

Lemma 1. [22] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2- Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2- Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).



P. Pue-on, S. Sompong, C. Boonpok / Eur. J. Pure Appl. Math, 17 (3) (2024), 1553-1564 1555

A subsetA of a bitopological space (X, τ1, τ2) is called (τ1, τ2)r-open [42] (resp. (τ1, τ2)s-
open [7], (τ1, τ2)p-open [7], (τ1, τ2)β-open [7], α(τ1, τ2)-open [45]) ifA = τ1τ2-Int(τ1τ2-Cl(A))
(resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))),
A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-
open, (τ1, τ2)p-open, (τ1, τ2)β-open, α(τ1, τ2)-open) set is called (τ1, τ2)r-closed (resp.
(τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed, α(τ1, τ2)-closed). Let A be a subset of
a bitopological space (X, τ1, τ2). The intersection of all (τ1, τ2)s-closed sets of X contain-
ing A is called the (τ1, τ2)s-closure [7] of A and is denoted by (τ1, τ2)-sCl(A). The union
of all (τ1, τ2)s-open sets of X contained in A is called the (τ1, τ2)s-interior [7] of A and is
denoted by (τ1, τ2)-sInt(A).

Lemma 2. For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) (τ1, τ2)-sCl(A) = τ1τ2-Int(τ1τ2-Cl(A)) ∪A [21];

(2) (τ1, τ2)-sInt(A) = τ1τ2-Cl(τ1τ2-Int(A)) ∩A.

Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a
(τ1, τ2)θ-cluster point [42] of A if τ1τ2-Cl(U)∩A ̸= ∅ for every τ1τ2-open set U containing
x. The set of all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure [42] of A and
is denoted by (τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2) is said to be
(τ1, τ2)θ-closed [42] if (τ1, τ2)θ-Cl(A) = A. The complement of a (τ1, τ2)θ-closed set is said
to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open sets of X contained in A is called the
(τ1, τ2)θ-interior [42] of A and is denoted by (τ1, τ2)θ-Int(A).

Lemma 3. [42] For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:

(1) If A is τ1τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).

(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [2] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x). Let P(X) be the collection of all nonempty subsets of X. For any
τ1τ2-open set V of a bitopological space (X, τ1, τ2), we denote V

+ = {B ∈ P(X) | B ⊆ V }
and V − = {B ∈ P(X) | B ∩ V ̸= ∅}.
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3. Weakly quasi (τ1, τ2)-continuous multifunctions

In this section, we introduce the concept of weakly quasi (τ1, τ2)-continuous multifunc-
tions. Moreover, some characterizations of weakly quasi (τ1, τ2)-continuous multifunctions
are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly quasi
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open sets V1, V2 of Y such that
F (x) ∈ V +

1 ∩ V −
2 and each τ1τ2-open set U of X containing x, there exists a nonempty

τ1τ2-open set G such that G ⊆ U , F (G) ⊆ σ1σ2-Cl(V1) and σ1σ2-Cl(V2) ∩ F (z) ̸= ∅ for
every z ∈ G. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly quasi
(τ1, τ2)-continuous if F is weakly quasi (τ1, τ2)-continuous at each point of X.

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is weakly quasi (τ1, τ2)-continuous;

(2) for each x ∈ X and every σ1σ2-open sets V1, V2 of Y such that F (x) ∈ V +
1 ∩ V −

2 ,
there exists a (τ1, τ2)s-open set of X containing x such that F (U) ⊆ σ1σ2-Cl(V1) and
σ1σ2-Cl(V2) ∩ F (z) ̸= ∅ for every z ∈ U ;

(3) τ1τ2-Int(τ1τ2-Cl(F
−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2)))) ⊆ F−(K1) ∪ F+(K2) for

every σ1σ2-closed sets K1,K2 of Y ;

(4) F+(V1)∩F−(V2) ⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1))∩F−(σ1σ2-Cl(V2))) for every σ1σ2-

open sets V1, V2 of Y ;

(5) (τ1, τ2)-sCl(F
−(V1)∪F+(V2)) ⊆ F−(σ1σ2-Cl(V1))∪F+(σ1σ2-Cl(V2)) for every σ1σ2-

open sets V1, V2 of Y .

Proof. (1) ⇒ (2): Let U (x) the family of all τ1τ2-open sets of X containing x. Let
V1, V2 be any σ1σ2-open sets of Y such that F (x) ∈ V +

1 ∩ V −
2 . For each H ∈ U (x),

there exists a nonempty τ1τ2-open set GH such that GH ⊆ H, F (GH) ⊆ σ1σ2-Cl(V1) and
σ1σ2-Cl(V2) ∩ F (y) ̸= ∅ for each y ∈ GH . Let W = ∪{GH | H ∈ U (x)}. Then, W is
τ1τ2-open in X, x ∈ τ1τ2-Cl(W ), F (W ) ⊆ σ1σ2-Cl(V1) and σ1σ2-Cl(V2) ∩ F (w) ̸= ∅ for
every w ∈ W . Put U = W ∪ {x}, then W ⊆ U ⊆ τ1τ2-Cl(W ). Thus, U is a (τ1, τ2)s-open
set of X containing x such that F (U) ⊆ σ1σ2-Cl(V1) and σ1σ2-Cl(V2)∩F (z) ̸= ∅ for every
z ∈ U .

(2) ⇒ (4): Let V1, V2 be any σ1σ2-open sets of Y and x ∈ F+(V1) ∩ F−(V2). Then,
F (x) ∈ V +

1 ∩ V −
2 and there exists a (τ1, τ2)s-open set U of X containing x such that

F (U) ⊆ σ1σ2-Cl(V1) and σ1σ2-Cl(V2) ∩ F (z) ̸= ∅ for each z ∈ U . Thus, x ∈ U ⊆
(τ1, τ2)-sInt(F

+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))) and so

F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))).
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(4) ⇒ (5): Let V1, V2 be any σ1σ2-open sets of Y . Then by (4), we have

X − (F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)))

= (X − F−(σ1σ2-Cl(V1))) ∩ (X − F+(σ1σ2-Cl(V2)))

= F+(Y − σ1σ2-Cl(V1)) ∩ F−(Y − σ1σ2-Cl(V2))

⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Cl(Y − σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V2))))

= (τ1, τ2)-sInt(F
+(Y − σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(Y − σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ (τ1, τ2)-sInt(F
+(Y − V1) ∩ F−(Y − V2))

= (τ1, τ2)-sInt((X − F−(V1)) ∩ (X − F+(V2)))

= (τ1, τ2)-sInt(X − (F−(V1) ∪ F+(V2)))

= X − (τ1, τ2)-sCl(F
−(V1) ∪ F+(V2))

and hence (τ1, τ2)-sCl(F
−(V1) ∪ F+(V2)) ⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

(5) ⇒ (3): Let K1,K2 be any σ1σ2-closed sets of Y . By (5) and Lemma 2,

τ1τ2-Int(τ1τ2-Cl(F
−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2))))

⊆ (τ1, τ2)-sCl(F
−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2)))

⊆ F−(σ1σ2-Cl(σ1σ2-Int(K1))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K2)))

⊆ F−(σ1σ2-Cl(K1)) ∪ F+(σ1σ2-Cl(K2))

= F−(K1) ∪ F+(K2).

(3) ⇒ (4): Let V1, V2 be any σ1σ2-open sets of Y . By (3) and Lemma 2,

X − (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2)))

= (τ1, τ2)-sCl(F
−(Y − σ1σ2-Cl(V1)) ∪ F+(Y − σ1σ2-Cl(V2)))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Cl(Y − σ1σ2-Cl(V2)))

= F−(Y − σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(Y − σ1σ2-Int(σ1σ2-Cl(V2)))

⊆ F−(Y − V1) ∪ F+(Y − V2)

= (X − F+(V1)) ∪ (X − F−(V2))

= X − (F+(V1) ∩ F−(V2))

and hence F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))).

(4) ⇒ (1): Let x ∈ X and V1, V2 be any σ1σ2-open sets of Y such that F (x) ∈ V +
1 ∩V −

2 .
By (4), we have F+(V1)∩F−(V2) ⊆ (τ1, τ2)-sInt(F

+(σ1σ2-Cl(V1))∩F−(σ1σ2-Cl(V2))). Put
U = (τ1, τ2)-sInt(F

+(σ1σ2-Cl(V1))∩F−(σ1σ2-Cl(V2))). Then, U is (τ1, τ2)s-open set of X
containing x such that F (U) ⊆ σ1σ2-Cl(V1) and σ1σ2-Cl(V2) ∩ F (z) ̸= ∅ for every z ∈ U .
This shows that F is weakly quasi (τ1, τ2)-continuous.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:
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(1) F is weakly quasi (τ1, τ2)-continuous;

(2)

(τ1, τ2)-sCl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B1))) ∪ F+(σ1σ2-Int((σ1, σ2)θ-Cl(B2))))

⊆ F−((σ1, σ2)θ-Cl(B1)) ∪ F+((σ1, σ2)θ-Cl(B2))

for every subsets B1, B2 of Y ;

(3)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(B1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(B2))))

⊆ F−((σ1, σ2)θ-Cl(B1)) ∪ F+((σ1, σ2)θ-Cl(B2))

for every subsets B1, B2 of Y ;

(4)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2))

for every σ1σ2-open sets V1, V2 of Y ;

(5)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)p-open sets V1, V2 of Y ;

(6)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2))) ⊆ F−(K1) ∪ F+(K2)

for every (σ1, σ2)r-closed sets K1,K2 of Y .

Proof. (1) ⇒ (2): Let B1, B2 be any subsets of Y . Since (σ1, σ2)θ-Cl(B1) and
(σ1, σ2)θ-Cl(B2) are σ1σ2-closed in Y , by Theorem 1

τ1τ2-Int(τ1τ2-Cl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B1))) ∪ F+(σ1σ2-Int((σ1, σ2)θ-Cl(B2)))))

⊆ F−((σ1, σ2)θ-Cl(B1)) ∪ F+((σ1, σ2)θ-Cl(B2))

and by Lemma 2, we have

(τ1, τ2)-sCl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B1))) ∪ F+(σ1σ2-Int((σ1, σ2)θ-Cl(B2))))

⊆ F−((σ1, σ2)θ-Cl(B1)) ∪ F+((σ1, σ2)θ-Cl(B2)).
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(2) ⇒ (3): This is obvious since σ1σ2-Cl(B) ⊆ (σ1, σ2)θ-Cl(B) for every subset B of
Y .

(3) ⇒ (4): This is obvious since σ1σ2-Cl(V ) = (σ1, σ2)θ-Cl(V ) for every σ1σ2-open set
V of Y .

(4) ⇒ (5): Let V1, V2 be any (σ1, σ2)p-open sets of Y . Then, we have

Vi ⊆ σ1σ2-Int(σ1σ2-Cl(Vi))

and σ1σ2-Cl(Vi) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Vi))) for i = 1, 2. Now, put

Gi = σ1σ2-Int(σ1σ2-Cl(Vi)),

then Gi is σ1σ2-open in Y and σ1σ2-Cl(Gi) = σ1σ2-Cl(Vi). Thus, by (4),

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

(5) ⇒ (6): Let K1,K2 be any (σ1, σ2)r-closed sets of Y . Since σ1σ2-Int(K1) and
σ1σ2-Int(K2) are (σ1, σ2)p-open in Y , by (5), we have

(τ1, τ2)-sCl(F
−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2)))

= (τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K1)))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K2)))))

⊆ F−(σ1σ2-Cl(σ1σ2-Int(K1))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K2)))

= F−(K1) ∪ F+(K2).

(6) ⇒ (1): Let V1, V2 be any σ1σ2-open sets of Y . Then, σ1σ2-Cl(V1) and σ1σ2-Cl(V2)
are (σ1, σ2)r-closed in Y . Thus by (6),

(τ1, τ2)-sCl(F
−(V1) ∪ F+(V2))

⊆ (τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

It follows from Theorem 1 that F is weakly quasi (τ1, τ2)-continuous.

Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is weakly quasi (τ1, τ2)-continuous;

(2)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)β-open sets V1, V2 of Y ;
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(3)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)s-open sets V1, V2 of Y ;

(4)

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)p-open sets V1, V2 of Y .

Proof. (1) ⇒ (2): Let V1, V2 be any (σ1, σ2)β-open sets of Y . Then, we have Vi ⊆
σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Vi))) and hence σ1σ2-Cl(Vi) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Vi)))
for i = 1, 2. Since σ1σ2-Cl(V1) and σ1σ2-Cl(V2) are (σ1, σ2)r-closed sets, by Theorem 2

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

(2) ⇒ (3): This is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.
(3) ⇒ (4): For any (σ1, σ2)p-open set V of Y , σ1σ2-Cl(V ) is (σ1, σ2)r-closed and

σ1σ2-Cl(V ) is (σ1, σ2)s-open in Y .
(4) ⇒ (1): Let V1, V2 be any σ1σ2-open sets of Y . Then, V1 and V2 are (σ1, σ2)p-

preopen in Y . By (4), we have

(τ1, τ2)-sCl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

It follows from Theorem 2 that F is weakly quasi (τ1, τ2)-continuous.

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is weakly quasi (τ1, τ2)-continuous;

(2) τ1τ2-Int(τ1τ2-Cl(F
−(V1)∪F+(V2))) ⊆ F−(σ1σ2-Cl(V1))∪F+(σ1σ2-Cl(V2)) for every

(σ1, σ2)p-open sets V1, V2 of Y ;

(3) (τ1, τ2)-sCl(F
−(V1)∪F+(V2)) ⊆ F−(σ1σ2-Cl(V1))∪F+(σ1σ2-Cl(V2)) for every (σ1, σ2)p-

open sets V1, V2 of Y ;

(4) F+(V1)∩F−(V2) ⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1))∩F−(σ1σ2-Cl(V2))) for every (σ1, σ2)p-

open sets V1, V2 of Y .
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Proof. (1) ⇒ (2): Let V1, V2 be any (σ1, σ2)p-open sets of Y . Since F is weakly quasi
(τ1, τ2)-continuous, by Theorem 2

τ1τ2-Int(τ1τ2-Cl(F
−(V1) ∪ F+(V2)))

⊆ τ1τ2-Int(τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Int(σ1σ2-Cl(V2)))))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

(2) ⇒ (3): Let V1, V2 be any (σ1, σ2)p-open sets of Y . By (2) and Lemma 2, we have

(τ1, τ2)-sCl(F
−(V1) ∪ F+(V2)) = (F−(V1) ∪ F+(V2)) ∪ τ1τ2-Int(τ1τ2-Cl(F

−(V1) ∪ F+(V2)))

⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)).

(3) ⇒ (4): Let V1, V2 be any (σ1, σ2)p-open sets of Y . Then by (3), we have

X − (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2)))

= (τ1, τ2)-sCl(X − (F+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))))

= (τ1, τ2)-sCl((X − F+(σ1σ2-Cl(V1))) ∪ (X − F−(σ1σ2-Cl(V2))))

= (τ1, τ2)-sCl(F
−(Y − σ1σ2-Cl(V1)) ∪ F+(Y − σ1σ2-Cl(V2)))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V1))) ∪ F+(σ1σ2-Cl(Y − σ1σ2-Cl(V2)))

= (X − F+(σ1σ2-Int(σ1σ2-Cl(V1)))) ∪ (X − F−(σ1σ2-Int(σ1σ2-Cl(V2))))

= X − (F+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ X − (F+(V1) ∩ F−(V2))

and hence F+(V1) ∩ F−(V2) ⊆ (τ1, τ2)-sInt(F
+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))).

(4) ⇒ (1): Since every σ1σ2-open set is (σ1, σ2)p-open, this follows from Theorem 1.
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[34] V. Popa and T. Noiri. On θ-quasi continuous multifunctions. Demonstratio Mathe-
matica, 28:111–122, 1995.

[35] V. Popa and T. Noiri. Almost quasi continuous multifunctions. Tatra Mountains
Mathematical Publications, 14:81–90, 1998.

[36] V. Popa and C. Stan. On a decomposition of quasicontinuity in topological spaces.
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